• الرئيسية
  • عن الكلية
    • لمحة عن الكلية
    • رؤيا والرسالة والاهداف
    • هيكلية الكلية
    • دليل الكلية
    • صور وفيديوات تعريفية
    • استراتيجية الامن الوطني العراقي ( العراق اولا ) (٢٠٢٥-٢٠٢٦)
    • الشعب والوحدات
    • الموقع الجغرافي
    • كلمة السيد العميد
    • احصائيات الكلية
    • عناوين اتصال
  • الاقسام العلمية
    • قسم الرياضيات
    • قسم الارشاد النفسي والتوجيه التربوي
  • الخدمات الالكترونية
    • وصف البرنامج الاكاديمي
    • نظام تسجيل المقررات
    • البريد الإلكتروني G SUITE
    • الاستعلامات الالكترونية
    • مشروع الحوكمة الألكترونية
    • المكتبة الإفتراضية
    • نافذة التواصل الإلكترونية
    • حكومة المواطن الإلكترونية
    • قوانين و تعليمات شؤون الموظفين
    • المستودع الرقمي
  • التدريسين والباحثين
    • خطة النشر العلمي في الكلية
    • المقالات العلمية
    • الهيئة التدريسية
    • قسم الرياضيات/الكادر التدريسي
    • قسم الارشاد/ الكادر التدريسي
  • شؤون الطلبة
    • التقويم الجامعي
    • جدول الدروس الاسبوعي
    • منصة التعليم الالكتروني
    • المحاضرات على منصة YouTube
    • مكتبة الكلية
    • الطلبة الخريجون
    • الطلبة الاوائل
    • جدار التميز الطلابي
    • البرنامج الإرشادي للطلبة
    • خطة القبول للدراسات الاولية
    • قوانين وتعليمات شؤون الطلبة
  • إستمارات و نماذج
  • العربية
    • English
  • English
  • مواقع مهمة
    • الجامعات المعتمدة
    • الجامعات الرصينة
    • المجلات الاكاديمية المعتمدة
  • 009647768424080
  • muqdad_info@uodiyala.edu.iq
  • الاحد - الخميس: 7 ص - 3 م
Twitter Instagram Youtube Facebook-f
كلية التربية المقداد | جامعة ديالى
  • الرئيسية
  • عن الكلية
    • لمحة عن الكلية
    • رؤيا والرسالة والاهداف
    • هيكلية الكلية
    • دليل الكلية
    • صور وفيديوات تعريفية
    • استراتيجية الامن الوطني العراقي ( العراق اولا ) (٢٠٢٥-٢٠٢٦)
    • الشعب والوحدات
    • الموقع الجغرافي
    • كلمة السيد العميد
    • احصائيات الكلية
    • عناوين اتصال
  • الاقسام العلمية
    • قسم الرياضيات
    • قسم الارشاد النفسي والتوجيه التربوي
  • الخدمات الالكترونية
    • وصف البرنامج الاكاديمي
    • نظام تسجيل المقررات
    • البريد الإلكتروني G SUITE
    • الاستعلامات الالكترونية
    • مشروع الحوكمة الألكترونية
    • المكتبة الإفتراضية
    • نافذة التواصل الإلكترونية
    • حكومة المواطن الإلكترونية
    • قوانين و تعليمات شؤون الموظفين
    • المستودع الرقمي
  • التدريسين والباحثين
    • خطة النشر العلمي في الكلية
    • المقالات العلمية
    • الهيئة التدريسية
    • قسم الرياضيات/الكادر التدريسي
    • قسم الارشاد/ الكادر التدريسي
  • شؤون الطلبة
    • التقويم الجامعي
    • جدول الدروس الاسبوعي
    • منصة التعليم الالكتروني
    • المحاضرات على منصة YouTube
    • مكتبة الكلية
    • الطلبة الخريجون
    • الطلبة الاوائل
    • جدار التميز الطلابي
    • البرنامج الإرشادي للطلبة
    • خطة القبول للدراسات الاولية
    • قوانين وتعليمات شؤون الطلبة
  • إستمارات و نماذج
  • العربية
    • English
  • English
  • مواقع مهمة
    • الجامعات المعتمدة
    • الجامعات الرصينة
    • المجلات الاكاديمية المعتمدة

Uncategorized

  • Home
  • Blog
  • Uncategorized
  • مقال بعنوان تعلم الآلة(Machine Learning)

مقال بعنوان تعلم الآلة(Machine Learning)

