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Preface

SPSS Exact Tests is a statistical package for analyzing continuous or categorical data
by exact methods. The goal in SPSS Exact Tests is to enable you to make reliable in-
ferences when your data are small, sparse, heavily tied, or unbalanced and the validity
of the corresponding large sample theory isin doubt. This is achieved by computing
exact p values for a very wide class of hypothesis tests, including one-, two-, and K-
sample tests, tests for unordered and ordered categorical data, and tests for measures
of association. The statistical methodology underlying these exact testsis well estab-
lished in the statistical literature and may be regarded as a natural generalization of
Fisher's exact test for the single 2 x 2 contingency table. It is fully explained in this
user manual. The real chalenge has been to make this methodology operational
through software development. Historicaly, this has been a difficult task because the
computational demands imposed by the exact methods are rather severe. We and our
colleagues at the Harvard School of Public Health have worked on these computational
problems for over a decade and have developed exact and Monte Carlo algorithms to
solve them. These algorithms have now been implemented in SPSS Exact Tests. For
small data sets, the algorithms ensure quick computation of exact p values. If adata set
is too large for the exact algorithms, Monte Carlo algorithms are substituted in their
place in order to estimate the exact p valuesto any desired level of accuracy.

These numerical algorithmsarefully integrated into the SPSS 7.0 for Windows sys-
tem. Simple selections in the Nonparametric Tests and Crosstabs dialog boxes allow
you to obtain exact and Monte Carlo results quickly and easily.
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Getting Started

The SPSS Exact Tests option providestwo new methodsfor calculating significance lev-
elsfor the statistics avail abl e through the Crosstabs and Nonparametric Tests procedures.
These new methods, the exact and Monte Carlo methods, provide a powerful means for
obtaining accurate results when your data set is small, your tables are sparse or unbal-
anced, the data are not normally distributed, or the datafail to meet any of the underlying
assumptions necessary for reliable results using the standard asymptotic method.

The Exact Method

By default, SPSS cal culates significance level sfor the statisticsin the Crosstabs and Non-
parametric Tests procedures using the asymptotic method. Thismeansthat p valuesare
estimated based on the assumption that the data, given a sufficiently large sample size,
conformto aparticular distribution. However, when the data set issmall, sparse, contains
many ties, isunbalanced, or is poorly distributed, the asymptotic method may fail to pro-
duce reliable results. In these situations, it is preferable to caculate a significance level
based on the exact distribution of the test statistic. This enables you to obtain an accurate
p value without relying on assumptions that may not be met by your data.

The following example demonstrates the necessity of calculating the p value for
small data sets. This exampleis discussed in detail in Chapter 2.

Figure 1.1 shows results from an entrance examination for fire fightersin a small
township. This data set compares the exam results based on the race of the applicant.

Figure 1.1  Fire fighter entrance exam results

Test Results * Race of Applicant Crosstabulation

Count
Race of Applicant
White Black Asian Hispanic
Test Results | Pass 5 2 2
No Show 1
Fail 2 3 4
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The data show that all five white applicants received a Pass result, whereas the results
for the other groups are mixed. Based on this, you might want to test the hypothesis that
exam results are not independent of race. To test thishypothesis, you can run the Pearson
chi-square test of independence, which is available from the Crosstabs procedure. The
results are shown in Figure 1.2.

Figure 1.2  Pearson chi-square test results for fire fighter data

Chi-Square Tests

Asymp.
Sig.
Value df (2-tailed)
Pearson 1
Chi-Square 11.556 6 .073

1. 12 cells (100.0%) have expected count less than 5.
The minimum expected count is .50.

Because the observed significance of 0.073 islarger than 0.05, you might conclude that
exam results are independent of race of examinee. However, noticethat the data contains
only twenty observations, that the minimum expected frequency is 0.5, and that all 12
of the cells have an expected frequency of lessthan 5. These are dl indications that the
assumptions necessary for the standard asymptotic calculation of the significance level
for this test may not have been met. Therefore, you should obtain exact results. The ex-
act results are shown in Figure 1.3.

Figure 1.3  Exact results of Pearson chi-square test for fire fighter data

Chi-Square Tests

Asymp.
Sig. Exact Sig.
Value df (2-tailed) | (2-tailed)
Pearson 1
Chi-Square 11.556 6 .073 .040

1. 12 cells (100.0%) have expected count less than 5. The
minimum expected count is .50.

The exact p value based on Pearson’s statistic is 0.040, compared to 0.073 for the as-
ymptotic value. Using the exact p value, the null hypothesis would be rejected at the
0.05 significance level, and you would conclude that there is evidence that the exam
results and race of examinee are related. This is the opposite of the conclusion that
would have been reached with the asymptotic approach. This demonstrates that when
the assumptions of the asymptotic method cannot be met, the results can be unreliable.
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The exact calculation always produces areliable result, regardless of the size, distribu-
tion, sparseness, or balance of the data.

The Monte Carlo Method

Although exact results are always reliable, some data sets are too large for the exact p
value to be calculated, yet don’'t meet the assumptions necessary for the asymptotic
method. In this situation, the Monte Carlo method provides an unbiased estimate of the
exact p value, without the requirements of the asymptotic method. (See Table 1.1 and
Table 1.2 for details.) The Monte Carlo method is a repeated sampling method. For any
observed table, there are many tables, each with the same dimensions and column and
row margins as the observed table. The Monte Carlo method repeatedly samples a spec-
ified number of these possible tablesin order to obtain an unbiased estimate of the true
p value. Figure 1.4 displays the Monte Carlo results for the fire fighter data.

Figure 1.4  Monte Carlo results of the Pearson chi-square test for fire fighter data

Chi-Square Tests

Monte Carlo Significance (2-tailed)

Asymp. 99% Confidence Interval
Sig. Lower Upper
Value df (2-tailed) Sig. Bound Bound
Pearson 11.556" 6 073 041° 036 046
Chi-Square

1. 12 cells (100.0%) have expected count less than 5. The minimum expected count is .50.
2. Based on 10000 and seed 2000000 ...

The Monte Carlo estimate of the p value is 0.041. This estimate was based on 10,000
samples. Recall that the exact p value was 0.040, while the asymptotic p valueis 0.073.
Notice that the Monte Carlo estimate is extremely close to the exact value. This demon-
strates that if an exact p value cannot be calculated, the Monte Carlo method produces
an unbiased estimate that isreliable, evenin circumstances where the asymptotic p value
isnot.
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When to Use Exact Tests

Calculating exact results can be computationally intensive, time-consuming, and can
sometimes exceed the memory limits of your machine. In general, exact tests can be per-
formed quickly with sample sizes of less than 30. Table 1.1 and Table 1.2 provide a
guideline for the conditions under which exact results can be obtained quickly. In Table
1.2, r indicates rows, and c indicates columns in a contingency table.

Table 1.1  Sample sizes (N) at which the exact p values for nonparametric
tests are computed quickly

One-sampleinference

Chi-square goodness-of-fit test N<30
Binomial test and confidence interval N < 100, 000
Runs test N<20
One-sample K olmogorov-Smirnov test N<30

Two-related-sampleinference

Sign test N <50
Wilcoxon signed-rank test N <50
McNemar test N < 100, 000
Marginal homogeneity test N <50

Two-independent-sample inference

Mann-Whitney test N<30
Kolmogorov-Smirnov test N<30
Wald-Wolfowitz runs test N<30

K-related-sampleinference

Friedman's test N<30
Kendall’'s W N<30
Cochran’'s Q test N<30

K-independent-sample inference

Median test N <50
Kruskal-Wallis test N<15 K<4
Jonckheere-Terpstra test N<20,K<4

Two-sample median test N < 100, 000
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Table 1.2 Sample sizes (N) and table dimensions (r, c) at which the exact p values

for Crosstabs tests are computed quickly

2 x 2 contingency tables (obtained by selecting
chi-square)

Pearson chi-square test
Fisher's exact test
Likelihood-ratio test

r X ¢ contingency tables (obtained by selecting
chi-square)

Pearson chi-square test

Fisher’s exact test
Likelihood-ratio test
Linear-by-linear association test

Correlations

Pearson’s product-moment correlation coefficient
Spearman'’s rank-order correlation coefficient

Ordinal data

Kendall’s tau-b
Kendall’stau-c
Somers' d
Gamma

Nominal data

Contingency coefficients
Phi and Cramér’'sV
Goodman and Kruskal's tau
Uncertainty coefficient

Kappa

N < 100, 000
N < 100, 000
N < 100, 000

N<30 and min{r,c¢ <3
N<30 and min{r,c¢ <3
N<30 and min{r,c¢ <3
N<30and min{r,g¢ <3

N<20andr<3
N<20andr<3
N<30

N<20andr<3

N<30 and min{r,c <3
N<30 and min{r,c¢ <3
N<20andr<3

N<30 and min{r,c¢ <3

N<30adc<5
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How to Obtain Exact Statistics

The exact and Monte Carlo methods are available for Crosstabs and all of the Nonpara-
metric tests. See the SPSSBase User’ s Guidefor detailed information on using the SPSS
menus and dial og boxes.

To obtain exact statistics, open the Crosstabs dial og box or any of the Nonparametric
Tests dialog boxes. The Crosstabs and Tests for Several Independent Samples dialog
boxes are shown in Figure 1.5.

Figure 1.5 Crosstabs and Nonparametric Tests dialog boxes

Subject Row(s): oK I subject Iet arlable List:
Ftoxici |
1 N
=
Column(s): B
toxicity Cancel Grouping Variable:
< € fsoseti 9
Define Range... I \ﬂl
Layer1of1 Hext [Test Type
B Kruskal-wallis H [ Median
[ Jonckheere-Terpstra Options... |
[ suppress tables
Exact... | |§tatistics... | | Cells... | | Format...

Click here for exact tests

» Select the statistics that you want to calculate. To select statistics in the Crosstabs
dialog box, click Statistics.

» To select the exact or Monte Carlo method for computing the significance level of
the selected statistics, click Exact in the Crosstabs or Nonparametric Tests dialog
box. This opens the Exact Tests dialog box, as shown in Figure 1.6.
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Figure 1.6  Exact Tests dialog box

= Exact Tests

Continue

 Monte Carlo

Confidence level: %
Number of samples: | 10000

O Exact

Cancel

B< Time limit per test: minutes

Exact method will be used instead of Monte
Carlo when computational limits allow.

You can choose one of the following methods for computing statistics. The method you
choose will be used for all selected statistics.

Asymptotic only. Calculates significance levels using the asymptotic method. This pro-
vides the same results that would be provided without the Exact Tests option.

Monte Carlo. Provides an unbiased estimate of the exact p value and displays a confi-
denceinterval using the Monte Carlo sampling method. Asymptotic resultsarealso dis-
played. The Monte Carlo method is less computationally intensive than the exact
method, so results can often be obtained more quickly. However, if you have chosen the
Monte Carlo method, but exact results can be cal culated quickly for your data, they will
be provided. See Appendix A for details on the circumstances under which exact, rather
than Monte Carlo, results are provided. Note that, within a session, the Monte Carlo
method relies on arandom number seed that changes each time you run the procedure.
If you want to duplicate your results, you should set the random number seed every time
you use the Monte Carlo method. See “How to Set the Random Number Seed” on p. 8
for more information.

Confidence level. Specify a confidence level between 0.01 and 99.9. The default value
is99.

Number of samples. Specify a number between 1 and 1,000,000,000 for the number of
samples used in calculating the Monte Carlo approximation. The default is 10,000.
Larger numbers of samples produce more reliable estimates of the exact p value but
also take longer to calculate.



8

Chapter 1

Exact. Calculates the exact p value. Asymptatic results are al so displayed. Because com-
puting exact statistics can be time-consuming, you can set alimit on the amount of time
allowed for each test.

Time limit per test. Enter the maximum time allowed for calculating each test. Thetime
limit can be between 1 and 9,999,999 minutes. The default isfive minutes. If thetime
limit is reached, the test is terminated, no exact results are provided, and SPSS pro-
ceeds to the next test in the analysis. If atest exceeds a set time limit of 30 minutes,
it is recommended that you use the Monte Carlo, rather than the exact, method.

Cadlculating the exact p value can be memory-intensive. If you have selected the exact
method and find that you have insufficient memory to calculate results, you should first
close any other applications that are currently running in order to make more memory
available. If you till cannot obtain exact results, use the Monte Carlo method.

Additional Features Available with Command Syntax

The SPSS command language allows you to:

» Exceed the upper time limit available through the dialog box.

» Exceed the maximum number of samples available through the dialog box.
 Specify values for the confidence interval with greater precision.

Nonparametric Tests

As of release 6.1 of SPSS, two new nonparametric tests became available, the Jon-
ckheere-Terpstra test and the marginal homogeneity test. The Jonckheere-Terpstra
test can be obtained from the Tests for Several Independent Samples dialog box, and
the marginal homogeneity test can be obtained from the Two-Related-Samples Tests
dialog box.

How to Set the Random Number Seed

Monte Carlo computations use the SPSS pseudo-random number generator, which be-
ginswith aseed, avery large integer value. Within a session, SPSS uses a different seed
each time you generate aset of random numbers, producing different results. If you want
to duplicate your results, you can reset the seed value. Monte Carlo output always dis-
plays the seed used in that analysis, so that you can reset the seed to that value if you
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want to repeat an analysis. To reset the seed, open the Random Number Seed dial og box
from the Transform menu. The Random Number Seed dialog box isshownin Figure 1.7.

Figure 1.7 Random Number Seed dialog box

© Setseedto: | 2000000
" Random Seed

0K I Paste | Cancell Help |

Set seed to. Specify any positiveinteger value up to 999,999,999 as the seed value. SPSS
resets the seed to the specified val ue each time you open the dial og box and click on OK.
The default seed value is 2,000,000.

To duplicate the same series of random numbers, you should set the seed beforeyou gen-
erate the seriesfor the first time.

Random seed. Setsthe seed to arandom value chosen by your system.

Pivot Table Output

With thisrelease of Exact Tests, output appearsin pivot tables. Many of the tables shown
in this manual have been edited by pivoting them, by hiding categories that are not rel-
evant to the current discussion, and to show more decimal places than appear by default.
For information about editing pivot tables, see the SPSS Base User’s Guide and the
SPSS Help system.






Exact Tests

A fundamental problem in statistical inference is summarizing observed datain terms
of ap value. The p value forms part of the theory of hypothesis testing and may be re-
garded an index for judging whether to accept or reject the null hypothesis. A very
small p valueisindicative of evidence against the null hypothesis, whilealargep value
implies that the observed data are compatible with the null hypothesis. Thereisalong
tradition of using the value 0.05 as the cutoff for rejection or acceptance of the null hy-
pothesis. While this may appear arbitrary in some contexts, its almost universal adop-
tion for testing scientific hypotheses has the merit of limiting the number of false-
positive conclusions to at most 5%. At any rate, no matter what cutoff you choose, the
p value provides an important objective input for judging if the observed data are sta-
tistically significant. Therefore, it is crucial that this number be computed accurately.

Since data may be gathered under diverse, often nonverifiable, conditions, it is de-
sirable, for p value calculations, to make as few assumptions as possible about the un-
derlying data generation process. In particular, it is best to avoid making assumptions
about the distribution, such as that the data came from anormal distribution. This goal
has spawned an entire field of statistics known as nonparametric statistics. In the pref-
ace to his book, Nonparametrics: Satistical Methods Based on Ranks, Lehmann
(1975) traces the earliest development of a nonparametric test to Arbuthnot (1710),
who came up with the remarkably simple, yet popular, sign test. In this century, non-
parametric methods received amajor impetus from aseminal paper by Frank Wilcoxon
(1945) in which he devel oped the now universally adopted Wilcoxon signed-rank test
and the Wil coxon rank-sum test. Other important early research in the field of nonpara-
metric methods was carried out by Friedman (1937), Kendall (1938), Smirnov (1939),
Wald and Wolfowitz (1940), Pitman (1948), Kruskal and Wallis (1952), and Chernoff
and Savage (1958). One of the earliest textbooks on nonparametric statisticsin the be-
havioral and social sciences was Siegel (1956).

The early research, and the numerous papers, monographs and textbooks that fol-
lowed in its wake, dealt primarily with hypothesis tests involving continuous distribu-
tions. The data usualy consisted of several independent samples of real numbers
(possibly containing ties) drawn from different popul ations, with the objective of mak-
ing distribution-free one-, two-, or K-sample comparisons, performing goodness-of -fit
tests, and computing measures of association. Much earlier, Karl Pearson (1900) dem-
onstrated that the large-sample distribution of atest statistic, based on the difference
between the observed and expected counts of categorical data generated from multino-

11
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mial, hypergeometric, or Poisson distributions is chi-square. Thiswork was found to be
applicableto awhole class of discrete dataproblems. It wasfollowed by significant con-
tributions by, among others, Yule (1912), R. A. Fisher (1925, 1935), Y ates (1984), Co-
chran (1936, 1954), Kendall and Stuart (1979), and Goodman (1968) and eventually
evolved into the field of categorical data analysis. An excellent up-to-date textbook
dealing with this rapidly growing field is Agresti (1990).

The techniques of nonparametric and categorical data inference are popular mainly
because they make only minimal assumptions about how the data were generated—as-
sumptions such as independent sampling or randomized treatment assignment. For con-
tinuous data, you do not have to know the underlying distribution giving rise to the data.
For categorical data, mathematical models like the multinomial, Poisson, or hypergeo-
metric model arise naturally from the independence assumptions of the sampled obser-
vations. Nevertheless, for both the continuous and categorical cases, these methods do
reguire one assumption that is sometimes hard to verify. They assume that the data set
islarge enough for the test statistic to converge to an appropriate limiting normal or chi-
square distribution. P values are then obtained by evaluating the tail area of the limiting
distribution, instead of actually deriving the true distribution of thetest statistic and then
evaluating itstail area. P values based on the large-sampl e assumption are known as as-
ymptotic p values, while p values based on deriving the true distribution of the test sta-
tistic are termed exact p values. While exact p values are preferred for scientific
inference, they often pose formidable computational problems and so, as a practical
matter, asymptotic p valuesare usedin their place. For large and well-balanced data sets,
this makes very little difference, since the exact and asymptotic p values are very simi-
lar. But for small, sparse, unbalanced, and heavily tied data, the exact and asymptotic p
values can be quite different and may lead to opposite conclusions concerning the hy-
pothesis of interest. Thiswas amajor concern of R. A. Fisher, who stated in the preface
to the first edition of Satistical Methods for Research Workers (1925):

The traditional machinery of statistical processes is wholly unsuited to the needs of
practical research. Not only doesit take a cannon to shoot a sparrow, but it missesthe
sparrow! The elaborate mechanism built on the theory of infinitely large samplesis
not accurate enough for simple laboratory data. Only by systematically tackling
small problems on their merits does it seem possible to apply accurate tests to prac-
tical data.

Theexampleof asparse 3 x 9 contingency table, shownin Figure 2.1, demonstratesthat
Fisher’s concern was judtified.

Figure 2.1  Sparse 3 x 9 contingency table

VAR1 * VAR2 Crosstabulation

Count

VAR2

VAR1

i
~
[iN
[
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The Pearson chi-square test is commonly used to test for row and column independence.
For the above table, the results are shown in Figure 2.2.

Figure 2.2 Pearson chi-square test results for sparse 3 x 9 table

Chi-Square Tests

Asymp.
Sig.
Value df (2-tailed)
Pearson 1
Chi-Square 22.286 16 134

1. 25 cells (92.6%) have expected count less than 5.
The minimum expected count is .29.

The observed value of the Pearson’s statistic is X2 = 22.29, and the asymptotic p value
isthetail areatotheright of 22.29 from achi-square distribution with 16 degrees of free-
dom. Thisp valueis 0.134, implying that it is reasonabl e to assume row and column in-
dependence. With SPSS Exact Tests, you can also compute the tail areato the right of
22.29 from the exact distribution of Pearson’s statistic. The exact results are shown in
Figure 2.3.

Figure 2.3  Exact results of Pearson chi-square test for sparse 9 x 3 table

Chi-Square Tests

Asymp.
Sig. Exact Sig.
Value df (2-tailed) | (2-tailed)
Pearson 1
Chi-Square 22.286 16 134 .001

1. 25 cells (92.6%) have expected count less than 5. The
minimum expected count is .29.

The exact p value obtained above is 0.001, implying that there is a strong row and col-
umn interaction. Chapter 9 discusses this and related tests in detail.

The above example highlights the need to compute the exact p value, rather than re-
lying on asymptotic results, whenever the dataset is small, sparse, unbalanced, or heavi-
ly tied. Thetrouble isthat it is difficult to identify, a priori, that a given data set suffers
from these obstaclesto asymptotic inference. Bishop, Fienberg, and Holland (1975), ex-
press the predicament in the following way.

The difficulty of exact calculations coupled with the avail ability of normal approxi-
mations leads to the amost automatic computation of asymptotic distributions and
moments for discrete random variables. Three questions may be asked by apotential
user of these asymptotic calculations:
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1. How does one make them? What are the formulas and techniques for getting the

answers?

2. How does one justify them? What conditions are needed to ensure that these for-
mulas and techniques actually produce valid asymptotic results?