  • Categories Uncategorized, اخبار -2024
  • Date يناير 7, 2025

م.م بيداء زاهد كامل

تعلّم الآلة هو فرع من الذكاء الاصطناعي، حيث يُمَكِّن أجهزة الحاسوب من “التعلم” من البيانات وتحسين أدائها في المهام المحددة دون الحاجة إلى برمجة تقليدية صريحة. يعتمد هذا التعلم على خوارزميات وطرق إحصائية تمكّن الآلة من استنتاج أنماط من البيانات التي تُقَدَّم لها، ومن ثم تطبيق ما تعلمته على بيانات جديدة. تتطور هذه التقنية بسرعة كبيرة في مجالات عديدة كالصحة، والأمن، والمال، وتقديم توصيات مخصصة.
يكتسب تعلم الآلة أهمية كبرى في عالمنا الحديث، فهو يمكّن من تحليل كميات ضخمة من البيانات بدقة وسرعة عاليتين ، فبفضل هذا المجال يمكن تحسين التنبؤات المتعلقة بالعديد من الظواهر مثل تنبؤات الطقس ، اكتشاف الأمراض مبكرًا ، وتحليل الأنماط السلوكية للمستخدمين عبر الإنترنت.
تُصَنَّف خوارزميات تعلم الآلة عمومًا إلى ثلاثة أنواع رئيسية:

  1. التعلم المُشرف (Supervised Learning): يُستخدَم عندما تتوفر بيانات مسبقة تضم المدخلات والمخرجات المرغوبة.
    يُعلم النظام على مجموعة بيانات مرتبطة بمخرجات معروفة ، وبالتالي يصبح قادرًا على التنبؤ بمخرجات جديدة ،أمثلة على ذلك تشمل التصنيف (Classification) مثل تحديد إذا كان بريد إلكترونيًا عاديًا أو غير مرغوب فيه، والانحدار (Regression) مثل التنبؤ بأسعار العقارات بناءً على معطيات معينة.
  2. التعلم غير المُشرف (Unsupervised Learning): يُستخدَم عندما لا تتوفر نتائج مسبقة، ويهدف إلى اكتشاف الأنماط أو الهيكل المخفي في البيانات ، من أشهر التطبيقات هنا التجميع (Clustering)، مثل تجميع العملاء بناءً على سلوكهم في الشراء.
  3. التعلم شبه المُشرف (Semi-Supervised Learning): يستخدم هذا النوع عندما تتوفر كمية صغيرة من البيانات المُصنفة وكميات كبيرة من البيانات غير المُصنفة ، حيث يتم استغلال البيانات المُصنفة لتوجيه تعلم الآلة وتقديم نتائج أكثر دقة.
    وتتمتع تقنيات تعلم الآلة بالقدرة على حل مجموعة واسعة من المشكلات، ومن أشهر تطبيقاتها ما يلي:
    التصنيف والتعرف على الصور: تُستخدم تقنيات تعلم الآلة في التعرف على الصور، مثل التعرف على الوجوه، وأرقام السيارات، والكائنات في الصور، وهي تلعب دورًا مهمًا في تطبيقات مثل السيارات ذاتية القيادة.
    تحليل النصوص ومعالجة اللغات الطبيعية (Natural Language Processing): تشمل تطبيقات تعلم الآلة في هذا المجال فهم النصوص المكتوبة، مثل تصنيف البريد الإلكتروني، وترجمة اللغات، وتوليد نصوص آلية باستخدام الذكاء الاصطناعي.
    التنبؤ المالي والتسويقي: يُستخدم تعلم الآلة في التنبؤ بأسعار الأسهم، وتحليل سلوك العملاء، وتقديم توصيات مخصصة للمنتجات.
    التشخيص الطبي وتحليل البيانات الحيوية: في مجال الرعاية الصحية، يتم استخدام تعلم الآلة في تحليل الصور الطبية، وتشخيص الأمراض، وتقديم توصيات علاجية.
    ورغم الإمكانات الكبيرة التي يقدمها تعلم الآلة، هناك العديد من التحديات المرتبطة بتطبيقه وتطويره:
    الحاجة إلى كميات كبيرة من البيانات معظم الخوارزميات تتطلب كميات كبيرة من البيانات للحصول على نتائج دقيقة، وقد لا تكون هذه البيانات متاحة دائمًا.
    التحيز والانحياز في البيانات إذا كانت البيانات غير متوازنة أو منحازة، فقد ينتج النظام تنبؤات غير دقيقة أو غير عادلة.
    التكلفة العالية للمعالجة والحوسبة تعلم الآلة يحتاج غالبًا إلى قوة حوسبة عالية، مما يزيد من تكلفة التطبيقات.
    فهم التفسير لبعض خوارزميات تعلم الآلة، مثل الشبكات العصبية العميقة، تعتبر “صناديق سوداء” حيث يصعب فهم كيفية الوصول إلى النتائج، مما يضعف الثقة في القرارات التي تتخذها.
    ويُعتبر تعلم الآلة من التقنيات الحديثة التي تسهم في تحويل البيانات إلى قرارات ذات قيمة ، ورغم التحديات، فإن التقدم في معالجة البيانات وزيادة القدرة الحاسوبية يفتح آفاقًا جديدة لتحسين وتحقيق تطور شامل عبر مختلف المجالات.
    ومن المتوقع أن يستمر تعلم الآلة في النمو وتحقيق المزيد من الإنجازات، مما سيسهم في تقدم مجتمعاتنا البشرية ورفاهيتها.
  • Share:
User Avatar
admin1910

Previous post

كلية التربية المقداد تقيم بطولة كرة القدم لطلبة الاقسام العلمية
يناير 7, 2025

Next post

عميد كلية التربية المقداد يشارك في اجتماع مجلس جامعة ديالى بجلسته الخامسة المفتوحة
يناير 7, 2025

You may also like

received_2541263439585340
كلية التربية المقداد تواصل حملة زراعة حدائقها
2 ديسمبر, 2025
received_2032507454162426
كلية التربية المقداد تنظم ندوة حول أهمية العمل الجماعي
9 نوفمبر, 2025
كلية التربية المقداد تقيم محاضرة علمية عن كيفية تفادي المشاكل في كتابة السيرة الذاتية
5 نوفمبر, 2025

أقامت وحدة التأهيل والتوظيف والمتابعة في كلية التربية المقداد محاضرة علمية بعنوان (كيفية تفادي المشاكل في كتابة السيرة الذاتية).استهدفت المحاضرة الطلبة الخريجين بهدف تزويدهم بالمهارات اللازمة لإعداد سير ذاتية احترافية تتزامن مع طبيعة الوظيفة المستهدفة لتجنب الأخطاء ، مما يعزز …

آخر المواضيع

كلية التربية المقداد تستقبل فريق مقومي الاعتماد المؤسسي
02ديسمبر2025
كلية التربية المقداد تواصل حملة زراعة حدائقها
02ديسمبر2025
.كلية التربية المقداد تعزز البيئة الجامعية بإنشاء سقائف لحماية الطلبة
02ديسمبر2025
كلية التربية المقداد تنظم ندوة العنف الأسري: التوعية والحلول
27نوفمبر2025
ندوة في كلية التربية المقداد عن اليوم العالمي للقضاء على العنف ضد المرأة
27نوفمبر2025
إعلان هام: دعوة للمشاركة في فعاليات أسبوع ريادة الأعمال
26نوفمبر2025

كلية التربية المقداد | جامعة ديالى

  • العـراق، ديـالــى، المقدادية
  • 009647768424080
  • muqdad_info@uodiyala.edu.iq
  • الاحد - الخميس: 7 ص - 3 م
  • تطبيق الكلية على الموبايل

روابط رئيسية

  • أدرس في العراق
  • كليات جامعة ديالى
  • قناة الجامعية الفضائية
  • عناوين ذات صلة
  • تعزيز مبدأ الشفافية
  • خدمة مجتمع
  • وحدة الارشاد النفسي الجامعي
  • التوعية البيئية والتنمية المستدامة

نشاطات التعليم المستمر

  • المؤتمرات
  • التعليم المستمر
  • الملتقى العلمي الدولي

المفضلة

  • إستمارات و نماذج
  • استمارة اصحاب رأي العمل
  • وصف المقررات
  • احصائيات الكلية

الخدمات الالكترونية

  • ارشيف اخبار الكلية
  • المكتبة الإلكترونية
  • الحاضنة التكنولوجية
  • البوابة الالكترونية لجامعة ديالى
  • عناوين البريد الالكتروني
  • المكتبة الإفتراضية
  • الامانة العامة للمكتبة المركزية
  • البريد الإلكتروني G SUITE
  • وحدة التأهيل والتوظيف
  • منصة وحدة الترقيات العلمية
  • شكاوي المواطنين
  • وحدة شؤون المواطنين
  • مشروع الحوكمة الالكترونية
  • تطبيق رواتب جامعة ديالى
  • عن الموقع
  • sitemap
  • دخول الاعضاء

راسلنا..

Copyright © 2022 muqdadedu.uodiyala.edu.iq, All Rights Reserved | website by MISBARcom