3. How does one relate asymptotic results to pre-asymptotic situations? How close
are the answers given by an asymptotic formulato the actual cases of interest in-

volving finite samples?

These questions differ vastly in the ease with which they may be answered. The an-
swer to (1) usually requires mathematicsat thelevel of elementary calculus. Question
(2) israrely answered carefully, and istypically tossed aside by aremark of the form
‘...assuming that higher order terms may beignored...” Rigorous answers to question
(2) require some of the deepest results in mathematical probability theory. Question
(3) isthemost important, the most difficult, and consequently theleast answered. An-
alytic answersto question (3) are usually very difficult, and it ismore common to see
reported the result of asimulation or afew isolated numerical calculationsrather than
an exhaustive answer.

The concerns expressed by R. A. Fisher and by Bishop, Fienberg, and Holland can be
resolved if you directly compute exact p valuesinstead of replacing them with their as-
ymptotic versions and hoping that these will be accurate. Fisher himself suggested the
use of exact p valuesfor 2 x 2 tables (1925) aswell asfor data from randomized exper-
iments (1935). SPSS Exact Tests computes an exact p value for practically every impor-
tant nonparametric test on either continuous or categorical data. This is achieved by
permuting the observed datain al possible ways and comparing what was actually ob-
served to what might have been observed. Thus exact p values are also known as per-
mutational p values. The following two sections illustrate through concrete examples

how the permutational p values are computed.

Pearson Chi-Square Test for a 3 x 4 Table

Figure 2.4 shows results from an entrance examination for fire fightersin asmall township.

Figure 2.4  Fire fighter entrance exam results

Test Results * Race of Applicant Crosstabulation

Count

Race of Applicant

White

Black

Asian

Hispanic

Test Results

Pass
No Show
Fail

2
1
2

2
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Thetable showsthat all five white applicants received a Pass result, whereas the results
for the other groups are mixed. Is this evidence that entrance exam results are related to
race? Note that while there is some evidence of a pattern, the total number of observa-
tionsis only twenty. Null and dternative hypotheses might be formulated for these data
asfollows:

Null Hypothesis: Exam results and race of examinee are independent.
Alternative Hypothesis: Exam results and race of examinee are not independent.

To test the hypothesis of independence, use the Pearson chi-square test of independence,
available in the SPSS Crosstabs procedure. To get the results shown in Figure 2.5, the
test was conducted at the 0.05 significance level:

Figure 2.5  Pearson chi-square test results for fire fighter data

Chi-Square Tests

Asymp.
Sig.
Value df (2-tailed)
Pearson 1
Chi-Square 11.556 6 .073

1. 12 cells (100.0%) have expected count less than 5.
The minimum expected count is .50.

Because the observed significance of 0.073 islarger than 0.05, you might conclude that
the exam results are independent of the race of the examinee. However, notice that SPSS
reports that the minimum expected frequency is 0.5, and that all 12 of the cells have an
expected frequency that isless than five.

That is, SPSS warns you that al of the cellsin the table have small expected counts.
What does this mean? Does it matter?

Recall that the Pearson chi-square statistic, X2, is computed from the observed and
the expected counts under the null hypothesis of independence as follows:

rc 2
2 i .
X" = —_— Equation 2.1
z z Xij
where x;; isthe observed count, and
;(ij = (m, nj)/N Equation 2.2

istheexpected countincell (i, j) of anr x ¢ contingency table whoserow marginsare
(my, My,...m,), column margins are (ny, N,,...N.), and total sample sizeis N . Statisti-
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cal theory shows that, under the null hypothesis, the random variable X2 asymptotically
follows the theoretical chi-square distribution with (r —1) x (c—1) degrees of free-
dom. Therefore, the asymptotic p valueis

Pr(x>=> 11.55556) = 0.07265 Equation 2.3

where )(2 is a random variable following a chi-square distribution with 6 degrees of
freedom.

The term asymptotically means “given a sufficient sample size,” though it is not easy
to describe the sample size needed for the chi-square distribution to approximate the ex-
act distribution of the Pearson statistic.

Onerule of thumbis:

e The minimum expected cell count for al cells should be at least 5 (Cochran, 1954).
Thisruleisimplicit in SPSS, asyou saw from the messages produced by SPSSfor the
table above. The problem with thisruleisthat it can be unnecessarily conservative.

Another rule of thumbis;

« For tableslarger than 2 x 2, aminimum expected count of 1 ispermissible aslong as
no more than about 20% of the cells have expected values below 5 (Cochran, 1954).

While these and other rules have been proposed and studied, no ssimple rule covers all
cases. (See Agresti, 1990, for further discussion.) In our case, considering sample size,
number of cellsrelativeto sample size, and small expected counts, it appearsthat relying
on an asymptotic result to compute a p value might be probl ematic.

What if, instead of relylng on the distribution of x it were possible to use the true
sampling distribution of X2 and thereby produce an exact p value? Using SPSS Exact
Tests, you can do that. The following discussion explains how this p valueis computed,
and why it is exact. For technical details, see Chapter 9. Consider the observed 3 x 4
crosstabulation (see Figure 2.4) relative to areference set of other 3 x 4 tables that are
likeitin every possible respect, except in terms of their reasonableness under the null hy-
pothesis. It is generally accepted that this reference set consists of all 3 x 4 tables of the
form shown below and having the same row and column margins as Figure 2.4. (see, for
example, Fisher, 1973, Yates, 1984, Little, 1989, and Agresti, 1992).

X11 X12 X3 X14 9
Xo1 Xop X23 Xo4 2
X31 X3p X33 X34 9

5 5 5 5 20

Thisisareasonable choicefor areference set, even when these marginsare not naturally
fixed inthe original data set, because they do not contain any information about the null
hypothesis being tested. The exact p value is then obtained by identifying all of the ta-
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bles in this reference set for which Pearson’s statistic equals or exceeds 11.55556, the
observed statistic, and summing their probabilities. Thisis an exact p value because the
probability of any table, {x;} , in the above reference set of tables with fixed margins
can be computed exactly under the null hypothesis. It can be shown to be the hypergeo-
metric probability

C r

i :lnj!l'li:lmi!

O
P({ Xij} ) = p

- Equation 2.4
N!I'Ijzll'lizlxij!

For example, the table

5 2 2 0 9
0 0 0 2 2
0 3 3 3 9
5 5 5 5 | 20

is amember of the reference set. Applying Equation 2.1 to this table yields a value of
X2 = 14.67 for Pearson's statistic. Since this value is greater than the value
X% = 11.55556, this member of the reference set is regarded as more extreme than
Figure 2.4. Its exact probability, calculated by Equation 2.4, is 0.000108, and will con-
tribute to the exact p value. The following table

4 3 0 ‘

alw onN

1 0
0 2
5 5

als k

is another member of the reference set. You can easily verify that its Pearson statistic is
X2 = 9,778, which is less than 11.55556. Therefore, this table is regarded as less ex-
treme than the observed table and does not count towards the p value. In principle, you
can repeat this analysis for every single table in the reference set, identify al those that
are at least as extreme as the original table, and sum their exact hypergeometric proba-
bilities. The exact p value isthis sum.

SPSS Exact Tests produces the following result:

Pr(X*> 11.55556) = 0.0398 Equation 2.5
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The exact results are shown in Figure 2.6.
Figure 2.6  Exact results of the Pearson chi-square test for fire fighter data

Chi-Square Tests

Asymp.
Sig. Exact Sig.
Value df (2-tailed) | (2-tailed)
Pearson 1
Chi-Square 11.556 6 .073 .040

1. 12 cells (100.0%) have expected count less than 5. The
minimum expected count is .50.

The exact p value based on Pearson’s statistic is 0.040. At the 0.05 level of significance,
the null hypothesis would be rejected and you would conclude that there is evidence that
the exam results and race of examinee are related. This conclusion isthe opposite of the
conclusion that would be reached with the asymptotic approach, since the latter pro-
duced ap value of 0.073. The asymptotic p valueis only an approximate estimate of the
exact p value. Kendall and Stuart (1979) have proved that as the sample size goes to
infinity, the exact p value (see Equation 2.5) converges to the chi-square based p value
(see Equation 2.3). Of course, the sample size for the current data set is not infinite, and
you can observe that this asymptotic result has fared rather poorly.

Fisher's Exact Test for a 2 x 2 Table

It could be said that Sir R. A. Fisher was the father of exact tests. He developed what is
popularly known as Fisher’s exact test for asingle 2 x 2 contingency table. His moti-
vating examplewas asfollows (see Agresti, 1990, for arelated discussion). When drink-
ing tea, aBritish woman claimed to be able to distinguish whether milk or teawas added
to the cup first. In order to test this claim, she was given eight cups of tea. In four of the
cups, tea was added first, and in four of the cups, milk was added first. The order in
which the cups were presented to her was randomized. She wastold that there were four
cups of each type, so that she should make four predictions of each order. The results of
the experiment are shown in Figure 2.7.
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Figure 2.7  Fisher’s tea-tasting experiment

GUESS * POUR Crosstabulation

POUR
Milk Tea Total
GUESS | Milk Count 3 1 4
Expected 2.0 2.0 4.0
Count
Tea Count 1 3 4
Expected 20 20 4.0
Count
Total Count 4 4 8
Expected 4.0 40 8.0
Count

Given thewoman's performance in the experiment, can you conclude that she could dis-
tinguish whether milk or tea was added to the cup first? Figure 2.7 shows that she
guessed correctly more times than not, but on the other hand, the total number of trials
was hot very large, and she might have guessed correctly by chance alone. Null and al-
ternative hypotheses can be formulated as follows:

Null Hypothesis: The order in which milk or teais poured into a cup and the taster’s guess
of the order are independent.

Alternative Hypothesis: The taster can correctly guess the order in which milk or teais
poured into a cup.

Note that the alternative hypothesis is one-sided. That is, although there are two possi-
bilities—that the woman guesses better than average or she guesses worse than aver-
age—we are only interested in detecting the aternative that she guesses better than
average.

The Pearson chi-square test of independence can be cal culated to test this hypothesis.
This example tests the aternative hypothesis at the 0.05 significance level. Results are
shownin Figure 2.8.

Figure 2.8  Pearson chi-square test results for tea-tasting experiment

Chi-Square Tests

Asymp.
Sig.
Value df (2-tailed)
Pearson 2
Chi-Square 2:000 ! 157

2. 4 cells (100.0%) have expected count less than 5.
The minimum expected count is 2.00.
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The reported significance, 0.157, is two-sided. Because the alternative hypothesis is
one-sided, you might halve the reported significance, thereby obtaining 0.079 as the ob-
served p value. Because the observed p value is greater than 0.05, you might conclude
that thereisno evidence that the woman can correctly guesstea-milk order, although the
observed level of 0.079 isonly marginally larger than the 0.05 level of significance used
for the test.

It is easy to see from inspection of Figure 2.7 that the expected cell count under the
null hypothesis of independence is 2 for every cell. Given the popular rules of thumb
about expected cell counts cited above, this raises concern about use of the one-degree-
of-freedom chi-square distribution as an approxi mation to the distribution of the Pearson
chi-square statistic for the above table. Rather than rely on an approximation that has an
asymptotic justification, suppose you can instead use an exact approach.

For the 2 x 2 table, Fisher noted that under the null hypothesis of independence, if
you assume fixed marginal frequenciesfor both the row and column marginals, then the
hypergeometric distribution characterizes the distribution of the four cell countsin the
2 x 2 table. This fact enables you to calculate an exact p value rather than rely on an
asymptotic justification.

Let the generic four-fold table, {x;} , take the form

X11 X12 Xmy
Xo1 X2 m,
n; n, ‘ N

with (Xq1, X12, X21, X2,) being the four cell counts; m; and m,, the row totals; n, and
n,, thecolumntotals; and N, thetabletotal. If you assumethe marginal totals as given,
the value of x,; determines the other three cell counts. Assuming fixed marginals, the
distribution of the four cell counts follows the hypergeometric distribution, stated here
intermsof Xy, :

Om, 00 m, O
oo ? 0O

O
Uxy 00Ny —xq, 0 .
Pr({x;}) = Equation 2.6
Ng
M

The p value for Fisher's exact test of independencein the 2 x 2 table is the sum of hy-
pergeometric probabilities for outcomes at least as favorable to the alternative hypothe-
sis as the observed outcome.

Let's apply thisline of thought to the tea drinking problem. In this example, the ex-
perimental design itself fixes both marginal distributions, since the woman was asked to
guess which four cups had the milk added first and therefore which four cups had the
tea added first. So, the table has the following general form:
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Pour
Guess . Row Total
Milk Tea
Milk X11 X12 4
Tea Xo1 X9 4
Col_Total 4 4 8

Focusing on x,,, this cell count can take the values 0, 1, 2, 3, or 4, and designating a
value for x,, determines the other three cell values, given that the marginals are fixed.
In other words, assuming fixed marginals, you could observe the following tables with
the indicated probabilities:

Table Pr(Table) p value

X;1 =0 0 4 4 0.414 1.000
4 0 4
4 4 8

X =1 1 3 4 0.229 0.986
3 1 4
4 4 8

Xy = 2 2 2 4 0.514 0.757
2 2 4
4 4 8

X1 = 3 3 1 4 0.229 0.243
1 3 4
4 8

X = 4 4 0 4 0.014 0.014
0 4 4
4 4 8

The probability of each possible table in the reference set of 2 x 2 tables with the ob-
served margins is obtained from the hypergeometric distribution formula shown in
Equation 2.6. The p values shown above are the sums of probabilities for all outcomes
at least asfavorable (in terms of guessing correctly) asthe onein question. For example,
since the table actually observed has x,; = 3, the exact p valueisthe sum of probabil-
ities of all of the tables for which x;; equals or exceeds 3. The exact results are shown
in Figure 2.9.
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Figure 2.9  Exact results of the Pearson chi-square test for tea-tasting experiment

Chi-Square Tests

Asymp.
Sig. Exact Sig. |Exact Sig.
Value df (2-tailed) | (2-tailed) | (1-tailed)
Pearson 2
Chi-Square 2.000 1 157 .486 .243

2. 4 cells (100.0%) have expected count less than 5. The minimum expected
count is 2.00.

The exact result works out to 0.229 + 0.014 = 0.243. Given such a relatively large p
value, you would conclude that the woman's performance does not furnish sufficient ev-
idence that she can correctly guess milk-tea pouring order. Note that the asymptotic p
valuefor the Pearson chi-squaretest of independencewas 0.079, adramatically different
number. The exact test result leads to the same conclusion as the asymptotic test result,
but the exact p value is very different from 0.05, while the asymptotic p value is only
marginally larger than 0.05. In this example, al 4 margins of the 2 x 2 table were fixed
by design. For the example, in “Pearson Chi-Square Test for a3 x 4 Table” on p. 14, the
margins were not fixed. Nevertheless, for both examples, the reference set was con-
structed from fixed row and column margins. Whether or not the margins of the ob-
served contingency table are naturally fixed isirrelevant to the method used to compute
the exact test. In either case, you compute an exact p value by examining the observed
tableinrelationto all other tablesin areference set of contingency tableswhose margins
are the same as those of the actually observed table. You will see that the idea behind
thisrelatively simple example generalizes to include all of the nonparametric and cate-
gorical data settings covered by SPSS Exact Tests.

Choosing between Exact, Monte Carlo, and Asymptotic P Values

The above examplesillustrate that in order to compute an exact p value, you must enu-
merate all of the outcomes that could occur in some reference set besides the outcome
that was actually observed. Then you order these outcomes by some measure of discrep-
ancy that reflects deviation from the null hypothesis. The exact p value is the sum of ex-
act probabilities of those outcomes in the reference set that are at | east as extreme as the
one actually observed.

Enumeration of all of the tablesin areference set can be computationally intensive.
For example, the reference set of all 5 x 6 tables of the form
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contains 1.6 billion tables, which presents a challenging computational problem. Fortu-
nately, two developments have made exact p value computations practically feasible.
First, the computer revolution has dramatically redefined what is computationally do-
able and affordable. Second, many new fast and efficient computational algorithmshave
been published over the last decade. Thus, problemsthat would have taken several hours
or even daysto solve now take only afew minutes.

It is useful to have some idea about how the algorithms in SPSS Exact Tests work.
Therearetwo basic types of algorithms: compl ete enumeration and Monte Carlo enumer-
ation. The complete enumeration algorithms enumerate every single outcomein the ref-
erence set. Thus they always produce the exact p value. Their result is essentially 100%
accurate. They are not, however, guaranteed to solve every problem. Some data sets
might be too large for complete enumeration of the reference set within given time and
machine limits. For this reason, Monte Carlo enumeration algorithms are also provided.
These algorithms enumerate arandom subset of all the possible outcomesin the reference
set. The Monte Carlo algorithms provide an estimate of the exact p value, called the Mon-
te Carlo p value, which can be made as accurate as necessary for the problem at hand.
Typically, their result is 99% accurate, but you are free to increase the level of accuracy
to any arbitrary degree simply by sampling more outcomes from the reference set. Also,
they are guaranteed to solve any problem, no matter how large the data set. Thus, they
provide a robust, reliable back-up for the situations in which the complete enumeration
algorithms fail. Finally, the asymptotic p value is always avail able by defaullt.

General guidelines for when to use the exact, Monte Carlo, or asymptotic p values
include the following:

 Itiswiseto never report an asymptotic p value without first checking its accuracy
against the corresponding exact or Monte Carlo p value. Y ou cannot easily predict a
priori when the asymptotic p value will be sufficiently accurate.

» The choice of exact versus Monte Carlo is largely one of convenience. The time
required for the exact computations is less predictable than for the Monte Carlo
computations. Usually, the exact computations either produce a quick answer, or
else they quickly terminate with the message that the problem is too hard for the
exact algorithms. Sometimes, however, the exact computations can take several
hours, inwhich caseit is better to interrupt them by selecting Stop SPSS Processor
from the File menu and repeating the analysis with the Monte Carlo option. The
Monte Carlo p values are for most practical purposes just as good as the exact p
values. The method has the additional advantage that it takes a predictable amount
of time, and an answer is available at any desired level of accuracy.
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e SPSS Exact Tests makes it very easy to move back and forth between the exact and
Monte Carlo options. So fedl free to experiment.

Thefollowing sections discussthe exact, Monte Carlo, and asymptotic p valuesin great-
er detalil.

When to Use Exact P Values

Ideally you would use exact p values all of the time. They are, after all, the gold stan-
dard. Only by deciding to accept or reject the null hypothesis on the basis of an exact p
value are you guaranteed to be protected from type 1 errors at the desired significance
level. In practice, however, it is not possible to use exact p values al of the time. The
algorithms in SPSS Exact Tests might break down as the size of the data set increases.
Itisdifficult to quantify just how large a data set can be solved by the exact algorithms,
because that depends on so many factors other than just the sample size. You can some-
times compute an exact p value for a data set whose sample size is over 20,000, and at
other times fail to compute an exact p value for a data set whose sample sizeislessthan
30. The type of exact test desired, the degree of imbalance in the allocation of subjects
to treatments, the number of rows and columnsin a crosstabulation, the number of ties
in the data, and a variety of other factorsinteract in complicated waysto determineif a
particular dataset isamenableto exact inference. It isthusavery difficult task to specify
the precise upper limits of computational feasibility for the exact algorithms. It is more
useful to specify sample size and table dimension ranges within which the exact algo-
rithms will produce quick answers—that is, within a few seconds. Table 1.1 and Table
1.2 describe the conditions under which exact tests can be computed quickly. In general,
almost every exact test in SPSS Exact Tests can be executed in just afew seconds, pro-
vided the sample size does not exceed 30. The Kruskal-Wallis test, the runs tests, and
tests on the Pearson and Spearman correlation coefficients are exceptionsto this general
rule. They require a smaller sample size to produce quick answers.

When to Use Monte Carlo P Values

Many data sets are too large for the exact p value computations, yet too sparse or un-
balanced for the asymptotic results to be reliable. Figure 2.10 is an example of such a
data set, taken from Senchaudhuri, Mehta, and Patel (1995). This data set reports the
thickness of the left ventricular wall, measured by echocardiography, in 947 athletes
participating in 25 different sportsin Italy. There were 16 athletes with awall thick-
ness of = 13mm, which is indicative of hypertrophic cardiomyopathy. The objective
isto determine whether there is any correlation between presence of this condition and
the type of sports activity.



Figure 2.10 Left ventricular wall thickness versus sports activity

Count
Left Ventricular Wall
Thickness
>=13
mm <13 mm Total
SPORT Weightlifting 1 6 7
Field wt. events 9 9
Wrestling/Judo 16 16
Tae kwon do 1 16 17
Roller Hockey 1 22 23
Team Handball 1 25 26
gkrﬁ’s; coun. 1 30 31
Alpine Skiing 32 32
Pentathlon 50 50
Roller Skating 58 58
Equestrianism 28 28
Bobsledding 1 15 16
Volleyball 51 51
Diving 1 10 11
Boxing 14 14
Cycling 1 63 64
Water Polo 21 21
Yatching 24 24
Canoeing 3 57 60
Fencing 1 41 42
Tennis 47 47
Rowing 4 91 95
Swimming 54 54
Soccer 62 62
Track 89 89
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You can obtain the results of the likelihood-ratio statistic for this 25 x 2 contingency ta-
ble with the Crosstabs procedure. The results are shown in Figure 2.11.

Figure 2.11 Likelihood ratio for left ventricular wall thickness versus sports activity data

Chi-Square Tests

Asymp.
Sig.
Value df (2-tailed)
Likelihood Ratio 32.495 24 115
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The value of this statistic is 32.495. The asymptotic p value, based on the likelihood-
ratio test, is therefore the tail areato the right of 32.495 from a chi-sguare distribution
with 24 degrees of freedom. SPSS tells us that this p value is 0.115. But notice how
sparse and unbalanced this table is. This suggests that you ought not to rely on the as-
ymptotic p value. Ideally, you would like to enumerate every single 25 x 2 contingency
table with the same row and column margins asthosein Figure 2.10, identify tablesthat
are more extreme than the observed table under the null hypothesis, and thereby obtain
the exact p value. Thisisajob for SPSS Exact Tests. However, when you try to obtain
the exact likelihood-ratio p value in this manner, SPSS Exact Tests gives the message
that the problem istoo large for the exact option. Therefore, the next step is to use the
Monte Carlo option. The Monte Carlo option can generate an extremely accurate esti-
mate of the exact p value by sampling 25 x 2 tables from the reference set of all tables
with the observed margins alarge number of times. The default is 10,000 times, but this
can easily be changed in the dialog box. Provided each table is sampled in proportion to
its hypergeometric probability (see Equation 2.4), the fraction of sampled tablesthat are
at least as extreme as the observed tabl e gives an unbiased estimate of the exact p value.
That is, if M tables are sampled from the reference set, and Q of them are at least as
extreme as the observed table (in the sense of having alikelihood-ratio statistic greater
than or equal to 32.495), the Monte Carlo estimate of the exact p valueis

~ Q .
= = Equation 2.7
p M q

The variance of this estimate is obtained by straightforward binomial theory to be:

var(p) = % Equation 2.8
Thus,a 100 x (1—vy) % confidence interval for pis

- p(1-p .
Cl=pxz,, w Equation 2.9

where z, isthe a th percentile of the standard normal distribution. For example, if you
wanted a 99% confidence interval for p, you would use Z;,,; = —2.576 . Thisis the
default in SPSS Exact Tests, but it can be changed in the dialog box. The Monte Carlo
results for these data are shown in Figure 2.12.
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Figure 2.12 Monte Carlo results for left ventricular wall thickness versus sports activity data

Chi-Square Tests

Monte Carlo Significance
(2-tailed)
99% Confidence
Asymp. Interval
Sig. Lower Upper
Value df (2-tailed) Sig. Bound Bound
Likelihood Ratio 32.495 24 115 .0442 .039 .050

2. Based on 10000 and seed 2000000 ...

The Monte Carlo estimate of 0.044 for the exact p valueisbased on 10,000 random sam-
ples from the reference set, using a starting seed of 2000000. SPSS Exact Tests also
computes a 99% confidence interval for the exact p value. This confidence interval is
(0.039, 0.050). You can be 99% sure that the true p value is within this interval. The
width can be narrowed even further by sampling more tablesfrom the reference set. That
will reduce the variance (see Equation 2.8) and hence reduce the width of the confidence
interval (see Equation 2.9). It is a simple matter to sample 50,000 times from the refer-
ence set instead of only 10,000 times. These results are shown in Figure 2.13.

Figure 2.13 Monte Carlo results with sample size of 50,000

Chi-Square Tests

Monte Carlo Significance
(2-tailed)
99% Confidence
Asymp. Interval
Sig. Lower Upper
Value df (2-tailed) Sig. Bound Bound
Likelihood Ratio 32.495 24 115 .0452 .043 .047

2. Based on 50000 and seed 2000000 ...

With a sample of size 50,000 and the same starting seed, 2000000, you obtain 0.045 as
the Monte Carlo estimate of p. Now the 99% confidence interval for pis(0.043, 0.047).
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How good are the Monte Carlo estimates? Why would you use them rather than the

asymptotic p value of 0.115? There are several major advantages to using the Monte
Carlo method as opposed to using the asymptotic p value for inference.

1
2.

The Monte Carlo estimate is unbiased. That is, E(p) = p.

The Monte Carlo estimate is accompanied by a confidence interval within which the
exact p valueis guaranteed to lie at the specified confidence level. The asymptotic p
value is not accompanied by any such probabilistic guarantee.

. Thewidth of the confidenceinterval can be made arbitrarily small, by sampling more

tables from the reference set.

. Inprinciple, you could narrow the width of the confidenceinterval to such an extent

that the Monte Carlo p value becomes indistinguishable from the exact p value up to
say the first three decimal places. For all practical purposes, you could then claim to
have the exact p value. Of course, this might take afew hours to accomplish.

. In practice, you don’t need to go quite so far. Simply knowing that the upper bound

of the confidence interval is below 0.05, or that the lower bound of the confidence
interval isabove 0.05 is satisfying. Factslike these can usually be quickly established
by sampling about 10,000 tables, and this takes only afew seconds.

. The asymptotic p value carries no probabilistic guarantee whatsoever as to its accu-

racy. In the present example, the asymptotic p value is 0.115, implying, incorrectly,
that there is no interaction between the ventricular wall thickness and the sports ac-
tivity. The Monte Carlo estimate on the other hand does indeed establish this rela
tionship at the 5% significance level.

To summarize:

The Monte Carlo option with a sample of size 10,000 and a confidence level of 99%
is the default in SPSS Exact Tests. At these default values, the Monte Carlo option
provides very accurate estimates of exact p valuesin ajust few seconds. These de-
faults can be easily changed in the Monte Carlo dialog box.

Userswill find that even when the width of the Monte Carlo confidence interval is
wider than they’d like, the point estimate itself is very close to the exact p value.
For the fire fighters data discussed in “Pearson Chi-Square Test for a3 x 4 Table”
on p. 14, the Monte Carlo estimate of the exact p value for the Pearson chi-square
test is shown in Figure 2.14.
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Figure 2.14 Monte Carlo results of Pearson chi-square test for fire fighter data

Chi-Square Tests

Monte Carlo Significance (2-tailed)

Asymp. 99% Confidence Interval
Sig. Lower Upper
Value df (2-tailed) Sig. Bound Bound
1 2
Pearson 11.556 6 073 041 036 046
Chi-Square

1. 12 cells (100.0%) have expected count less than 5. The minimum expected count is .50.
2. Based on 10000 and seed 2000000 ...

The result, based on 10,000 observations and a starting seed of 2000000, is 0.041. Thisis
much closer to the exact p value for the Pearson test, 0.040, than the asymptotic p value,
0.073. Asan exercise, run the Monte Carlo version of the Pearson test on this data set afew
times with different starting seeds. You will observe that the Monte Carlo estimate changes
dightly from runto run, becauseyou are using adifferent starting seed each time. However,
you will aso observe that each Monte Carlo estimate is very close to the exact p value.
Thus, even if you ignored the information in the confidence interva, the Monte Carlo point
edtimate itself is often good enough for routine use. For a more refined analysis, you may
prefer to report both the point estimate and the confidence interval.

« If you want to replicate someone else’'s Monte Carlo results, you need to know the
starting seed used previously. SPSS Exact Tests reports the starting seed each time
you run atest. If you don’t specify your own starting seed, SPSS Exact Tests provides
one. See“How to Set the Random Number Seed” on p. 8 in Chapter 1 for information
on setting the random number seed.

When to Use Asymptotic P Values

Although the exact p value can be shown to converge mathematically to the correspond-
ing asymptotic p value as the sample size becomes infinitely large, this property is not
of much practical value in guaranteeing the accuracy of the asymptotic p value for any
specific data set. There are many different data configurations where the asymptotic
methods perform poorly. These include small data sets, data sets containing ties, large
but unbalanced data sets, and sparse data sets. A numerical example follows for each of
these situations.
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Small Data Sets. The data set shown in Figure 2.15 consists of the first 7 pairs of obser-
vations of the authoritarianism versus socia status striving data discussed in Siegel and

Castellan (1988).

Figure 2.15 Subset of authoritarianism versus social status striving data

subject authar social
1 82 42
2 93 46
3 87 39
4 40 37
5 116 65
b 13 a4
7 m 86

Pearson’s product-moment correlation coefficient computed from this sampleis0.7388.

Thisresult is shown in Figure 2.16.

Figure 2.16 Pearson’s product-moment correlation coefficient for social status striving data

Symmetric Measures

Asymp. Approx. Exact
Value Std. Error | Approx. T Sig. Significance
' 1
Interval by Interval ;earson S 739 054 2452 058 037

1. Based on normal approximation

Suppose that you wanted to test the null hypothesisthat these data arose from apopulation
inwhich the underlying Pearson’s product-moment correl ation coefficient is0, against the
one-sided alternative that authoritarianism and social status striving are positively corre-
lated. Using the techniques described in Chapter 1, you see that the asymptotic two-sided
p valueis 0.058. In contrast, the exact one-sided p value is 0.037. You can conclude that

the asymptotic method does not perform well in this small data set.
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Data With Ties. The diastolic blood pressure (mm Hg) was measured on 6 subjectsin a
treatment group and 7 subjectsin a control group. The data are shown in Figure 2.17.

Figure 2.17 Diastolic blood pressure of treated and control groups

pressure group
1 94 Treated
2 108 Treated
3 110 Treated
4 90 Treated
5 108 Treated
B 105 Treated
7 80 Control
g 94 Control
4 94 Control
10 90 Control
1 90 Control
12 94 Control
13 94 Control
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The results of the two-sample Kolmogorov-Smirnov test for these data are shown in
Figure 2.18.

Figure 2.18 Two-sample Kolmogorov-Smirnov test results for diastolic blood pressure data

Frequencies

N
Diastolic | GROUP | Treated
Blood Control
Pressure
Total 13
Test Statistics?
Diastolic
Blood
Pressure
Most Extreme Differences Absolute .667
Positive .667
Negative .000
Kolmogorov-Smirnov Z 1.198
Asymp. Sig. (2-tailed) 113
Exact Significance (2-tailed) 042
Point Probability .042

1. Grouping Variable: GROUP
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The asymptotic two-sided p value is 0.113. In contrast, the exact two-sided p value is
0.042, less than half the asymptotic result. The poor performance of the asymptotic test
is attributable to the large number of tied observations in this data set. Suppose, for ex-
ample, that the data were free of any ties, as shown in Figure 2.19.

Figure 2.19 Diastolic blood pressure of treated and control groups, without ties

pressure | group
1 94 1
2 108 1
3 110 1
4 90 1
5 108 1
[ 105 1
7 80 2
i 94 2
9 94 2
10 90 2
11 90 2
12 94 2
13 94 2
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The two-sample Kolmogorov-Smirnov results for these data, without ties, are shown in
Figure 2.20.

Figure 2.20 Two-sample Kolmogorov-Smirnov test results for diastolic blood pressure data,
without ties

Frequencies

N
Diastolic | GROUP | Treated
Blood Control
Pressure
Total 13
Test Statistics?
Diastolic
Blood
Pressure
Most Extreme Differences Absolute .667
Positive .667
Negative .000
Kolmogorov-Smirnov Z 1198
Asymp. Sig. (2-tailed) 113
Exact Significance (2-tailed) 042
Point Probability .042

1. Grouping Variable: GROUP

The asymptotic Kolmogorov-Smirnov two-sided p value remains unchanged at 0.113.
This time, however, it is much closer to the exact two-sided p value, which is 0.091.
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Datafrom a prospective study of maternal drinking and congenital sex organ malforma-
tions (Graubard and Korn, 1987) are shown in Figure 2.21 in the form of a2 x 5 con-
tingency table.

Figure 2.21  Alcohol during pregnancy and birth defects

Malformation * Maternal Alcohol Consumption (drinks/day) Crosstabulation

Count
Maternal Alcohol Consumption (drinks/day)
0 <1 1-2 3-5 >=6
Malformation | Absent 17066 14464 788 126 37
Present 48 38 5 1 1

The linear-by-linear association test may be used to determineif thereis a dose-responsere-
|ati onship between the average number of drinks consumed each day during pregnancy, and
the presence of a congenital sex organ malformation. The results are shown in Figure 2.22.

Figure 2.22 Results of linear-by-linear association test for maternal drinking data

Chi-Square Tests

Association

Asymp.
Sig. Exact Sig. |Exact Sig. Point
Value df (2-tailed) | (2-tailed) | (1-tailed) | Probability
- T 2
Linear-by-Linear 1.828 176 179 105 028

2. Standardized stat. is 1.352 ...

The asymptotic two-sided p value is 0.176. In contrast, the two-sided exact p value is

0.179.
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Sparse Data Sets

Datawere gathered from 250 college and university administrators on variousindicators
of performance like the number of applicationsfor admittance, student/faculty ratio, fac-
ulty salaries, average SAT scores, funding available for inter-collegiate sports, and so
forth. Figure 2.23 shows a crosstabul ation of competitiveness agai nst the student/facul ty
ratio for a subset consisting of the 65 state universities that participated in the survey.

Figure 2.23 Student/faculty ratio versus competitiveness of state universities

Student/Faculty Ratio * Competitiveness of Institution Crosstabulation

Count
Competitiveness of Institution
Less Average Very Highly Most Total
Student/Faculty | 2 1 1
Ratio 7 1 1 2
8 1 1 2
9 1 1
10 1 2 3
11 1 3 1 5
12 2 1 3
13 1 3 1 5
14 3 3 1 7
15 1 5 1 1 8
16 1 5 6
17 3 2 1 6
18 2 1 7
20 2 2
21 2 2
22 1 1
23 1 1
24 1 1 2
70 1 1
Total 13 33 13 5 1 65
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Figure 2.24 shows the asymptotic results of the Pearson chi-square test for these data.

Figure 2.24 Monte Carlo results for student/faculty ratio versus competitiveness data

Chi-Square Tests

Monte Carlo Significance
(2-tailed)
99% Confidence
Asymp. Interval
Sig. Lower Upper
Value df (2-tailed) Sig. Bound Bound
1 2
Pearson 94.424 72 039 114 106 122
Chi-Square

1. 95 cells (100.0%) have expected count less than 5. The minimum expected count is .02.
2. Based on 10000 and seed 2000000 ...

The asymptotic p value based on the Pearson chi-square test is 0.039, suggesting that
there is an interaction between competitiveness and the student/faculty ratio. Notice,
however, that the table, though large, isvery sparse. Because this data set is so large, the
Monte Carlo result, rather than the exact result, is shown. The Monte Carlo estimate of
the exact p value is 0.114. Thisis a three-fold increase in the p value, which suggests
that thereis, after al, no interaction between competitiveness and the student/faculty ra-
tio at state universities.

It should be clear from the above examplesthat it is very difficult to predict apriori if
agiven dataset islarge enough to rely on an asymptotic approximation to the p value. The
notion of what constitutes a large sample depends on the structure of the data and the test
being used. It cannot be characterized by any single measure. A crosstabulation created
from several thousand observations might neverthel ess produce inaccurate asymptotic p
valuesif it possesses many cellswith small counts. On the other hand, arank test like the
Wilcoxon, performed on continuous, well-balanced data, with no ties, could produce an
accurate asymptotic p value with a sample size aslow as 20. Ultimately, the best defini-
tion of alarge dataset isan operational one—if adata set produces an accurate asymptotic
p value, it islarge; otherwise, it is small. In the past, such a definition would have been
meaningless, since there was no gold standard by which to gauge the accuracy of the as-
ymptotic p value. In SPSS Exact Tests, however, either the exact p value or itsMonte Car-
lo estimate is readily available to make the comparison and may be used routinely along
with the asymptotic p value.






One-Sample Inference for
Binary Data

This chapter discusses two statistical procedures for analyzing binary data in SPSS
Exact Tests. First, it describes exact hypothesis testing and exact confidence interval
estimation for a binomial probability. Next, it describes the runs test (also known as
the Wal d-Wolfowitz one-sample runstest) for determining if a sequence of binary ob-
servationsis random. You will see that although the theory underlying the runstest is
based on a binary sequence, the test itself is applied more generally to non-binary ob-
servations. For thisreason, the dataare transformed automatically in SPSS Exact Tests
from anon-binary to a binary sequence prior to executing the test.

Available Tests

Table 4.1 shows the tests for binary data available in SPSS Exact Tests, the procedure
from which each can be obtained, and a bibliographical reference for each.

Table 4.1 Available tests

Test Procedure Reference
Binomial test Nonparametric Tests: Binomial Test Conover (1971)
Runs test Nonparametric Tests: Runs Test Lehmann (1975

Binomial Test and Confidence Interval

The data consist of t successes and N —t failures in N independent Bernoulli trials.
Let 1t be the true underlying success rate. Then the outcome T = t has the binomial
probability

Pr(T=t|m) = %Ent(l—n)'\'_t Equation 4.1

49
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SPSS Exact Tests computes the observed proportion 7T, which is al'so the maximum-like-
lihood estimate of 1T, as

m=t/N
To test the null hypothesis

Ho:mt = 1 Equation 4.2

SPSS Exact Tests computes the following one- and two-sided p val ues:

p, = min{ Pr(T < t|1t,), Pr(T > t|m, )} Equation 4.3
and
P, = 2*py Equation 4.4

Example: Pilot Study for a New Drug

Twenty patients were treated in a pilot study of a new drug. There were four responders
(successes) and 16 non-responsive (failures). The binomial test can be run to test the null
hypothesisthat 1 = 0.05.

These data can be entered into the Data Editor using a response variable with 20 cases.
If successesare coded as 1's, and failures are coded as 0’ s, response contains sixteen cas-
eswith avaue of 0, and four cases with avalue of 1.

The binomial test performed on these data produces the results displayed in Figure 4.1.

Figure 4.1  Binomial test results for drug study

Observed Test Exact Sig. Point
Category N Prop. Prop. (1-tailed) | Probability
Response | Group 1 Success 4 2 .05 .016 .013
to Drug Group 2 | Failure 16 .80
Total 20 1.00

The exact one-sided p value is 0.0159, so the null hypothesis that 11 = 0.05 isrejected
at the 5% significance level.
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Runs Test

Consider asequence of N binary outcomes, (V,.Y,, ...Yy) Where each y; iseither a0 or
al. A runisdefined asasuccession of identical numbersthat are followed and preceded
by a different number, or no number at all. For example, the sequence

(1,1,0,0,0,1,0,0,0,0, 1, 1,0, 1)

begins with a run of two 1's. A run of three 0's follows, and next arun of one 1. Then
comes arun of four 0's, followed by arun of two 1’'swhich in turn isfollowed by arun
of one 0. Finaly, there is a run of one 1. In al, there are seven runs in the above se-
guence. L et the random variable R denote the number of runsin a binary sequence con-
sstingof m1'sand n 0's, where m+ n = N. The Wald-Wolfowitz runstest is used to
test the null hypothesis

Hy: Thesequenceof m1'sandnQ's, (m+n) = N, was generated by N independent
Bernoulli trials, each with a probability 11 of generating a 1 and a probability
(1—T11) of generating a0.

Very large or very small values of Rare evidence against H,, . In order to determine what
congtitutes avery large or avery small run, the distribution of Ris needed. Although un-
conditionally the distribution of R depends on Tt, this nuisance parameter can be elimi-
nated by working with the conditional distribution of R, given that therearem1’'sand n
0’sin the sequence. This conditional distribution can be shown to be

S
Pr(R=2k) = k_l—l:k_l Equation 4.5
IND
thO
and
P
Pr(R=2k+1) = k-1 K k Jtk-1 Equation 4.6

ND
hd
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Suppose that r is the observed value of the random variable R. The two-sided exact p
value is defined as

P, = (PrIR=E(R)| 2 |r —E(R)|) Equation 4.7

where E(R) isthe expected value of R.

If adataset istoo large for the computation shown in Equation 4.7 to be feasible, these
p values can be estimated very accurately using Monte Carlo sampling.

For large data sets, asymptotic normality can be invoked. Let r denote the observed
value of the random variable R, h = 0.5 if r<(2mn/N)+1, and h = -0.5 if
r > (2mn/N) + 1. Then the statistic

r+h—(2mn/N)—-1

7 =

= Equation 4.8
Ji2mn(2mn =N/ [NX(n = 1)]

is normally distributed with a mean of 0 and a variance of 1.

The above exact, Monte Carlo, and asymptotic results apply only to binary data. How-
ever, you might want to test for the randomness of any general data series x;, X,, ... Xy,
where the x; 's are not binary. In that case, the approach suggested by L ehmann (1975)
is to replace each x; with a corresponding binary transformation

_ify;=x

i 0 3 Equation 4.9
ify; <x

where X isthe median of the observed data series. The median is calculated in the fol-
lowing way. Let Xq; < X < ... < Xy bethe observed data series sorted in ascending
order. Then

_X(N+1)/2] if Nisodd

3

Equation 4.10
(X[N/Z] +X[(N+2)/2])/2if N iseven q

Once this binary transformation has been made, the runstest can be applied to the binary
data, asillustrated in the following data set. In addition to the median, the mean, mode,
or any specified value can be selected as the cut-off for the runs test.
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Example: Children’s Aggression Scores

Figure 4.2 displays in the Data Editor the aggression scores for 24 children from a
study of the dynamics of aggression in young children. These data appear in Siegel
and Castellan (1988).

Figure 4.2  Aggression scores in order of occurrence

child SCOore
1 3 13 15
2 23 14 18
3 36 15 78
4 43 16 24
5 51 17 13
6 44 18 27
7 12 19 86
8 26 20 61
9 43 21 13
10 75 22 7
1 2 23 6
12 3 24 8

Figure 4.3 shows the results of the runstest for these data.

Figure 4.3  Runs test results for aggression scores data

Cases < | Cases >= Asymp. Exact
Test Test Test Total Number Sig. Significance Point
value? Value Value Cases of Runs z (2-tailed) (2-tailed) Probability
SCORE 25.00 12 12 24 10 -1.044 .297 .301 .081
1. Median

To obtain these results, SPSS Exact Tests uses the median of the 24 observed scores
(25.0) asthe cut-off for transforming the datainto a binary sequence in accordance with
Equation 4.8. Thisyields the binary sequence

(1,0,1,1,1,1,0,1,1,1,0,0,0,0,1,0,0, 1, 1, 1, 0, 0, 0, 0).

Noticethat thisbinary sequence of 12 1’'sand 12 0's contains 10 runs. SPSS Exact Tests
determinesthat al permutations of the 12 1’'sand 12 0'swould yield anywhere between
aminimum of 2 runs and amaximum of 24 runs. The exact two-sided p value, or prob-
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ability of obtaining 10 or fewer runs, is 0.301 and does not indicate any significant de-
parture from randomness.

If the data set had been larger, it would have been difficult to compute the exact test,
and you would have had to either rely on the asymptotic results or estimate the exact p
values using the Monte Carlo option. Figure 4.4 shows Monte Carlo estimates of the
exact p values for the runs test based on 10,000 random permutations of the 12 0'sand
12 1'siin a binary sequence of 24 numbers. Each permutation is assigned an equally
likely probability given by 241/(12112!) = (1/2704156).

Figure 4.4  Monte Carlo results for runs test for aggression scores data

Monte Carlo Sig. (2-tailed)

99% Confidence
Cases < |[Cases >= Asymp. Interval
Test Test Test Total Number Sig. Lower Upper
value! Value Value Cases of Runs z (2-tailed) Sig. Bound Bound
SCORE 25.00 12 12 24 10 -1.044 .297 2982 .286 .310
1. Median

2. Based on 10000 sampled tables with starting seed 200000.

Notice that the Monte Carlo two-sided p value, 0.298, is extremely close to the exact p
value, 0.310. But more importantly, the Monte Carlo method produces a 99% confi-
dence interval within which the exact two-sided p value is guaranteed to lie. In this ex-
ample, theinterval is(0.286, 0.310), which again demonstrates conclusively that the null
hypothesis of arandom data series cannot be rejected.

Example: Small Data Set

Hereis asmall hypothetical data set illustrating the difference between the exact and
asymptotic inference for the runs test. The data consists of a binary sequence of ten
observations

(1,1,1,1,0,0,0,0,1, 1)

with six 1'sand four 0's. Thus, there are 3 runsin this sequence. The results of the runs
test are displayed in Figure 4.5.
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Figure 4.5 Runs test results for small data set

Cases < |[Cases >= Asymp. Exact
Test Test Test Total Number Sig. Significance Point
Value® Value Value Cases of Runs z (2-tailed) (2-tailed) Probability
SCORE 1.00 4 6 10 3 -1.616 .106 .071 .038

1. Median

Notice that the asymptotic two-sided p value is 0.106, while the exact two-sided p value
is0.071.






Two-Sample Inference:
Paired Samples

The testsin this section are commonly applied to matched pairs of data, such as when
several individuals are being studied and two repeated measurements are taken on each
individual. The objective is to test the null hypothesis that both measurements came
from the same population. The inferenceis complicated by the fact that the two obser-
vations on the same individual are correlated, while there is independence across the
different individual s being studied. In this setting, SPSS Exact Tests provides statistical
procedures for both continuous and categorical data. For matched pairs of continuous
data (possibly with ties) SPSS Exact Tests provides the sign test and the Wilcoxon
signed-rankstest. For matched pairs of binary outcomes, SPSS Exact Tests providesthe
McNemar test. For matched pairs of ordered categorical outcomes, SPSS Exact Tests
generalizes from the McNemar test to the marginal homogeneity test.

Available Tests

Table 5.1 shows the available tests for paired samples, the procedure from which they
can be obtained, and a bibliographical reference for each test.

Table 5.1  Available tests

Test Procedure Reference

Sign test Nonparametric Tests: Sprent (1993)
Two-Related-Samples Tests

Wilcoxon signed-rankstest ~ Nonparametric Tests: Sprent (1993)

McNemar test

Marginal homogeneity test

Two-Related-Samples Tests

Nonparametric Tests:
Two-Related-Samples Tests

Nonparametric Tests:
Two-Related-Samples Tests

57

Siegel and Castellan
(1988)

Agresti (1990)
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When to Use Each Test

The tests in this chapter have the common feature that they are applicable to data sets
consisting of pairs of correlated data. The goal is to test if the first member of the pair
hasadifferent probability distribution from the second member. The choice of testispri-
marily determined by the type of data being tested: continuous, binary, or categorical.

Sign test. Thistest is used when observations in the form of paired responses arise from
continuous distributions (possibly with ties), but the actual data are not available to us.
Instead, all that is provided isthe sign (positive or negative) of the differencein responses
of the two members of each pair.

Wilcoxon signed-ranks test. Thistest is also used when observationsin the form of paired
responses arise from continuous distributions (possibly with ties). However, you how
have the sign of the difference. You also haveitsrank in the full sample of response dif-
ferences. If this additional information is available, the Wilcoxon signed-ranks test is
more powerful than the sign test.

McNemar test. Thistest is used to test the equality of binary response rates from two pop-
ulationsin which the data consist of paired, dependent responses, one from each popula-
tion. It is typically used in a repeated measures situation, in which each subject’s
responseiselicited twice, once before and once after a specified event (treatment) occurs.
The test then determinesif the initial response rate (before the event) equals the final re-
sponse rate (after the event).

Marginal homogeneity test. This test generalizes the McNemar test from binary response
to multinomial response. Specifically, it tests the equality of two ¢ x 1 multinomial re-
sponse vectors. Technically, the response could be ordered or unordered. However, the
methods developed in the present release of SPSS Exact Tests apply only to ordered
response. The data consist of paired, dependent responses, one from population 1 and
the other from population 2. Each response falls into one of ¢ ordered categories. The
data are arranged in the form of a square ¢ x ¢ contingency table in which an entry in
cell (i, j) signifies that the response of one member of the dependent pair fell into cat-
egory i, while the response of the second member fell into category j. A typical appli-
cation of the test of marginal homogeneity is a repeated measures situation in which
each subject’s ordered categorical responseiselicited twice, once before and once after
a specified event (treatment) occurs. The test then determines if the response rates in
the ¢ ordered categories are atered by the treatment. See Agresti (1990) for various
model-based approaches to this problem. SPSS Exact Tests provides a honparametric
solution using the generalized Mantel-Haenszel approach suggested by Kuritz, Landis,
and Koch (1988). See also White, Landis, and Cooper (1982).
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Statistical Methods

For al the testsin this chapter, the data consist of correlated pairs of observations. For
some tests, the observations are continuous (possibly with ties), while for others the ob-
servations are categorical. Nevertheless, in al cases, the goal isto test the null hypoth-
esis that the two populations generating each pair of observations are identical. The
basic permutation argument for testing this hypothesis is the same for all the tests. By
thisargument, if the null hypothesisweretrue, the first and second members of each pair
of observations could just as well have arisen in the reverse order. Thus, each pair can
be permuted in two ways, and if there are N pairs of observations, there are 2V equally
likely ways to permute the data. By actually carrying out these permutations, you can
obtain the exact distribution of any test statistic defined on the data.

Sign Test and Wilcoxon Signed-Ranks Test

The data consist of N paired observations (X;, Y1), (X2, ¥), -... (Xn: Yn) » Where the X
and Y random variables are correlated, usually through a matched-pairs design. Define
the N differences

d| = Xl—yl’ | = 1, 2, ...,N
Omit from further consideration all pairs with a zero difference. Assume that for all

i, |d| >0. The following assumptions are made about the distribution of the random
variables D; :

1. Thedistribution of each D, is symmetric.
2. The D;’sare mutually independent.
3. The D; 's have the same median.

Let the common median of the N D; 's be denoted by A. The null hypothesisis
HyA =0

There are two one-sided alternative hypotheses of the form

Hi:A>0

and

H'1:A<O0

The two-sided alternative hypothesis is that either H, or H'; holds, but you cannot
specify which.



60

Chapter 5

To test these hypotheses, utilize permutational distributions of tests statistics derived
from either the signs or the signed ranks of the N differences. L et the absol ute val ues of
the observed paired differences, arranged in ascending order, be

|dpy| = [dpzg| -+ < [dpg|

and let

be corresponding ranks (mid-ranksin the case of tied data). Specifically, if there are m,
observationstied at the jth smallest absolute value, you assign to all of them the rank

g = Myt tm g +172(m + 1) Equation 5.1

For the Wilcoxon signed-rankstest, inferenceis based on the permutational distribution
of the test statistic

D D
Tegr = mingy r,1(D; >0), r;1(D; <0)D Equation 5.2
Z |Zl D

whose observed valueis

0y 0
= mmgz r;l(d; >0), Z r;1(D; <0)D Equation 5.3
i=1
D

where 1(-) istheindicator function. It assumesavaue of 1if itsargument istrue and O
otherwise. In other words, tgg is the minimum of ranks of the positive differences and
the ranks of the negative differences among the N observed differences.

Sometimes you do not know the actual magnitude of the difference but only have its
sign available to us. In that case, you cannot rank the differences and so compute the
Wilcoxon signed-ranks statistic. However, you can still use the information present in
the sign of the difference and perform the sign test. For the sign test, inference is based
on the permutational distribution of the test statistic

0 D
aN

= mmmz 1(D; >0), z r1(D; <O)D Equation 5.4
EI: i=1 D



Two-Sample Inference: Paired Samples 61

whose observed valueis

[l
N
z (d,>0), z r,1(D; <O)D Equation 5.5
= i=1

[l

II
DI:H:II:H:I

In other words, t is the count of the number of positive differences among the N
differences.

The permutational distributions of Tsr and Tg under the null hypothesis are ob-
tained by assugnmg positive or negative signs to the N differencesin all possible ways.
There are 2" such possible assignments, corresponding to the reference set

I = {(sgn(D,), sgn(D,), ...sgn(Dy)):sgn(D;) = L or -1, fori = 1,2, ... N}
Equation 5.6

and each assignment has equal probability, 2™ under the null hypothesis. SPSS Exact
Tests uses network algorithmsto enumerate the reference set in Equation 5.6 in order to
compute exact p values.

From Equation 5.2 and standard binomial theory, the mean of Tg; is

E(Ter) = Z r./2 Equation 5.7
i=1

and the variance of Ty is
02(TSR) = Z r-/4 Equation 5.8

From Equation 5.4 and standard binomial theory, the mean of Tg is

E(Tg) = N/2 Equation 5.9
and the variance of Tg is

02(TS) = N/4 Equation 5.10
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For notational convenience, you can drop the subscript and let T denote either the statis-
tic for the sign test or the statistic for the Wilcoxon signed-ranks test. The p value com-
putations that follow are identical for both tests, with the understanding that T denotes
Tsr When the Wilcoxon signed-ranks test is being computed and denotes Tg when the
sign test isbeing computed. In either case, you can now denote the standardized test sta-
tistic as

_ T-E(t

Equation 5.11
o(T)

The two-sided asymptotic p value is defined, by the symmetry of the normal distribu-
tion, to be double the one-sided p value;

P, = 2p, Equation 5.12
The exact one-sided p value is defined as

_ Pr(T=t)if t>E(T)

Equation 5.13
L Hpr(T<t)if t< E(T)

where t is the observed value of T. The potential to misinterpret a one-sided p value
applies in the exact setting, as well as in the asymptotic case. The exact two-sided p
value is defined to be doubl e the exact one-sided p value:

p, = 2p,

: Equation 5.14
This is a reasonable definition, since the exact permutational distribution of T is sym-
metric about its mean.

The one-sided Monte-Carlo p value is obtained as follows. First, suppose that
t > E(T), so that you are estimating the right tail of the exact distribution. Y ou sample
M times from the reference set (I") of 2N possible assignments of signs to the ranked
data. Suppose that the ith sample generates a value t; for the test statistic. Define the
random variable

plift; >t
Zi = [ .
[0 otherwise
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An unbiased Monte Carlo point estimate of the one-sided p valueis

M
p, = -ZZi/M Equation 5.15

Next, if t <E(T), sothat you are estimating the left tail of exact distribution, the random
variable is defined by

L _ Oty

! 00 otherwise

The Monte Carlo point estimate of the one-sided p value is once again given by
Equation 5.15.
A 99% confidence interval for the exact one-sided p valueis

Cl = p, £ 2.576,/(p,)(1—-p,)/M Equation 5.16

The constant in the above equation, 2.576, is the upper 0.005 quantile of the standard
normal distribution. It arises because SPSS Exact Tests chooses a 99% confidenceinter-
val for the p value as its default. However, you can easily choose any confidence level
for the Monte Carlo estimate of the p value. Ordinarily, you would not want to lower the
level of the Monte Carlo confidence interval to below the 99% default, since there
should be a high assurance that the exact p value is contained in the confidence interval .
A technical difficulty ariseswhen either p = 0 or p = 1. Now the sample standard
deviation is 0, but the data do not support a confidence interval of zero width. An alter-
native approach in this extreme situation is to invert an exact binomial hypothesis test.
It can be easily shownthat if p = 0, an a% confidence interval for the exact p valueis

/M

Cl=[0,1-(1-0a/100)" ] Equation 5.17

Similarly, when E) = 1, an a% confidence interval for the exact p valueis

Cl = [(1-a/100)"M 1

1] Equation 5.18
By symmetry, the two-sided Monte Carlo p value is twice the one-sided p value:

f)z = 2f)1 Equation 5.19
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You can show that the variance of the two-sided Monte Carlo p value is four times as
large as the variance of the corresponding one-sided Monte Carlo p value. The confi-
dence interval for the true two-sided p value can thus be adjusted appropriately, based
on the increased variance.

Example: AZT for AIDS

The data shown in Figure 5.1, from Makutch and Parks (1988), document the response
of serum antigen level to AZT in 20 AIDS patients. Two sets of antigen levels are pro-
vided for each patient: pre-treatment, represented by preazt, and post-treatment, repre-
sented by postazt.

Figure 5.1  Response of serum antigen level to AZT

id areazt postazt
1 149 0
2 0 51
3 0 0
4 259 385
5 106 0
6 255 235
7 0 0
8 52 0
9 340 48
10 0 0
11 180 77
12 0 0
13 84 0
14 89 0
15 212 53
16 954 150
17 500 0
18 424 165
19 112 98
20 2600 0
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Figure 5.2 shows the results for the Wilcoxon signed-ranks test.

Figure 5.2 Wilcoxon signed-ranks test results for AZT data

Ranks
N Mean Rank | Sum of Ranks
Serum Antigen Level | Negative 1
Post AZT - Serum Ranks 2 6.00 12.00
Antigen Level (pg/ml) Positi
ositive 2
Pre-AZT Ranks 14 8.86 124.00
Ties 43
Total 20

1. Serum Antigen Level Post AZT < Serum Antigen Level (pg/ml) Pre-AZT
2. Serum Antigen Level Post AZT > Serum Antigen Level (pa/ml) Pre-AZT
3. Serum Antigen Level Post AZT = Serum Antigen Level (pg/ml) Pre-AZT

Test Statistics!

Asymp. Exact
Sig. Significance |Exact Sig. Point
4 (2-tailed) (2-tailed) (1-tailed) | Probability

Serum
Antigen
Level
Post
AZT -
Serum
Antigen
Level
(pg/ml)
Pre-AZT

2
-2.896 .004 .002 .001 .000

1. Wilcoxon Signed Ranks Test
2. Based on negative ranks.

Thetest statistic isthe smaller of the two sums of ranks, which is 12. The exact one-sided
p value is 0.001, about half the size of the asymptotic one-sided p value. To obtain the as-
ymptotic one-sided p vaue, divide the asymptotic two-sided p value, 0.004, by 2
((0.004)/2 = 0.002). If thisdataset had been extremely large, you might have preferred
to compute the Monte Carlo estimate of the exact p value. The Monte Carlo estimate
shown in Figure 5.3 is based on sampling 10,000 times from the reference set ', defined
by Equation 5.6.
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Figure 5.3  Monte Carlo results of Wilcoxon signed-ranks test for AZT data

Test Statistics’?
Monte Carlo Sig. (2-tailed) Monte Carlo Sig. (1-tailed)
99% Confidence 99% Confidence
Asymp. Interval Interval
Sig. Lower Upper Lower Upper

4 (2-tailed) Sig. Bound Bound Sig. Bound Bound
Serum
Antigen
Level
Post
AZT - -2.8963 .004 .002 .001 .004 .001 .0002 .0018
Serum
Antigen
Level
(pg/ml)
Pre-AZT

1. wilcoxon Signed Ranks Test
2. Based on 10000 sampled tables with starting seed 2000000.
3. Based on negative ranks.

The Monte Carlo point estimate of the exact one-sided p value is 0.001, very close to the
exact answer. Also, the Monte Carlo confidence interval guarantees with 99% confidence
that the true p value is in the range (0.0002, 0.0018). This guarantee is unavailable with
the asymptotic method; thus, the Monte Carlo estimate would be the preferred option for
large samples.

Next, the exact sign test is run on these data. The results are displayed in Figure 5.4.
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Figure 5.4  Sign test results for AZT data

Frequencies

N
Serum Antigen Level | Negative 2
Post AZT - Serum Differences
Qntlg};;;TLevel (pg/ml) Positive , u
re- Differences
Ties® 4
Total 20
1. Serum Antigen Level Post AZT < Serum
Antigen Level (pa/ml) Pre-AZT
2. Serum Antigen Level Post AZT > Serum
Antigen Level (pa/ml) Pre-AZT
3. Serum Antigen Level Post AZT = Serum
Antigen Level (pg/ml) Pre-AZT
Test Statistics!
Statistics
Exact Sig. Point
Exact Significance (2-tailed) | (1-tailed) | Probability
Pairs | Serum
Antigen
Level
Post
AZT - 004”% 002 002
Serum
Antigen
Level
(pg/ml)
Pre-AZT
1. Sign Test

2. Exact results are provided instead of Monte Carlo for this test.
3. Binomial distribution used.

The exact one-sided p valueis 0.002. Notice that the exact one-sided p value for the sign
test, while still extremely significant, is neverthelesslarger than the corresponding exact
one-sided p value for the Wilcoxon signed-ranks test. Since the sign test only takesinto
account the signs of the differences and not their ranks, it has less power than the Wil-
coxon signed-ranks test. This accounts for its higher exact p value. The corresponding
asymptotic inference fails to capture this distinction.
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McNemar Test

The McNemar test (Siegel and Castellan, 1988; Agresti, 1990) is used to test the equal-
ity of binary response rates from two populations in which the data consist of paired,
dependent responses, one from each population. It is typically used in a repeated mea-
surements situation in which each subject’s response is elicited twice, once before and
once after a specified event (treatment) occurs. The test then determinesif the initial re-
sponse rate (before the event) equals the final response rate (after the event). Suppose
two binomial responses are observed on each of N individuals. Let y,, be the count of
the number of individuals whose first and second responses are both positive. Let y,,
be the count of the number of individualswhosefirst and second responses are both neg-
ative. Let y,, bethe count of the number of individuals whose first response is positive
and whose second response is negative. Finally, let y,; be the count of the number of
individuals whose first response is negative and whose second response is positive.
Then the McNemar test is defined onasingle 2 x 2 table of the form

Yiu Yo
y =
Yio, Y2

Let (1,, Ty,, Thy, TT,) denotethefour cell probabilities for thistable. The null hypoth-
esisof interest is

Ho:Thp = Ty

The McNemar test depends only on the values of the off-diagonal elements of the 2 x 2
table. Itstest statisticis

MC(Y) = Yo —Yo1 Equation 5.20

Now let y represent any generic 2 x 2 contingency table, and supposethat xisthe 2 x 2
table actually observed. The exact permutation distribution of the test statistic (see
Equation 5.20) is obtained by conditioning on the observed sum of off-diagonal terms,
or discordant pairs,

Ng = Y2t ¥Y;

The reference set is defined by

M ={yyis2x2yy,,+y, =Ny Equation 5.21
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Under the null hypothesis, the conditional probability, P(y) , of observingany y O T
is binomial with parameters (0.5, Ny) . Thus,

Nd
_(05) “Ny!

P(y) = Equation 5.22

Y12!¥Yor!

and the probability that the McNemar statistic equals or exceeds its observed value
MC(x), isreadily evaluated as

Pr(MC(y) 2 MC(x)) = z P(y) Equation 5.23
MC(y) = MC(x)

thesum beingtakenover all y O I . The probability that the McNemar statisticislessthan
or equal to MC(x) issimilarly obtained. The exact one-sided p value isthen defined as

p; = min{ Pr(MC(y ) < MC(x)), Pr(MC(y ) > MC(x ))} Equation 5.24

You can show that the exact distribution of the test statistic MC(y ) is symmetric about
0. Therefore, the exact two-sided p valueis defined as doubl e the exact one-sided p value:

P, = 2pg Equation 5.25

In large samples, the two-sided asymptotic p valueis calculated by a )(2 approximation
with a continuity correction, and 1 degree of freedom, as shown in Equation 5.26.

X2 _ (|y12—y21| _1)2
Ng

Equation 5.26

The definition of the one-sided p value for the exact case as the minimum of theleft and
right tails must be interpreted with caution. It should not be concluded automatically,
based on a small one-sided p value, that the data have yielded a statistically significant
outcome in the direction originally hypothesized. It is possible that the population dif-
ference occurs in the opposite direction from what was hypothesized before gathering
the data. The direction of the difference can be determined from the sign of the test sta-
tistic, calculated as shown in Equation 5.27.

MC(Y) = Y15—Ya Equation 5.27

You should examine the one-sided p value as well as the sign of the test statistic before
drawing conclusions from the data.
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Example: Voters’ Preference

The following data are taken from Siegel and Castellan (1988). The crosstabulation
shown in Figure 5.5 shows changes in preference for presidential candidates before and
after atelevision debate.

Figure 5.5 Crosstabulation of preference for presidential candidates before and after TV
debate

Preference Before TV Debate * Preference After TV
Debate Crosstabulation

Count

Preference After TV
Debate

Carter Reagan

Preference Carter 28 13
Before TV Debate

Reagan 7 27

The results of the McNemar test for these data are shown in Figure 5.6.

Figure 5.6  McNemar test results

Test Statistics'
Exact
Significance |Exact Sig. Point

N (2-tailed) (1-tailed) | Probability
Preference
Before TV
Debate & 75 263° 132 074
Preference
After TV
Debate

1. McNemar Test
2. Binomial distribution used.

The exact one-sided p value is 0.132. Notice that the value of the McNemar statistic,
13 -7, hasapositive sign. Thisindicates that of the 20 (13 + 7) discordant pairs, more
switched preferences from Carter to Reagan (13) than from Reagan to Carter (7). The
point probability, 0.074, is the probability that MC(y) = MC(x) = 13-7 = 6.
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Marginal Homogeneity Test

The margina homogeneity test (Agresti, 1990) is an extension of the McNemar test
from two categories to more than two categories. The data are thus defined on a square
¢ x ¢ contingency tablein which the row categories represent the first member of apair
of correlated observations, and the column categories represent the second member of
the pair. In SPSS Exact Tests, the categories are required to be ordered. The dataare thus
represented by a ¢ x ¢ contingency table with entry (x;) inrow i and columnj. This
entry is the count of the number of pairs of observations in which the first member of
the pair fallsinto ordered category i and the second member into ordered category j. Let
TG be the probability that the first member of the matched pair fallsin row j. Let 1t} be
the probability that the second member of the matched pair fallsin column j. The null
hypothesis of marginal homogeneity states that

HOZT[J- :T[’j, foralj =1,2,...c

In other words, the probability of being classified into category j isthe samefor the first
aswell as the second member of the matched pair.

The marginal homogeneity test for ordered categories can be formulated as a strati-
fied 2 x ¢ contingency table. The theory underlying this test, the definition of its test
statistic, and the computation of one- and two-sided p values are discussed in Kuritz,
Landis, and Koch (1988).

Example: Matched Case-Control Study of Endometrial Cancer

Figure 5.7, taken from the Los Angeles Endometrial Study (Breslow and Day, 1980),
displays a crosstabulation of average doses of conjugated estrogen between cases and
matched controls.

Figure 5.7  Crosstabulation of dose for cases with dose for controls

Dose (Cases) * Dose (Controls) Crosstabulation

Count
Dose (Controls)
.0000 .2000 .5125 .7000
Dose .0000 2 3 1
(Cases) | 2000 9 4 2 1
.5125 2 3 1
.7000 12 1 2 1
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In this matched pairs setting, the test of whether the cases and controls have the same
exposure to estrogen, is equivalent to testing the null hypothesis that the row margins
and column margins come from the same distribution. The results of running the exact
marginal homogeneity test on these data are shown in Figure 5.8.

Figure 5.8  Marginal homogeneity results for cancer data

Marginal Homogeneity Test

Std.
Observed Mean Deviation Asymp. Exact

Distinct | Off-Diagonal MH MH of MH Std. MH Sig. Significance |Exact Sig. Point

Values Cases Statistic | Statistic | Statistic | Statistic | (2-tailed) (2-tailed) (1-tailed) | Probability
Dose
(Cases) 4 45 6.687 | 12.869 1655 | -3.735 .000 .000 .000 .000
& Dose
(Controls)

The p values are extremely small, showing that the cases and controls have significantly
different exposures to estrogen. The null hypothesis of marginal homogeneity is rejected.

Example: Pap-Smear Classification by Two Pathologists

This example is taken from Agresti (1990). Two pathologists classified the Pap-smear
slides of 118 women in terms of severity of lesion in the uterine cervix. The classifica
tionsfell into five ordered categories. Level 1 is negative, Level 2 isatypical squamous
hyperplasia, Level 3iscarcinomain situ, Level 4 is squamous carcinoma, and Level 5is
invasive carcinoma. Figure 5.9 shows a crosstabulation of level classifications between
two pathologists.

Figure 5.9  Crosstabulation of Pap-smear classifications by two pathologists

First Pathologist * Pathologist 2 Crosstabulation

Count
Pathologist 2
Level 1 Level 2 Level 3 Level 4 Level 5

First Level 1 22 2 2
Pathologist Level 2 5 7 14

Level 3 2 36

Level 4 1 14 7

Level 5 3 3
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The question of interest iswhether thereis agreement between the two pathol ogists. One
way to answer this question is through the measures of association discussed in Part 4.
Another way isto run the test of marginal homogeneity. The results of the exact margin-
al homogeneity test are shown in Equation 5.10.

Figure 5.10 Results of marginal homogeneity test

Marginal Homogeneity Test

Std.

Observed Mean Deviation Asymp. Exact
Distinct | Off-Diagonal MH MH of MH Std. MH Sig. Significance |Exact Sig. Point
Values Cases Statistic Statistic Statistic Statistic | (2-tailed) (2-tailed) (1-tailed) | Probability
First
Pathologist
& 5 43 114.000 | 118.500 3.905 -1.152 .249 .307 154 .053
Pathologist

2

The exact two-sided p value is 0.307, indicating that the classifications by the two pa-
thologists are not significantly different. Notice, however, that thereisafairly large dif-
ference between the exact and asymptotic p values because of the sparseness in the off-
diagonal elements.






Two-Sample Inference:
Independent Samples

This chapter discusses tests based on two independent samples of data drawn from two
distinct populations. The objectiveisto test the null hypothesisthat the two populations
have the same response distributions against the alternative that the response distribu-
tions are different. The data could also arise in randomized clinical trialsin which each
subject is assigned randomly to one of two treatments. The goa is to test whether the
treatments differ with respect to their response distributions. Hereit is not necessary to
make any assumptions about the underlying populations from which these subjects
were drawn. Lehmann (1975) has demonstrated clearly that the same statistical meth-
ods are applicable whether the data arose from a population model or a randomization
model. Thus, no distinction will be made between the two ways of gathering the data.

Thereareimportant differences between the structure of the data for this chapter and
the previous one. The data in this chapter are independent both within a sample and
across the two samples, whereas the data in the previous chapter consisted of N
matched (correlated) pairs of observations with independence across pairs. Moreover,
in the previous chapter, the sample size was required to be the same for each sample,
whereas in this chapter, the sample size may differ, with n; being the size of sample
j=12.

Available Tests

Table 6.1 shows the available tests for two independent samples, the procedure from
which they can be obtained, and a bibliographical reference for each test.

Table 6.1  Available tests

Test Procedure Reference

Mann-Whitney test Nonparametric Tests: Two Independent  Sprent (1993)
Samples

Kolmogorov-Smirnov test  Nonparametric Tests: Two Independent ~ Conover (1980)
Samples

Wald-Wolfowitz runstest ~ Nonparametric Tests: Two Independent ~ Gibbons (1985)
Samples

75



76

Chapter 6

When to Use Each Test

Thetestsin this chapter deal with the comparison of samples drawn from the two distri-
butions. The null hypothesisis that the two distributions are the same.

The choice of test depends on the type of aternative hypothesisyou areinterested in
detecting.

Mann-Whitney test. The Mann-Whitney test, or Wilcoxon rank-sum test, is one of the
most popular two-sampletests. It isgenerally used to detect “ shift alternatives.” That is,
the two distributions have the same general shape, but one of them is shifted relative to
the other by a constant amount under the alternative hypothesis. Thistest has an asymp-
totic relative efficiency of 95.5% relativeto the Student’st test when the underlying pop-
ulations are normal.

Kolmogorov-Smirnov test. The Kolmogorov-Smirnov test isadistribution-freetest for the
equality of two distributions against the general alternative that they are different. Be-
cause this test attempts to detect any possible deviation from the null hypothesis, it will
not be as powerful asthe Mann-Whitney test if the alternative isthat one distribution is
shifted with respect to the other. One-sided forms of the K olmogorov-Smirnov test can
be specified and are powerful against the one-sided alternative that one distribution is
stochastically larger than the other.

Wald-Wolfowitz runs test. The Wald-Wolfowitz runstest isa competitor to the Kolmogorov-
Smirnov test for testing the equality of two distributions against general alternatives. It will
not be powerful againgt specific alternatives such as the shift aternative, but it is a good
test when no particular dternative hypothesis can be specified. Thistest is even more gen-
eral than the Kolmogorov-Smirnov test in the sense that it has no one-sided version.

Statistical Methods

The datafor all of the tests in this chapter consist of two independent samples, each of
sizen;,j = 1,2, where ny +n, = N. These N observations can be represented in the
form of the one-way layout shown in Table 6.2.

Table 6.2  One-way layout for two independent samples

Samples
1 2
Uy P
Uy Uy,
u
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This table, denoted by u, displays the observed one-way layout of raw data. The obser-
vations in u arise from continuous univariate distributions (possibly with ties). Let the
formula

Fi(v) = Pr(Vsv]j),j=1,2 Equation 6.1

denote the distribution from which the n; observations displayed in column j of the one-
way layout were drawn. The goal isto test the null hypothesis

Ho: F1=F, Equation 6.2

The observations in u are independent both within and across columns. In order to test
H, by nonparametric methods, it is necessary to replace the original observationsin the
one-way layout with corresponding scores. These scoresrepresent various ways of rank-
ing the data in the pooled sample of size N. Different tests utilize different scores. Let
w;; be the score corresponding to u;; . Then the one-way layout, in which the original
data have been replaced by scores, is represented by Table 6.3.

Table 6.3 One-way layout with scores replacing original data

Samples
1 2
Wy Wi,
Wo1 W,
Wn,2

This table, denoted by w, displays the observed one-way layout of scores. Inference
about H,, isbased on comparing this observed one-way layout to otherslikeit, in which
the individual w;; elements are the same but they occupy different rows and columns.
In order to devel op thisideamore precisely, | et the set W denote the collection of al pos-
sible two-column one-way layouts, with n; elementsin column 1 and n, elementsin
column 2, whose members include w and all its permutations. The random variable w
isapermutation of wif it contains precisely the same scores asw, but these scores have
been rearranged so that, for at least one (i, j), (i",j) pair, thescoresw; ; and w;. ;. are
interchanged.
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Formally, let
W = {W: W =w, or W isapermutation of w} Equation 6.3

where w is arandom variable, and w is a specific value assumed by it.

To clarify these concepts, let us consider a simple numerical example. Let the origi-
nal data come from two independent samples of size 5 and 3, respectively. These data
are displayed as the one-way layout shown in Table 6.4.

Table 6.4 One-way layout of original data

Samples
1 2
27 38
30 9
55 27
72
18

Asyou will seein “Mann-Whitney Test” on p. 80, in order to perform the Mann-Whit-
ney test on these data, the original data must be replaced by their ranks. The one-way
layout of observed scores, based on replacing the original data with their ranks, is dis-
played in Table 6.5.

Table 6.5 One-way layout with ranks replacing original data

Samples
1 2
35 6
1
35

N 00 N O g

Thisone-way layout of ranksis denoted by w. It isthe one actually observed. Noticethat
two observations weretied at 27 in u. Had they been separated by a small amount, they
would have ranked 3 and 4. But since they aretied, the mid-rank (3+4)/2 = 35 is
used as the rank for each of them in w. The symbol W represents the set of all possible
one-way layouts whose entries are the eight numbersin w, with five numbersin column
1 and three numbers in column 2. Thus, w is one member of W. (It is the one actually
observed.) Another member is W', representing a different permutation of the numbers
inw, as shown in Table 6.6.
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Table 6.6 Permutation of the observed one-way layout of scores

Samples
1 2
6 5
1 8
35 7
35
2

All of thetest statisticsin this chapter are univariate functionsof w 0 W. Let thetest sta-
tisticbe denoted by T(w) =T anditsobserved value be denoted by t(w) =t . Thefunc-
tional form of T(Ww) will be defined separately for each test, in subsequent sections of
this chapter. Following is a discussion of how the null distribution of T may be derived
in general, and how it is used for p value computations.

The Null Distribution of T

In order to test the null hypothesis, H, you need to derive the distribution of T under
the assumption that H,, istrue. This distribution is obtained by the following permuta-
tional argument:

If H, istrue, every member w [ W has the same probability of being observed.

Lehmann (1975) has shown that the above permutational argument is valid whether the
data were gathered independently from two populations or by assigning N subjects to
two treatments in accordance with a predetermined randomization rule. No distinction
is made between these two ways of gathering the data, although one usually applies to
observational studies and the other to randomized clinical trials.

It follows from the above permutational argument that the exact probability of ob-
servingany w O W is

N2 n.
h(w) = —=1 1 Equation 6.4

N!
which does not depend on the specific way in which the original one-way layout, w, was
permuted. Then
Pr(T=t) = Z h(w) Equation 6.5

T(w) =t
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the sum being taken over all w 0 W. Similarly, the right-tail of the distribution of T is
obtained as

Pr(T=t) = Z h(w) Equation 6.6
T(W) =t

The probability distribution of T and its tail areas are obtained in SPSS Exact Tests by

fast numerical algorithms. In large samples, you can obtain an asymptotic approxima-

tionfor Equation 6.6. Different approximations apply to the different testsin this chapter
and are discussed in the section dealing with the specific tests.

P Value Calculations

The p valueisthe probability, under Hy, of obtaining avalue of the test statistic at |east
as extreme as the one actually observed. This probability is computed asthetail area of
the null distribution of the test statistic. The choice of tail area, left-tail, right-tail, or two-
tails, depends on whether you are interested in aone- or two-sided p value, and also on
the type of aternative hypothesisyou want to detect. Thethree statistical tests discussed
in this chapter are all different in this respect. For the Mann-Whitney test, both one- and
two-sided p values are defined, and they are computed as lft, right, or two-tailed prob-
abilities, depending on the alternative hypothesis. For the Kolmogorov-Smirnov test,
the p values are computed from the right tail as two-sided p values, depending on how
the test statistic is defined. Finally, for the Wald-Wolfowitz runs test, only two-sided p
values exist, and they are aways computed from the left tail of the null distribution of
the test statistic. Because of these complexities, it is more useful to define the p value
for each test when the specific test is discussed.

Mann-Whitney Test

The Mann-Whitney test is one of the most popular nonparametric two-sample tests. In-
deed, the original paper by Frank Wilcoxon (1945), in which thistest wasfirst presented,
isone of the most widely referenced statistical papers of all time. For a detailed discus-
sion of this test, see Lehmann (1975). It is assumed that sample 1 consists of n; obser-
vations drawn from the distribution F, and that sample 2 consists of n, observations
drawn for the distribution F, . The null hypothesisis given by Equation 6.2. The Wilcox-
on test is especially suited to detecting departures from the null hypothesis, in which F,
is shifted relativeto F; according to the aternative hypothesis

Hi:i Fo(v) = Fy(v—-6) Equation 6.7
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The shift parameter 6 is unknown. If it can be specified a priori that 6 must be either
positive or negative, thetest is said to be one-sided, and a one-sided p value can be used
to decide whether to reject Hy . On the other hand, when it is not possible to specify a
priori what the sign of 6 ought to be, the test is said to be two-sided. In that case, the
two-sided p valueis used to decideif H, can be rejected.

Before specifying how the one- and two-sided p values are computed, the test statistic
T(w) =T must bedefined. Thefirst step isto replace the raw data, u, by corresponding
scores, w. For the Mann- Whltney test, the score, w;; , replacing the original observation,
U ;, issimply the rank of that u; ; in the pooled sample of N = n, +n, observations.
If thereareno tiesamong the u; ; s theN ranks thus substituted into the one-way layout
will simply be some permutatlon of thefirst N integers. If there aretiesin the data, how-
ever, use mid-ranksinstead of ranks.

In order to define the mid-ranks formally, let a; <ay<...<ay, denote the
pooled sample of all of the N observationsin u, represented asasingle row of data sorted
in ascending order. To alow for the possibility of ties, let there be g distinct observations
among the sorted ay;; "s with e, distinct observations being equal to the smallest value,
e, distinct observations being equal to the second smallest value, e; distinct observa-
tions being equal to thethird smallest value, and so forth, until finally e, distinct obser-
vations are equal to the largest value. It is now possible to define the mid-ranks
precisely. For | = 1,2, ...g, thedistinct mid-rank assumed by all the e, observations
tied in the Ith smallest positionisw] = e, +e,+ ... +g_,;+ (g +1)/2.

Fi naIIy, you can determine the a;;; , and hence the correspondmg u;;, with which
each w| isassociated. Y ou can then substitute the appropriate w; in place of the uj; in
the one-way layout u. In this manner you replace u, the original one-way layout of raw
data, with w, the corresponding one-way layout of mid-ranks, whose individual ele-
ments, w;;, are the appropriate members of the set of the g distinct mid-ranks
(Wi, Wy, .. .Wg ). The set W of all possible permutations w is defined by Equation 6. 3

The W|Icoxon rank-sum test statistic for the first column (or sample), T(W) =T,
defined as the sum of mid-ranks of the first column (or sample) in the two-way Iayout
w. That is, forany w O W,

T= Z Wi Equation 6.8
i=1
Itsmeanis

E(T) = ny(ng+ny,+1)/2 Equation 6.9
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itsvarianceis
2
var(T) = ni—gz{nl +n,+1- " ilg; l)j'rfeL_nl)_ 1)} Equation 6.10
17 AN T Hp
and its observed value is
ny
t = z W;j Equation 6.11

i=1

The Wilcoxon rank-sum test statistic for the second column (or sample) is defined
similarly.

In its Mann-Whitney form, this observed statistic is defined by subtracting off a
constant:

u=t-ny(n +1)/2 Equation 6.12

In SPSS, the Wilcoxon rank-sum statistic corresponding to the column with the smaller
Mann-Whitney statistic is displayed and used as the test statistic.

Exact P Values

The Wilcoxon rank-sum test statistic, T, is considered extreme if it is either very large
or very small. Large values of T indicate a departure from the null hypothesisin the di-
rection 8 > 0, while small values of T indicate a departure from the null hypothesisin
the opposite direction, 8 < 0. Whenever the test statistic possesses adirectional proper-
ty of thistype, it is possible to define both one- and two-sided p values. The exact one-
sided p value is defined as

p; = min{Pr(T>t), Pr(T<1)} Equation 6.13

and the exact two-sided p value is defined as

p, = Pr(IT—E(T)] 2 [t-E(T))) Equation 6.14
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Monte Carlo P Values

When exact p values are too difficult to compute, you can estimate them by Monte Carlo
sampling. The following steps show how you can use Monte Carlo to estimate the exact p
valuegiven by Equation 6.14. The same procedure can be readily adapted to Equation 6.13.

1. Generate anew one-way layout of scores by permuting the original layout, w, in one
of the N!/(n;!n,!) equaly likely ways.

2. Compute the value of the test statistic T for the permuted one-way layout.

3. Define the random variable

S - DLt [T=E(M)| 2 |t—E(T)

. Equation 6.15
otherwise

Repeat the above steps atotal of M times to generate the realizations (z,, z,, ...z ) for
the random variable Z. Then an unbiased estimate of p, is

M
p. = ZI =14 Equation 6.16
p2 M q .
Next, let
M 1/2
o= 1 (z,—p )2 Equation 6.17
12 4P, q '

be the sample standard deviation of the z 's. Then a99% confidenceinterval for the exact
p valueis

Cl = f)z + 2.5766/N Equation 6.18

A technical difficulty arises when either p, = 0 or p, = 1. Now the sample standard
deviation is 0 but the data do not support a confidence interval of zero width. An alter-
native way to compute a confidence interval that does not depend on ¢ isbased on in-
verting an exact binomia hypothesis test when an extreme outcome is encountered. It
can be easily shown that if p, = 0, an a % confidence interval for the exact p valueis

Cl = [0,1—(1-a/100)"™ Equation 6.19
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Similarly, when E)z = 1, an a % confidence interval for the exact p valueis
cl = [(1—as100"™M 1] Equation 6.20
SPSS Exact Tests uses default values of M = 10000 and a = 99%. While these de-
faults can be easily changed, they provide quick and accurate estimates of exact p values
for awide range of data sets.

Asymptotic P Values

The one- and two-sided p values are obtained by computing the normal approximations
to Equation 6.13 and Equation 6.14, respectively. Thus, the asymptotic one-sided p value
isdefined as

EJl = min{ ®((t-E(T))/0y7), 1 -®((t-E(T))/ o)} Equation 6.21
and the asymptotic two-sided p valueis defined as

Equation 6.22

where ®(z) isthetail areato the left of zfrom astandard normal distribution, and o
isthe standard deviation of T, obtained by taking the square root of 7.10.

Example: Blood Pressure Data

The diastolic blood pressure (mm Hg) was measured on 4 subjects in a treatment group
and 11 subjectsin acontrol group. Figure 6.1 showsthe datadisplayed in the Data Editor.
The data consist of two variables—pressure is the diastolic blood pressure of each sub-
ject, and group indicates whether the subject was in the experimentally treated group or
the control group.



Figure 6.1
pressure group
1 94 Treated
2 108 Treated
3 110 Treated
4 90 Treated
5 80 Control
B 94 Control
7 85 Control
g 90 Control
4 90 Control
10 90 Control
" 108 Control
12 94 Control
13 78 Control
14 105 Control
15 88 Control

Two-Sample Inference: Independent Samples

Diastolic blood pressure of treated and control groups
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The Mann-Whitney test iscomputed for these data. Theresultsaredisplayed in Figure 6.2.

Figure 6.2  Mann-Whitney results for diastolic blood pressure data

Ranks
Mean Sum of
N Rank Ranks
Diastolic | Treatment | Treated 4 11.25 45.00
Blood Group Control 11 6.82 | 7500
Pressure
Total 15
Test Statistics
Asymp. Exact Sig. Exact
Mann-Whitney | Wilcoxon Sig. [2*(1-tailed | Significance |Exact Sig. Point
U w Z (2-tailed) Sig.)] (2-tailed) (1-tailed) | Probability
Diastolic 2
Blood 9.000 75.000 -1.720 .085 .104 .099 .054 .019
Pressure

1. Grouping Variable: Treatment Group

2. Not corrected for ties.

The Mann-Whitney statistic for the treated group, calculated by Equation 6.12, is 35.0
and for the control group is 9.0. Thus, the Wilcoxon rank-sum statistic for the control
group is used. The observed Wilcoxon rank-sum statistic is 75. The Mann-Whitney U
statistic is 9.0. The exact one-sided p value, 0.054, is not statistically significant at the
5% level. In this data set, the one-sided asymptotic p val ue, calculated as one-half of the
two-sided p value, 0.085, is 0.0427. This value does not accurately represent the exact
p value and would lead you to the erroneous conclusion that the treatment group is sig-
nificantly different from the control group at the 5% level of significance.
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Figure 6.4  Monte Carlo results with 30,000 samples for diastolic blood pressure data

Test Statistics®

Asymp. Exact Sig.

Monte Carlo Sig. (2-tailed)

Monte Carlo Sig. (1-tailed)

99% Confidence
Interval

99% Confidence
Interval

Mann-Whitney | Wilcoxon Sig. [2*(1-tailed Lower Upper Lower Upper
U W z (2-tailed) Sig.)] Sig. Bound Bound Sig. Bound Bound
Diastolic 2 3 3
Blood 9.000 75.000 -1.720 .085 .104 .102 .098 .107 .056 .053 .059
Pressure

L Grouping Variable: Treatment Group
* Not corrected for ties.
3. Based on 3000 sampled tables with starting seed 20000000.

Although it isnot necessary for this small data set, you can compute the Monte Carlo
estimate of the exact p value. The results of the Monte Carlo analysis, based on 10,000
random permutations of the original one-way layout, are displayed in Figure 6.3.

Figure 6.3 Monte Carlo results for diastolic blood pressure data
Test Statistics®
Monte Carlo Sig. (2-tailed) Monte Carlo Sig. (1-tailed)
99% Confidence 99% Confidence
Asymp. Exact Sig. Interval Interval
Mann-Whitney | Wilcoxon Sig. [2*(1-tailed Lower Upper Lower Upper
U Y z (2-tailed) Sig.)] Sig. Bound Bound Sig. Bound Bound
Diastolic 2 3 3
Blood 9.000 75.000 -1.720 .085 .104 .102 .094 .110 .056 .050 .062
Pressure

L Grouping Variable: Treatment Group
2 Not corrected for ties.
3. Based on 10000 sampled tables with starting seed 2000000.

Observethat the Monte Carlo estimate, 0.056, agreesvery closely with the exact p value
of 0.054. Now observe that with 10,000 Monte Carlo samples, the exact p valueis con-
tained within thelimits (0.050, 0.062) with 99% confidence. Since the threshold p value,
0.05, falls on the boundary of thisinterval, it appears that 10,000 Monte Carlo samples
are insufficient to conclude that the observed result is not statistically significant. Ac-
cordingly, to confirm the exact results, you can next perform a Monte Carlo analysis
with 30,000 permutations of the original one-way layout. The results are shown in Fig-
ure 6.4. Thistime, the 99% confidenceinterval is much tighter and doesindeed confirm
with 99% confidence that the exact p value exceeds 0.05.
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Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test is applicable in more general settings than the Mann-
Whitney test. Both aretests of the null hypothesis (see Equation 6.2). However, the Kol-
mogorov-Smirnov test is a universal test with good power against general alternatives
inwhich F; and F, can differ in both shape and location. The Mann-Whitney test has
good power against location shift aternatives of the form shown in Equation 6.7.

The Kolmogorov-Smirnov test is atwo-sided test having good power against the al-
ternative hypothesis

Hy: Fo(v) # F4(v), for at least one value of v Equation 6.23

The Kolmogorov-Smirnov statistics used for testing the hypothesisin Equation 6.23 can
now be defined. These statistics are al functions of the empirical cumulative density
function (CDF) for F; and the empirical CDF for F,. “ Statistical Methods” on p. 76
stated that the test statistics in this chapter are all functions of the one-way layout, w,
displayed in Table 6.3, in which the original data have been replaced by appropriate
scores. Indeed, thisis true here as well, since you could use the original data as scores
and construct an empirical CDF for each of the two samples of data. In that case, you
woulduse w = u asthe one-way layout of scores. Alternatively, you could first convert
the original datainto ranks, just like those for the Mann-Whitney test, and then construct
an empirical CDF for each of the two samples of ranked data. Hajek (1969) has demon-
strated that in either case, the same inferences can be made. Thus, the Kolmogorov-
Smirnov test is classified asarank test. However, for the purpose of actually computing
the empirical CDF's and deriving test statistics from them, it is often more convenient
to work directly with raw datainstead of first converting them into ranks (or mid-ranks,
in the case of ties). Accordingly, let u be the actually observed one-way layout of data,
depicted in Table 6.2, and let w, the corresponding one-way layout of scores, also be u.
Thus, the entriesin Table 6.3 are the original u;;’s. Now let (Up1q) < Upoyy < ... S Upp a3)
denote the observations from the first sample sorted in ascending order, and let
(UpSups...<U,,) denote the observations from the second sample, sorted in as-
cending order. These sorted observations are often referred to as the order statistics of
the sample. The empirical CDF for each distribution is computed from its order statis-
tics. Before doing this, some additional notation is needed to account for the possibility
of tied observations. Among the n; order statisticsinthejthsample, j = 1, 2, let there
be g; < n; distinct order statistics, with e;; observations all tied for first place, e,; ob-
servations all tied for second place, and so on until finally, e, i observations are all tied
for last place. Obviously, €;; + ey + ... + €5 = n;. Let (uE?lj <uby <. <uly;) rep-
resent the g; distinct order statistics of samplej = 1, 2. You can now compute the em-
pirical CDF's, F1 for F; and F2 for F,, asshown below. For j = 1, 2, define
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. O 0 if U<Uqu]
) _ O .
Fj(u) = E(e[lj] et )/ M ifugSu<u g fork=1,2..,9-1
0 1 if uzungyj

Thetest atistic for testing the null hypothesis (see Equation 6.2) against the two-sided al-
ternative hypothesis (see Equation 6.23) is the Kolmogorov-Smirnov Z and is defined as

Z = T(/niny/ (N +ny)) Equation 6.24

where T is defined as

T = max [[Fa(v) —F2(w)] Equation 6.25
Vv

and the observed value of T is denoted by t. The exact two-sided p value for testing
Equation 6.2 against Equation 6.23 is

p, = Pr(T=t) Equation 6.26

When the exact p value is too difficult to compute, you can resort to Monte Carlo sam-
pling. The Monte Carlo estimate of p, isdenoted by p, . It iscomputed as shown below:

1. Generate a new one-way layout of scores by permuting the original layout of raw
data, u, in one of the N!/(n;!n,!) equally likely ways.

2. Compute the value of the test statistic T for the permuted one-way layout.

3. Define the random variable

szl if T>t

0 . Equation 6.27
0 0 otherwise

Repeat the above steps a total of M times to generate the realizations (z;,2,,...z,) for
the random variable Z. Then an unbiased estimate of p, is

M

o Zl - 14
p

P Equation 6.28
M
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Next, let

M 1/2
o= ﬁ Z (- |52)2 Equation 6.29
=1

be the sample standard deviation of the z 's. Then a 99% confidence interval for the ex-
act pvalueis

Cl = §212.5768/J|\7| Equation 6.30

A technical difficulty arises when either p, = 0 or p, = 1. Now the sample standard
deviation is 0, but the data do not support a confidence interval of zero width. An alter-
native way to compute a confidence interval that does not depend on ¢ is based on in-
verting an exact binomial hypothesis test when an extreme outcome is encountered. It
can be easily shown that if ;52 = 0, an a % confidenceinterval for the exact p valueis

Cl = [0,1-(1—-0a/100)1/M] Equation 6.31
Similarly, when |32 = 1, an a % confidence interval for the exact p valueis

Cl = [(1-0a/100)1/M 1] Equation 6.32
SPSS Exact Tests uses default values of M=10000 and o =99%. While these defaults

can be easily changed, they provide quick and accurate estimates of exact p valuesfor a
wide range of data sets.

The asymptotic two-sided p value, ;32 , is based on the following limit theorem:

lim Pr(,/n;ny/(n +n,)T<2) = 1-2 Z (-1)i—1g2%2 Equation 6.33

n,, N, - .
12 i=1

Although theright side of Equation 6.33 has an infinite number of terms, in practiceyou
need to compute only the first few terms of the above expression before convergenceis
achieved.

Example: Effectiveness of Vitamin C

These data are taken from Lehmann (1975). The effectiveness of vitamin C in orange
juice and synthetic ascorbic acid was compared in 20 guinea pigs (divided at random
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into two groups). Figure 6.5 shows the data displayed in the Date Editor. There are two
variablesin these data—score represents the results, in terms of length of odontoblasts
(rounded to the nearest integer) after six weeks; source indicates the source of the vita-
min C, either orange juice or ascorbic acid.

Figure 6.5 Effectiveness of vitamin C in orange juice and ascorbic acid
SCore Source

1 8| Orange Juice 11 4| Ascorbic Acid
2 8| Orange Juice 12 5| Ascorbic Acid
3 10| Orange Juice 13 6| Ascorbic Acid
4 10| Orange Juice 14 6| Ascorbic Acid
3 10| Orange Juice 18 7| Ascorbic Acid
a 15| Orange Juice 16 7| Ascorbic Acid
7 15| Orange Juice 17 10 | Ascorbic Acid
8 16| Orange Juice 18 11| Ascorbic Acid
4 18| Orange Juice 19 11| Ascorbic Acid
10 22| Orange Juice 20 12 | Ascorbic Acid

The results of the two-sample Kolmogorov-Smirnov test for these data are shown in

Figure 6.6.
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Figure 6.6  Two-sample Kolmogorov-Smirnov results for orange juice and ascorbic acid data

Frequencies

N
Score Source of | Orange 10
Vitamin C | Juice
Ascorbic
Acid 10
Total 20

Test Statistics’

Score
Most Extreme Differences Absolute .600
Positive .000
Negative -.600
Kolmogorov-Smirnov Z 1.342
Asymp. Sig. (2-tailed) .055
Exact Significance (2-tailed) 045
Point Probability .043

1. Grouping Variable: Source of Vitamin C

The exact two-sided p value is 0.045. This demonstrates that, despite the small sample
size, thereisastatistically significant difference between the two forms of vitamin C ad-
ministration. The corresponding asymptotic p value equals 0.055, which is not statisti-
cally significant. It has been demonstrated in several independent studies (see, for
example, Goodman, 1954) that the asymptotic result is conservative. Thisis borne out

in the present example.

Wald-Wolfowitz Runs Test

The Wald-Wolfowitz runstest is a competitor to the Kolmogorov-Smirnov test for test-

ing the null hypothesis
Ho: F1(Vv) = Fy(v) foral v

Equation 6.34



Two-Sample Inference: Independent Samples 93

against the alternative hypothesis

H,: F4(v) # Fy(v) for at least one v Equation 6.35

Thetest iscompletely general, in the sense that no distributional assumptions need to be
made about F, and F,. Thus, it isreferred to as an omnibus, or distribution-free, test.

Suppose the data consist of the one-way layout displayed as Table 6.2. The Wald-
Wolfowitz test statistic is computed in the following steps:

1. Sortal N = n; +n, observations in ascending order, and position them in asingle
row represented as (<@ < ... < ap))-

2. Replace each observation in the above row with the sample identifier 1 if it came
from thefirst sample and 2 if it came from the second sample.

3. A runisdefined as a succession of identical numbers that are followed and preceded
by adifferent number or no number at all. Thetest statistic, T, for the Wald-Wolfowitz
test isthe number of runsin the aboverow of 1'sand 2's.

Under the null hypothesis, you expect the sorted list of observations to be well mixed
with respect to the sample 1 and sample 2 identifiers. In that case, you will see alarge
number of runs. On the other hand, if observationsfrom F, tend to be smaller than those
from F,, you expect the sorted list to lead with the sample 1 observations and be fol-
lowed by the sample 2 observations. In the extreme case, there will be only two runs.
Likewise, if the observationsfrom F, tend to be smaller than thosefrom F, , you expect
the sorted list to lead with the sample 2 observations and be followed by the sample 1
observations. Again, in the extreme case, there will be only two runs. These consider-
ations imply that the p value for testing H,, against the omnibus alternative H, should
be the | eft tail of the random variable, T, at the observed number of runs, t. That is, the
exact p valueisgiven by

p, = Pr(T<t) Equation 6.36

The distribution of T is obtained by permuting the observed one-way layout in al pos-
sibleways and assigning the probability (see Equation 6.4) to each permutation. You can
also derive this distribution theoretically using the same reasoning that was used in
“Runs Test” on p. 51 in Chapter 4; the Monte Carlo p value, p;, and the asymptotic p
value, p1, can be obtained similarly, using the results described in this section.

Example: Discrimination against Female Clerical Workers

The following example uses a subset of data published by Gastwirth (1991). In Novem-
ber, 1983, afemal e employee of Shelby County Criminal Court filed acharge of discrim-
ination in pay between similarly qualified male and female clerical workers. Figure 6.7
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shows the data displayed in the Data Editor. Salary representsthe starting salaries of nine
court employees hired between 1975 and 1979, and gender indicates the gender of the
employee.

Figure 6.7  Starting monthly salaries (in dollars) of nine court clerical workers

salary gender
1 525| Female
2 500 | Female
3 550 | Female
4 576 | Female
5 458 | Female
B 600 | Female
7 700 Male
g 886 Male
4 600 Male

A quick visual inspection of these data revealsthat in no case was afemale paid a higher
starting salary than amale hired for acomparable position. Consider these datato clarify
how the Wald-Wolfowitz statistic is obtained.

The table below consists of two rows. The first row contains the nine observations
sorted in ascending order. The second row contains the sample identifier for each obser-
vation: 1if femaleand 2 if male.

458 500 525 550 576 600 600 700 886
1 1 1 1 1 1 2 2 2

By the above definition, there are only two runsin these data. Notice, however, that there
isatiein the data. One observation from the first sample and one from the second sam-
ple are both tied with avalue of 600. Therefore, you could also represent the succession
of observations and their sample identifiers as shown bel ow.

458 500 525 550 576 600 600 700 886
1 1 1 1 1 2 1 2 2

Now there are four runs in the above succession of sample identifiers. Firgt, thereisa
run of five 1's. Then arun of asingle 2, followed by arun of asingle 1. Finaly, thereis
arun of two 2's.

Theliberal value of the Wald-Wolfowitz test statistic is the one yielding the smallest
number of runs after rearranging the ties in al possible ways. This is denoted by t, ;..
The conservative value of the Wald-Wolfowitz test statistic isthe oneyielding the largest
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number of runs after rearranging the ties in all possible ways. This is denoted by t, .
SPSS Exact Tests produces two p values,

Py, min = Pr(T<tyin) Equation 6.37
and
Py max = Pr(T<tng) Equation 6.38

Conservative decisions are usually made with p; .., . For the clerical workers data set,
the output of the Wald-Wolfowitz test is shown in Figure 6.8.

Figure 6.8  Wald-Wolfowitz runs test for clerical workers data

Frequencies

N
Starting Gender of | Male
Monthly | Worker Female
Salary
Total
Test Statistics?
Number Exact Sig. Point
of Runs 4 (1-tailed) | Probability
Starting Minimum 3
Monthly | Possible 2 -2.041 024 024
Salary .
Maximum & -a08 345 238
Possible

1 wald-Wolfowitz Test
2. Grouping Variable: Gender of Worker
3 There are 1 inter-group ties involving 2 cases.

When ties are broken in all possible ways, the minimum number of runsis 2, and the
maximum is 4. The smallest possible exact p valueisthus p; ., = 0.024. Thelargest
possible exact pvalueis p; ., = 0.345. Intheinterest of being as conservative as pos-
sible, thisis clearly the oneto report. It impliesthat you cannot reject the null hypothesis
that F; = F,.

Median Test

The two-sample version of the median test isidentical in every respect to the k-sample
version discussed in Chapter 8. Please refer to the discussion of the median test in Chap-
ter 8 and substitute K = 2 if there are only two samples.



K-Sample Inference:
Related Samples

This chapter discusses tests based on K related samples, each of size N. It isa general-
ization of the paired-sample problem described in Chapter 5. The data consist of N in-
dependent K x 1 vectorsor blocks of observationsin which there is dependence among
the K components of each block. The dependence can arise in various ways. Here are
afew examples:

» ThereareK repeated measurements on each of N subjects, possibly at different time
points, once after each of K treatments has been applied to the subject.

» There are K subjects within each of N independent matched sets of data, where the
matching is based on demographic, social, medical or other factors that are a priori
known to influence response and are not, therefore, under investigation.

» ThereareK distinct judges, all evaluating the same set of N applicants and assigning
ordinal scores to them.

Many other possibilities exist for generating K related samples of data. In al of these
settings, the objective is to determine if the K populations from which the data arose
are the same. Tests of this hypothesis are often referred to as blocked comparisonsto
emphasize that the data consist of N independent blockswith K dependent observations
within each block. SPSS Exact Tests provides three tests for this problem: Friedman’s,
Cochran's Q, and Kendall’s W, also known as Kendall’s coefficient of concordance.

Available Tests

Table 7.1 shows the available tests for related samples, the procedure from which they
can be obtained, and a bibliographical reference for each test.

95
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Table 7.1  Available tests

Test Procedure

Friedman’s test Nonparametric Tests:
Tests for Several Related Samples

Kendall's W test Nonparametric Tests:
Tests for Several Related Samples

Cochran'sQtest ~ Nonparametric Tests:
Tests for Several Related Samples

When to Use Each Test

Friedman’s test. Usethistest to compare K related samples of data. Each observation con-
sists of a 1 x K vector of correlated values, and there are N such observations, thus

forming an N x K two-way layout.

Kendall's W test. This test is completely equivalent to Friedman’s test. The only advan-
tage of thistest over Friedman’sisthat Kendall’s W has an interpretation as the coeffi-
cient of concordance, a popular measure of association. (See also Chapter 14).

Cochran’s Q test. Thistest isidentical to Friedman’stest but is applicable only to the spe-

cial case where the responses are all binary.

Statistical Methods

The observed datafor al of the testsin this chapter are represented in the form of atwo-

way layout, shown in Table 7.2.

Table 7.2 Two-way layout for K related samples

Block Treatments
Id 1 2 .. K
1 Uy  Up o Uk
2 Upp Uy .o Uz

Reference
Lehmann (1975)

Conover (1975)

Lehmann (1975)
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Thislayout consistsof N independent blocks of datawith K correlated observationswithin
each block. The data are usually continuous (possibly with ties). However, for the
Cochran’s Q test, the dataare binary. Varioustest statistics can be defined on thistwo-way
layout. Usually, however, these test statistics are defined on ranked data rather than on the
original raw data. Accordingly, first replacethe K observations, (u;;, U;,, ... U;c) inblock
i with corresponding ranks, (riy, ', -..Tik) - If therewere notiesamong these u;;s , you
would assign the first K integers (1, 2, ...K) , not necessarily in order, as the ranks of
these K observations. If there are ties, you would assign the average rank or mid-rank to
the tied observations. Specifically, suppose that the K observations of the first block take
on e, distinct values, with d,; of the observations being equal to the smallest value, d,,
to the next smallest, d,; to the third smallest, and so on. Similarly, the K observationsin
the second block teke on e, distinct values, with d,; of the observations being equal to
the smallest value, d,, to the next smallest, d,; to the third smallest, and so on. Finally,
the K observationsin the Nth block take on ey, distinct values, with dy, of the observa-
tions being equal to the smallest value, dy, tothenext smallest, dy; tothethird smallest,
and so on. It isnow possible to define the mid-ranks precisdly. Fori = 1,2, ...N, the g,
distinct mid-ranksin theith block, sorted in ascending order, are

by = (di; +1)/2

r =d,+(d,+1)/2
ap i1+ (dip+1) Equation 7.1

r g = dpy+dy + .+ (d; o +1)/2

1, el
You can now replace the original observations, (U, Uy, ... Uix) , in theith block with
corresponding mid-ranks, (r;;, ri...r) , where each r;; is the appropriate selection
from the set of distinct mid-ranks (rlj; <rlj, <... <rl ). The modified two-way
layout is shown in Table 7.3.

Table 7.3 Two-way layout for mid-ranks for K related samples

Block Treatments
Id 1 2 ... K
1 frqg T2 oo Tk
2 Fog Top oo Tog
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Asan example, suppose that K = 5, there are two blocks, and the two-way layout of the
raw data (the uj;; 's) isas shown in Table 7.4.

Table 7.4 Two-way layout with two blocks of raw data

Block Treatments
1D 1 2 3 4 5

1 13 11 11 16 11
2 19 17 19 19 17

For thefirst block, e; = 3, withd;; = 3, d;, = 1, dj3 = 1. Using Equation 7.1, you
can obtain mid-ranks r; = 2, r0, = 4, and rb; = 5. For the second block,
e, = 2, with dy = 2, dy, = 3. Thus, you obtain mid-ranks rbh; = 1.5 and
rlb; = 4. You can now use these mid-ranks to replace the original u;; valueswith cor-
responding r;; values. The modified two-way layout, in which raw data have been re-
placed by mid-ranks, is displayed as Table 7.5.

Table 7.5  Sample two-way layout with raw data replaced by mid-ranks

Block Treatments
1D 1 2 3 4 5

All of the tests discussed in this chapter are based on test statistics that are functions of
the two-way layout of mid-ranksdisplayed in Table 7.3. Before specifying these test sta-
tigtics, define the rank-sum for any treatment j as

r = z rij Equation 7.2

the average rank-sum for treatment j as

r.
— 1 :
r_j =N Equation 7.3
and the average rank-sum across all treatments as
K
z j= 1r'j K+1 .
r= = Equation 7.4
" K 2
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Thetest statisti%for Friedman's, Kendall’'s W, and Cochran’'s Q tests, respectively, are
al functionsof ry;, rj,and r_. Thefunctional form for each test differs, and is defined
later in this chapter in the specmc section that deals with the test. However, regardless
of itsfunctional form, the exact probability distribution of each test statistic is obtained
by the same permutation argument. This argument and the corresponding definitions of
the one- and two-sided p values are given below.

Let T denote the test statistic for any of the tests in this chapter, and test the null
hypothesis

Hy: Thereisno differencein the K treatments Equation 7.5

If Hy istrue, the K mid-ranks, (r;;, ri5, ...Tix), belonging to block i could have been
obtained in any order. That is, any treatment could have produced any mid-rank, and
there are K! equally likely ways to assign the K mid-ranks to the K treatments If you
apply the same permutation argument to each of the N blocks, there are (K! ) equally
likely ways to permute the observed mid-ranks such that the permutations are only car-
ried out within each block but never acrossthe different blocks. That is, thereare (K! )
equally likely permutations of the original two-way layout of mid-ranks, where onIy in-
tra-block permutations are allowed. Each of these permutationsthushasa (K! ) prob-
ability of being realized and leads to a specific value of the test statistic. The exact
probability distribution of T can be evaluated by enumerating all of the permutations of
the origina two-way layout of mid-ranks. If t denotes the observed value of T in the
original two-way layout, then

Pr(T=1) = 5 (K™ Equation 7.6
T=t

the sum being taken over all possible permutations of the origina two-way layout of

mid-ranks which are such that T = t. The probability distribution (see Equation 7.6) and

its tail areas are obtained in SPSS Exact Tests by fast numerical algorithms. The exact
two-sided p value is defined as

p, = Pr(T=t) = z (K!)_N Equation 7.7
T>t

When Equation 7.7 is too difficult to obtain by exact methods, it can be estimated by
Monte Carlo sampling, as shown in the following steps:

1. Generate a new two-way layout of mid-ranks by permuting each of the N blocks of
the original two-way layout of mid-ranks (see Table 7.3) in one of K! equally likely

ways.
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2. Compute the value of the test statistic T for the new two-way layout. Define the ran-
dom variable

7 = OLif Tt

0 Equation 7.8
0 otherwise

3. Repeat steps 1 and 2 atotal of M times to generate the realizations (zy, z,, ... zy) for
the random variable Z. Then an unbiased estimate of p, is

M
_ 21=1°
M

|52 Equation 7.9
Next, let
M 1/2
~ 1 ~ 2 .
oO=|—— zZ - Equation 7.10
M_1 Z (7 pz) q

=1
be the sample standard deviation of the z 's. Then a 99% confidence interval for the ex-
act pvaueis:

Cl = p,+ 25760/ JM Equation 7.11

A technical difficulty arises when either p, = 0 or p, = 1. Now the sample standard
deviation is 0, but the data do not support a confidence interval of zero width. An alter-
native way to compute a confidence interval that does not depend on ¢ is based on in-
verting an exact binomial hypothesis test when an extreme outcome is encountered. It
can be easily shown that if p, = 0, an a % confidence interval for the exact p value is

Cl = [0,1-(1-0a/100)1/M] Equation 7.12
Similarly, when E’z = 1, an a % confidence interval for the exact p valueis

Cl = [(1-0a/100)¥/M 1] Equation 7.13
SPSS Exact Tests uses default values of M = 10000 and o = 99%. While these defaults

can be easily changed, they provide quick and accurate estimates of exact p valuesfor a
wide range of data sets.
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The asymptotic p value is obtained by noting that the large-sample distribution of T is
chi-square with K — 1 degrees of freedom. Thus, the asymptotic two-sided p valueis

52 = X2K 1=t Equation 7.14

One-sided p values are inappropriate for the tests in this chapter, since they all assume
that thereisno apriori natural ordering of the K treatments under the alternative hypoth-
esis. Thus, large observed values of T are indicative of a departure from H, but not of
the direction of the departure.

Friedman’s Test

The methods discussed in this and succeeding sections of this chapter apply to both the
randomization and population models for generating the data. If you assume that the as-
signment of the treatments to the K subjects within each block is random (the random-
ized block design), you need make no further assumptions concerning any particular
population mode! for generating the u;;’s. This is the approach taken by Lehmann
(1975). However, sometimes it is useful to specify a population model, since it allows
you to define the null and alternative hypotheses precisely. Accordingly, following Hol-
lander and Wolfe (1973), you can take the model generating the original two-way layout
(see Table 7.2) to be

Uij = “+Bi+Tj+€ij Equation 7.15
fori =1,2,...N,andj = 1, 2,...K, where p isthe overall mean, 3; istheblock ef-
fect, 1, isthe treatment effect, and the ¢;; 's are identically distributed unobservable er-
ror terms from an unknown distribution, with a mean of 0. All of these parameters are
unknown, but for identifiability you can assume that

Note that Uij is arandom variable, whereas u;; is the specific value assumed by it in
the data set under consideration. The null hypothesis that there is no treatment effect
may be formally stated as

Ho: T4 = 1, = ... = T Equation 7.16
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Friedman’s test has good power against the alternative hypothesis

Hy: leiszforaIIeast one(j4,J,) pair Equation 7.17

Notice that this alternative hypothesisis an omnibus one. It does not specify any order-
ing of the treatments in terms of increases in response levels. The alternative to the null
hypothesis is simply that the treatments are different, not that one specific treatment is
more effective than another.

Friedman’s test uses the following test statistic, defined on the two-way layout of
mid-ranks shown in Table 7.3.

K
12 r.—Nr )2
_ 3, 540 |
Te = Equation 7.18

R

The exact, Monte Carlo and asymptotic two-sided p values based on this statistic are ob-
tained by Equation 7.7, Equation 7.9, and Equation 7.14, respectively.

Example: Effect of Hypnosis on Skin Potential

This example is based on an actual study (Lehmann, 1975). However, the original data
have been altered to illustrate the importance of exact inference for data characterized
by a small number of blocks but a large block size. In this study, hypnosis was used to
éicit (in arandom order) the emotions of fear, happiness, depression, calmness, and ag-
itation from each of three subjects. Figure 7.1 shows these data displayed in the Data
Editor. Subject identifies the subject, and fear, happy, depress, calmness, and agitate
give the subjects's skin measurements (adjusted for initial level) in millivolts for each
of the emotions studied.

Figure 7.1  Effect of hypnosis on skin potential

subject fear happy depress calmness agitate
1 23 58 1 24 34
2 23 52 10 20 40

3 23 54 22 21 22
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Do thefivetypes of hypnotic treatmentsresult in different skin measurements? The data
seem to suggest that this is the case, but there were only three subjects in the sample.
Friedman’s test can be used to test this hypothesis accurately. The results are displayed
in Figure 7.2.

Figure 7.2 Friedman’s test results for hypnosis data

Ranks

Mean

Rank
FEAR 3.00
Happiness 5.00
Depression 1.50
Calmness 2.00
Agitation 3.50

Test Statistics!

N 3
Chi-Square 9.153
df 4
Asymp. Sig. .057
Exact Sig. .027
g(r)(;rk;tability 003

1. Friedman Test

The exact two-sided p value is 0.027 and suggests that the five types of hypnosisare sig-
nificantly different in their effects on skin potential. The asymptotic two-sided p value,
0.057, is double the exact two-sided p value and does not show statistical significance at
the 5% level.

Because this data set is small, the exact computations can be executed quickly. For a
larger data set, the Monte Carlo estimate of the exact p value is useful. Figure 7.3 dis-
plays the results of a Monte Carlo analysis on the same data set, based on generating
10,000 permutations of the original two-way layout.
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Figure 7.3  Monte Carlo results for hypnosis data

Ranks
Mean
Rank
FEAR 3.00
Happiness 5.00
Depression 1.50
Calmness 2.00
Agitation 3.50
Test Statistics®
Monte Carlo Sig.
99% Confidence
Interval
Asymp. Lower Upper
N Chi-Square df Sig. Sig. Bound Bound
3 9.153 4 .057 .027 .023 .032

1. Friedman Test

Notice that the Monte Carlo point estimate of 0.027 is much closer to the true p value
than the asymptotic p value. In addition, the Monte Carlo technique guarantees with
99% confidence that the true p value is contained within the range (0.023, 0.032). This
confirmsthe results of the exact inference, that the differencesin the five modes of hyp-
nosis are statistically significant. The asymptotic analysisfailed to demonstrate thisresullt.

Kendall’'s W

Kendall’s W, or coefficient of concordance, was actually developed as a measure of as-
sociation, with the N blocks representing N independent judges, each one assigning
ranks to the same set of K applicants (Kendall and Babington-Smith, 1939). Kendall’s
W measures the extent to which the N judges agree on their rankings of the K applicants.



K-Sample Inference: Related Samples 105

Kendall’s W bears a close relationship to Friedman’s test; Kendall’s Wisin fact a
scaled version of Friedman'stest statistic:

Te

W= —— Equation 7.19
N(K-1)

The exact permutation distribution of Wisidentical to that of T, and tests based on ei-
ther Wor T produceidentical p values. Thescaling ensuresthat W = 1 if thereis per-
fect agreement among the N judges in terms of how they rank the K applicants. On the
other hand, if there is perfect disagreement among the N judges, W = 0. The fact that
the judges don’t agree implies that they don’t rank the K applicants in the same order.
So each applicant will fare well at the hands of some judges and poorly at the hands of
others. Under perfect disagreement, each applicant will fare the same overall and will
thereby produce an identical value for R;. This common value of R; will be R , and
asaconsequence, W = 0.

Example: Attendance at an Annual Meeting

Thisexampleistaken from Siegel and Castellan (1988). The Society for Cross-Cultural
Research (SCCR), decided to conduct a survey of its membership on factorsinfluencing
attendance at its annual meeting. A sample of the membership was asked to rank eight
factors that might influence attendance. The factors, or variables, were airfare, climate,
season, people, program, publicity, present, and interest. Figure 7.4 displays the data
in the Data Editor and shows how three members (raters 4, 21, and 11) ranked the eight
variables.

Figure 7.4  Rating of factors affecting decision to attend meeting

id airfare climate season people pragram publicty present interest
4 5 b 7 1 2 4 3 8
21 1 7 6 2 3 5 4 8
1 4 5 1 3 2 7 6 8

To test the null hypothesisthat Kendall’s coefficient of concordanceis0, out of the eight
possible ranks, each rater (judge) assigns a random rank to each factor (applicant). The
results are shown in Figure 7.5.
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Figure 7.5  Results of Kendall's W for data on factors affecting decision to attend meeting

Ranks
Mean
Rank
AIRFARE 3.33
CLIMATE 6.00
SEASON 4.67
PEOPLE 2.00
PROGRAM 2.33
PUBLICTY 5.33
PRESENT 4.33
INTEREST 8.00
Test Statistics?®
Monte Carlo Sig.
99% Confidence
Interval
Kendall's Asymp. Lower Upper
N wt Chi-Square df Sig. Sig. Bound Bound
3 .656 13.778 7 .055 .0222 .018 .026

1. Kendall’s Coefficient of Concordance
2. Based on 10000 sampled tables with starting seed 2000000.

The point estimate of the coefficient of concordanceis0.656. The asymptotic p value of
0.055 suggests that you cannot reject the null hypothesis that the coefficient is 0. How-
ever, because of the small sample size (only 3 raters), this conclusion should be verified
with an exact test, or you can rely on a Monte Carlo estimate of the exact p value, based
on 10,000 random permutations of the original two-way layout of mid-ranks. The Monte
Carlo estimate is 0.022, less than half of the asymptotic p value, and is strongly sugges-
tive that the coefficient of concordanceis not 0. The 99% confidence interval for the ex-
act pvalueis(0.022, 0.026). It confirmsthat you can reject the null hypothesisthat there
iS no association at the 5% significance level, since you are 99% assured that the exact
p valueis no larger than 0.026.

Equation 7.19 implies that Friedman’s test and Kendall’s W test will yield identical
p values. This can be verified by running Friedman’s test on the data shown in Figure
7.4. Figure 7.6 shows the asymptotic and Monte Carlo p values for Friedman’s test and
demonstrates that they are the same as those obtained with Kendall’ s W test. The Monte
Carlo equivalence was achieved by using the same starting seed and the same number
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of Monte Carlo samplesfor both tests. If adifferent starting seed had been used, the two
Monte Carlo estimates of the exact p value would have been dlightly different.

Figure 7.6  Friedman’s test results for data on factors affecting decision to attend meeting

Test Statistics’

Monte Carlo Sig.

99% Confidence
Interval

Asymp. Lower Upper
N Chi-Square df Sig. Sig. Bound Bound
3 13.778 7 .055 .022 .018 .026

1. Friedman Test

Example: Relationship of Kendall’s W to Spearman’s R

In Chapter 14, a different measure of association known as Spearman’s rank-order cor-
relation coefficient is discussed. That measure is applicable only if there are N = 2
judges, each ranking K applicants. Could this measure be extended if N exceeded 2? One
approach might be to form N!/(2!(N—2)!) distinct pairs of judges. Then each pair
would yield avalue for Spearman’srank-order correlation coefficient. Let ave(Rg) de-
note the average of all these Spearman correlation coefficients. If thereareno tiesin the
data you can show (Conover, 1980) that

NW-1

ave(Rg) = N1

Equation 7.20

Thus, the average Spearman rank-order correlation coefficient islinearly related to Ken-
dall’s coefficient of concordance, and you have a natural way of extending the concept
correlation from a measure of association between two judges to one between several
judges.

This can beillustrated with the datain Figure 7.4. As aready observed, Kendall’s W
for these datais 0.656. Using the procedure discussed in “ Spearman’ s Rank-Order Cor-
relation Coefficient” on p. 174 in Chapter 14, you can compute Spearman’s correlation
coefficient for all possible pairs of raters. The Spearman correlation coefficient between
rater 4 and rater 21is0.7381. Between rater 4 and rater 11, it is0.2857. Finally, between
rater 21 and rater 11, it is 0.4286. Therefore, the average of the three Spearman correla-
tion coefficientsis (0.7381 + 0.2857 + 0.4286) /3 = 0.4841. Substituting N = 3 and
W = 0.6561 into Equation 7.20, you also get 0.4841.
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Cochran’s Q Test

Suppose that the u;; valuesin the two-way layout shown in Table 7.2 were all binary,
with a 1 denoting success and a 0 denoting failure. A popular mathematical model for
generating such binary data in the context of the two-way layout is the logistic regres-
sion model

T
log—— = p+ Bi+T Equation 7.21
l-m

where, foral i = 1,2,..N,and j = 1,2,...K, 1; = Pr(U;; = 1), p is the back-
ground |og-odds of response, 3; isthe block effect, and 1; isthe treatment effect. All of
these parameters are unknown, but for identifiability you can assume that

N

ARPARL
i1

i=1

Friedman’s test applied to such data is known as Cochran’s Q test. As before, the null
hypothesis that there is no treatment effect can be formally stated as

Ho: (T =1,= ... = 1)) Equation 7.22
Cochran’s Q test is used to test H, against unordered alternatives of the form
Hy: le;tszforatleasI one (jy, j,) pair Equation 7.23

Like Friedman'stest, Cochran’s Q is an omnibustest. The alternative hypothesisissim-
ply that the treatments are different, not that one specific treatment is more effective than
another. You can use the same test statistic as for Friedman's test. Because of the binary
observations, the test statistic reduces to

KK-DY :K (B-B)°

N N
KzLi—ZLiz

=1 i=1

Q

Equation 7.24

where B; isthe total number of successesin the jth treatment, L; isthe total number of
successes in theith block, and B denotes the average (B; + B, + ... + B¢)/K. Theas-
ymptotic distribution of Q ischi-square with (K — 1) degrees of freedom. The exact and
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Monte Carlo results are calculated using the same permutational arguments used for
Friedman’stest. The exact, Monte Carlo and asymptotic two-sided p values are thus ob-
tained by Equation 7.7, Equation 7.9, and Equation 7.14, respectively.

Example: Crossover Clinical Trial of Analgesic Efficacy

This data set is taken from a three-treatment, three-period crossover clinical trial pub-
lished by Snapinn and Small (1986). Twelve subjects each received, in random order,
threetreatmentsfor pain relief; aplacebo, an aspirin, and an experimental drug. The out-
come of treatment j on subject i is denoted as either a success (u;; = 1) or afailure
(u;; = 0). Figure 7.7 shows the data displayed in the Data Editor.

Figure 7.7 Crossover clinical trial of analgesic efficacy
id placebo aspirin drug
1 Failure Success Success
2 Failure Success Success
3 Success Failure Success
4 Failure Failure Failure
5 Failure Failure Success
6 Failure Success Success
7 Success Failure Success
g Failure Failure Success
9 Failure Failure Failure
10 Failure Failure Success
11 Failure Success Failure
12 Failure Failure Success
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The Cochran’s Q test can be used to determine if the response rates for the three treat-
ments differ. The results are displayed in Figure 7.8.

Figure 7.8 Cochran’s Q results for study of analgesic efficacy

Frequencies

Value
0 1
Placebo 10
Aspirin
New Drug
Test Statistics?
Cochran’s Asymp. Point
N Q df Sig. Exact Sig. | Probability
12 7.800% 2 .020 .026 .019

1. 0is treated as a success.

The exact p value is 0.026 and indicates that the three treatments are indeed significantly
different at the 5% level. The asymptotic p value, 0.020, confirms this result. In this data
set, therewasvery little difference between the exact and the asymptotic inference. How-
ever, the dataset isfairly small, and adlightly different data configuration could havere-
sulted in an important difference between the exact and asymptotic p values. Toillustrate
this point, ignore the data provided by the 12th subject. Running Cochran’s Q test once
more, this time on only the first 11 subjects, yields the results shown in Figure 7.9.

Figure 7.9  Cochran’s Q results for reduced analgesic efficacy data

Frequencies

Value
0 1
Placebo
Aspirin
New Drug
Test Statistics?®
Cochran’s Asymp. Point
N Q df Sig. Exact Sig. | Probability
11 6.2221 2 .045 .059 .024

1. 0is treated as a success.
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This time, the exact p value, 0.059, is not significant at the 5% level, but the asymp-
totic approximation, 0.045, is. Although not strictly necessary for this small data set,
you can also run the Monte Carlo test on the first 11 subjects. The results are shown
in Figure 7.10.

Figure 7.10 Monte Carlo results for reduced analgesic efficacy data

Test Statistics

Monte Carlo Sig.

99% Confidence
Interval

Cochran’s Asymp. Lower Upper
N Q df Sig. Sig. Bound Bound
11 6.2221 2 .045 .0562 .050 .061

1. 0is treated as a success.
2. Based on 10000 sampled tables with starting seed 2000000.

The Monte Carlo estimate of the exact p value was obtained by taking 10,000 random
permutations of the observed two-way layout. As Figure 7.10 shows, the results
matched those obtained from the exact test. The Monte Carlo sampling demonstrated
that the exact p value lies in the interval (0.050, 0.061) with 99% confidence. Thisis
compatible with the exact results, which also showed that the exact p value exceeds
0.05. The asymptotic result, on the other hand, erroneously claimed that the p valueis
less than 0.05 and is therefore statistically significant at the 5% level.






K-Sample Inference:
Independent Samples

This chapter deal swith tests based on K independent samples of datadrawn fromK dis-
tinct populations. The objective isto test the null hypothesis that the K populations all
have the same response distributions against the alternative that the response distribu-
tions are different. The data could also arise from randomized clinical trials in which
each subject is assigned, according to a prespecified randomization rule, to one of K
treatments. Hereit is not necessary to make any assumptions about the underlying pop-
ulations from which these subjects were drawn, and the goal is simply to test that the K
treatments are the same in terms of the responses they produce. Lehmann (1975) has
demonstrated clearly that the same statistical methods are applicable whether the data
arose from a population model or arandomization model. Thus, no distinction will be
made between the two ways of gathering the data.

This chapter generalizesthe tests for two independent samples, discussed in Chapter 6,
totestsfor K independent samples. There aretwo important distinctions between the struc-
ture of the dataiin this chapter and in Chapter 7 (the chapter on K related samples). In this
chapter, the data are independent both within a sample and across samples; in Chapter 7,
thedataare correlated acrossthe K samples. Also, in this chapter, the sample sizes can dif-
fer acrossthe K samples, with n. being the size of thejth sample; in Chapter 7, the sample
size, N, isrequired to be the same for each of the K samples.

Available Tests

Table 8.1 showstheavailabletestsfor several independent samples, the procedure from
which they can be obtained, and a bibliographical reference for each test.

113
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Table 8.1 Available tests

Tests Commands References

Median test Nonparametric Tests: Tests for Several Inde-Gibbons (1985
pendent Samples

Kruskal-Wallis Test Nonparametric Tests: Tests for Several Inde-Siegel & Castellan
pendent Samples (1988)

Jonckheere-Terpstra ~ Nonparametric Tests: Tests for Several Inde-Hollander & Wolfe

Test pendent Samples (1973)

The Kruskal-Wallis and the Jonckheere-Terpstra tests are al so discussed in the chapters
on crosstabulated data. The Kruskal-Wallis test also appears in Chapter 11, which dis-
cusses singly-ordered r x ¢ contingency tables. The Jonckheere-Terpstra test also ap-
pears in Chapter 12, which deals with doubly-ordered r x ¢ contingency tables. These
tests are applicable both to data arising from nonparametric continuous univariate-re-
sponse models (discussed in this chapter) and to data arising from categorical -response
models such as the multinomial, Poisson, or hypergeometric models (discussed in later
chapters). Thetestsin the two settings are completely equivalent, although the formulas
for the test statistics might differ slightly to reflect the different mathematical models
giving rise to the data.

When to Use Each Test

The tests discussed in this chapter are of two broad types. those appropriate for use
against unordered alternatives and those for use against ordered alternatives. Following
adiscussion of thesetwo types of tests, each individual test will be presented, along with
the null and alternative hypotheses.

Tests Against Unordered Alternatives

Use the median test or the Kruskal-Wallis test if the alternatives to the null hypothesis
of equality of the K populations are unordered. Theterm unor der ed alter natives means
that there can be no a priori ordering of the K populations from which the samples were
drawn, under the alternative hypothesis. As an example, the K populations might repre-
sent K distinct cities in the United States. Independent samples of individuals are taken
from each city and some measurabl e characteristic, say annual income, is selected asthe
response. Thereisno apriori reason why the cities should be arranged in increasing or-
der of the income distributions of their residents, under the aternative hypothesis. All
you can reasonably say isthat the income distributions are unequal.

For tests against unordered alternatives, the only conclusion you can draw when the
null hypothesisisrejected isthat the K populations do not al have the same probability
distribution. Therefore, a one-sided p value cannot be defined for testing a specific di-
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rection in which the K populations might be ordered under the alternative hypothesis.
Such tests are said to be inherently two-sided.

Median test. The median test is useful when you have no idea whatsoever about the al-
ternative hypothesis. It is an omnibus test for the equality of K distributions, where the
alternative hypothesis is simply that the distributions are unequal, without any further
specification as to whether they differ in shape, in location, or both. It uses only infor-
mation about the magnitude of each of the observations relative to a single number, the
median for the entire data set. Therefore, it is not as powerful as the other tests consid-
ered here, most of which use more of the available information by considering the rela-
tive magnitude of each observation when compared with every other observation. On
the other hand, it isthe most general of the available tests, making no assumptions about
the alternative hypothesis.

Kruskal-Wallis test. Thisis one of the most popular nonparametric tests for comparing K
independent samples. It isthe nonparametric analog of one-way ANOVA. In pvaluecal-
culations, mid-ranks are substituted for the raw data and exact permutational distribu-
tions are substituted for F distributions derived from normality assumptions. It has good
power against location-shift alter natives, where the distributions from which the sam-
ples were drawn have the same general shape but their means are shifted with respect to
each other. It is about 98% as efficient as one-way ANOVA for comparing K samples
when the underlying popul ations are normal and have a common variance.

Tests Against Ordered Alternatives

Usethe Jonckheere-Terpstratest if the aternativesto the null hypothesis of equality of the
K populations are ordered. The term or der ed alter natives meansthat thereisanatural a
priori ordering of the K populations from which the samples were drawn, under the alter-
native hypothesis. For example, the K populations might represent K progressively in-
creasing doses of some drug. Here the null hypothesisis that the different dose levels all
produce the same response distributions; the alternative hypothesisis that thereis a dose-
response relationship in which increasesin drug dose lead to increases in the magnitude of
theresponse. Inthissetting, thereisindeed an apriori natural ordering of the K populations
in terms of increased dose levels of the drug. One of the implications of natural ordering
under the alternative hypothesisisthat the ordering could be either ascending or descend-
ing. For the dose-response example, you could define a one-sided p value for testing the
null hypothesis against the aternative that an increase in drug dose increases the probabil -
ity of response. But you could also define a one-sided p value against the aternative that
it leads to a decrease in the probability of response. A two-sided p value could be defined
to test the null hypothesis against either alternative. Thus, for tests against ordered alterna
tives, both one- and two-sided p values are relevant.
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Statistical Methods

The data for al the tests in this chapter consist of K independent samples each of size
n,j= 1,2,...K, where n; + n, + ...ng = N. These N observations can be represented
in the form of the one-way layout shown in Table 8.2.

Table 8.2 One-way layout for K independent samples

Samples
1 2 K
Uy Up Uk
Uy  Uxp Uzk
un22
Uy Up K

Thistable, denoted by u, shows the observed one-way layout of raw data. The observa-
tionsin this one-way layout are independent both within and across columns. The data
arise from continuous univariate distributions (possibly with ties). Let

Fi(v)= Pr(Vsv)j),j = 12,..K Equation 8.1

denote the distribution from which the n; observations displayed in column j of the one-
way layout were drawn. The goal isto test the null hypothesis

Hot Fi= Fo= ...= Fy¢ Equation 8.2

In order to test H, by nonparametric methods, it is necessary to replace the original ob-
servations in the above one-way layout with corresponding scores. These scores repre-
sent various ways of ranking the data in the pooled sample of size N. Different tests
utilize different scores, asyou will seein theindividual sectionson eachtest. Let w;; be
the score corresponding to u;; . Then the one-way layout, with the original datareplaced
by scores, is shown in Table 8.3.
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Table 8.3  One-way layout with scores replacing original data

Samples
1 2 K
Wll W12 e WlK
W21 W22 e 22K
Whn,2
Wnll WnKK

Thistable, denoted by w, shows the observed one-way layout of scores. |nference about
H, is based on comparing this observed one-way layout to others like it, in which the
individual w;; elements are the same but occupy different rows and columns. To devel-
op thisideamore precisely, let the set W denote the collection of al possible K-column
one-way layouts, with n; elementsin column j, the members of which includew and all
its permutations. The random variable W is a permutation of w if it contains precisely
the same scores as w but with the scores rearranged so that, for at least one (i,j),(i’',j")
pair, the scores w;; and w,, . are interchanged. Formally, let

W = {w:w = w, or w isapermutation of w} Equation 8.3

In Equation 8.3, you could think of w as a random variable, and w as a specific value
assumed by it.

To clarify these concepts, consider asimple numerical examplein which the origina
data come from three independent samples of size 5, 3, and 3, respectively. These data
are displayed in a one-way layout, u, shown in Table 8.4.

Table 8.4 Example of a one-way layout of original data

Samples
1 2 3
27 38 75
30 9 76
55 27 90

72
18
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Asdiscussed in “Kruskal-Wallis Test” on p. 127, to run the Kruskal-Wallis test on these
data, you must replace them with their ranks. The one-way layout of observed scores,
with the original datareplaced by their ranks, is shown in Table 8.5.

Table 85 One-way layout with ranks replacing original data

Samples
1 2 3
35 6 9
1 10
35 11

N 00 N O

Thisone-way layout of ranksis denoted by w. It isthe one actually observed. Noticethat
two observation were tied at 27 in u. Had they been separated by a small amount, they
would have ranked 3 and 4. But since they aretied, usethemid-rank, (3+4)/2 = 3.5,
as the rank for each of them in w. The symbol W represents the set of all possible one-
way layouts in which entries are the 11 numbers in w, with 5 numbersin column 1, 3
numbersin column 2, and 3 humbers in column 3. Thus, w is one member of W. (It is
the one actually observed.) Another member is W', where w' is a different permutation
of the numbersin w, as shown in Table 8.6.

Table 8.6 Permutation of the observed one-way layout of scores

Sample
2 3
5 9
1 8 10
35 7 11
35
2

All of the test statistics in this chapter are univariate functions of w 0 W. Let the test
statistic be denoted by T(w) =T, and its observed value be denoted by t(w) =t. The
functional form of T(W) will be defined separately for each test in subsequent sections
of this chapter. Following is adiscussion of the null distribution of T—how it can be de-
rived in general, and how it is used for p value computations.
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Distribution of T

In order to test the null hypothesis, H,, you need to derive the distribution of T under
the assumption that Hg, istrue. Thisdistribution is obtained by the following permuta-
tional argument:

If Hy istrue, every member w 0 W has the same probability of being observed.

Lehmann (1975) has shown that the above permutational argument is valid whether the
data were gathered independently from K populations or were obtained by assigning N
subjectsto K treatmentsin accordance with a predetermined randomization rule. There-
fore, no distinction will be made between these two ways of gathering the data.

It follows from the above permutational argument that the exact probability of ob-
servingany w O W is

K
h(w) = —————= Equation 8.4
NI
which does not depend on the specific way in which the original one-way layout, w, was
permuted. Then
Pr(T=t) = z h(W) Equation 8.5
T(W) =t

the sum being taken over all w0 W. Similarly, the right tail of the distribution of T is
obtained as

Pr(T=t) = z h(w) Equation 8.6
T(W) >t

The probability distribution of T and its tail areas are obtained in SPSS Exact Tests by

numerical algorithms. Inlarge samples, you can obtain an asymptotic approximation for

Equation 8.6. Different approximations apply to the varioustests described in this chap-
ter and are discussed in the sections specific to each test.

P Value Calculations

The p valueisthe probability, under H,, of obtaining avalue of thetest stetistic at least as
extreme as the one actually observed. The exact, Monte Carlo, and asymptotic p values
can be computed for tests on K independent samples asfollows.
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Exact P Values

For all tests against unordered alternatives, the more extreme values of T are those that
are larger than the observed t. The exact two-sided p valueis then defined as

p, = Pr(T=t)= Z h(w) Equation 8.7

T=>t

Since there is no a priori natural ordering of the K treatments under the alternative hy-
pothesis, large observed values of T are indicative of adeparture from H, but not of the
direction of the departure. Therefore, it is not possible to define a one-sided p value for
tests against unordered alternatives.

For tests against ordered alternatives, such as the Jonckheere-Terpstra test, the test
statistic T is considered extreme if it is either very large or very small. Large values of
T indicate adeparture from the null hypothesisin one direction, while small valuesof T
indicate adeparture from the null hypothesisin the opposite direction. Whenever the test
statistic possesses a directional property of this type, it is possible to define both one-
and two-sided p values. The exact one-sided p value is defined as

p; = min{Pr(T=t), Pr(T<t)} Equation 8.8

and the exact two-sided p value is defined as

p, = Pr(IT-E(T)[< [t—E(T)]) Equation 8.9

where E(T) isthe expected value of T.

Monte Carlo P Values

When exact p values are too difficult to compute, you can estimate them by Monte Carlo
sampling. Below, Monte Carlo sampling is used to estimate the exact p value given by
Equation 8.7. The same procedure can be readily adapted to Equation 8.8 and Equation 8.9.

1. Generate anew one-way layout of scores by permuting the original layout, w, in one
of the NI/ (n;!n,!...n.!) equally likely ways.

2. Compute the value of the test statistic T for the permuted one-way layout.

3. Define the random variable

D .
7 = LifT=t

] Equation 8.10
0 otherwise
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Repeat the above steps atotal of M times to generate the redlizations (z,,z,....zy) for
the random variable Z. Then an unbiased estimate of p, is

M
YL
p, = —— Equation 8.11
M
Next, let
) M , 1/2
g=|— zZ - Equation 8.12

=1
be the sample standard deviation of the z's. Then a99% confidence interval for the ex-
act pvaueis:

Cl = f)z + 2.5766/JI\—/I Equation 8.13

A technical difficulty arises when either p, = 0 or p, = 1 Now the sample standard
deviation is 0, but the data do not support a confidence interval of zero width. An alter-
native way to compute a confidence interval that does not depend onais based on in-
verting an exact binomial hypothesis test when an extreme outcome is encountered. It
can be shown that if |52 = 0, an a% confidenceinterval for the exact p valueis

Cl = [0,1—(1-a/100)"M Equation 8.14

Similarly when ;52 = 1, an a% confidence interval for the exact pvalueis

Cl = [(1-a/100)YM 1] Equation 8.15

SPSS Exact Tests uses default valuesof M = 10000 and o = 99%. While these de-
faults can be easily changed, we have found that they provide quick and accurate esti-
mates of exact p values for awide range of data sets.

Asymptotic P Values

For tests against unordered alternatives the asymptotic two-sided p valueis obtained by
noting that the large-sample distribution of T is chi-square with K —1 degrees of free-
dom. The asymptotic p valueisthus

|32 = pr(sz —12t) Equation 8.16
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Asnoted earlier, one-sided p valuesare not defined for tests against unordered alternatives.

For tests against ordered alternatives, in particular for the Jonckheere-Terpstra test,
the asymptotic distribution of T isnormal. The one- and two-sided p values are now de-
fined by computing the normal approximations to Equation 8.8 and Equation 8.9, re-
spectively. Thus, the asymptotic one-sided exact p value is defined as

p, = min{®(t-E(T)/ 07,1 - ®(t-E(T)/ 03} Equation 8.17
and the asymptotic two-sided p valueis defined as
p. = 2p, Equation 8.18

where ®(z) isthetail areato theleft of z from a standard normal distribution, and o
is the standard deviation of T. Explicit expressions for E(T) and o; are provided in
“Jonckheere-Terpstra Test” on p. 131.

Median Test

The median test is a nonparametric procedure for testing the null hypothesis H, , given
by Equation 8.2, against the general alternative

H,: Thereexistsat least one (j4,],) pair such that Fjl # sz Equation 8.19

The median test is an omnibustest designed for avery general alternative hypothesis. It
requires no assumptions about the K distributions, F;,j= 1,2,...K, being tested. How-
ever if you have additional information about these distributions—for example, if you
believe that they have the same shape but differ from one another by shift parameters
under the alternative hypothesis—there are more powerful tests available.

To define the test statistic for the median test, the first step is to transform the original
one-way layout of data, as shown in Table 8.2, into a one-way layout of scores, as shown
in Table 8.3. To compute these scores, first obtain the grand median, &, for the pooled
sample of sizeN. Themedianiscalculated inthefollowingway. Let o ;) < 05 ... < Oy
be the pooled sample of u;; values, sorted in ascending order. Then

a if Nisodd
0= Holn+1)72 Equation 8.20

EKu[n/z] + G[(n+2)/2])/2 if Niseven
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The score, w;;, corresponding to each u;, is defined as
0= Dl i Uij = 0 Equation 8.21
Eb if u;>8
Define
Z w;; Equation 8.22

i=1

asthetotal number of observationsin the jth sasmplethat are at or below the median and
m = z W Equation 8.23

asthetotal number of observationsin the pooled samplethat are at or below the median.

The test statistic for the median test is defined on the 2 x K contingency table dis-
played in Table 8.7. The entriesin the first row are the counts of the number of subjects
in each sample whose responsesfall at or below the median, while the entriesin the sec-
ond row are the counts of the number of subjects whose responsesfall above the median.

Table 8.7 Data grouped into a 2 x K contingency table for the median test

Group ID Samples Row Total
1 2 K
< Median W, W, Wy m
> Median n, —w; n,—-w, .. N — Wy N-m
Column Total N n, Nk N

Theprobability of observing this contingency table under the null hypothesis, condition-
a on fixing the margins, is given by the hypergeometric function

K Oy

|_|J = 1DND
h(w) = — Equation 8.24
NOI
Thi]
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For any w [0 W, the test statistic for the median test is the usual Pearson chi-square statistic

K ,~ 2 K ~ 2
w. —n.m/N n—w. —n:(N-—m)/N
T= Z( - ) + Z( L /N) Equation 8.25
nm/N _ n(N-m)/N
j=1 ) j=1 ]
Thus, if tisthe value of T actually observed, the exact two—sided p value for the median
test isgiven by
5 = z h(w) Equation 8.26
T<t

the sum being taken over all w O W for which T(w) < t. An asymptotic approximation
to p, isobtained by noting that T converges to the chi-square distribution with K -1
degrees of freedom. Therefore,

Py = Pr(sz —1=t) Equation 8.27

The Monte Carlo two-sided p value is obtained as described in “P Value Calculations’
on p. 119. Alternatively, you can generate a sequence of M 2 x K contingency tables,
W1,W2,...Wn, €ach with the same margins as Table 8.7, such that table w; is generated
with probability h(w,), given by Equation 8.24. For each table generated in this way,
you can compute the test statistic, t,, and define aquantity z; = 1 if t; = t; O other-
wise. The Monte Carlo estimate of p, is

M
Py = Z z/M Equation 8.28
=1

The 99% Monte Carlo confidence interval for the true p value is calculated by
Equation 8.13.
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Example: Hematologic Toxicity Data

The data on hematologic toxicity are shown in Figure 8.1. The data consist of two vari-
ables: drug isthe chemotherapy regimen for each patient and days represents the num-
ber of days the patient’s white blood count (WBC) was less than 500. The data consist
of 28 cases.

Figure 8.1 Data on hematologic toxicity

drug | days
1 1 a 15 4 1
2 1 1 16 4 1
3 1 g 17 4 G
4 1 10 18 4 7
b 2 a 19 4 7
6 2 a 20 4 7
7 2 3 21 4 a
8 2 3 22 4 g
9 2 g 23 4 10
10 3 5 24 g 7
1 3 5] 25 a 10
12 3 7 26 5 "
13 3 14 27 5 12
14 3 14 28 g 13

Theexact results of the median test for these dataare shown in Figure 8.2, and the results
of the Monte Carlo estimate of the exact test, using 10,000 Monte Carlo samples, are
shownin Figure 8.3.



126  Chapter 8

Figure 8.2  Median test results for hematologic toxicity data

Frequencies

Drug Regimen
Drug 1 Drug 2 Drug 3 Drug 4 Drug 5

Days with | > Median 2 1 2 3 4
WBC < -
500 Median 2 4 3 6 1

Test Statistics®

Asymp. Point
N Median | Chi-Square df Sig. Exact Sig. | Probability
Days with ’
WBC < 28 7.00 4.317 4 .365 429 .037
500

1- Grouping Variable: Drug Regimen
2.9 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 1.7.

Figure 8.3 Monte Carlo median test results for hematologic toxicity data

Test Statistics®

Monte Carlo Sig.
99% Confidence
Interval
Asymp. Lower Upper

N Median | Chi-Square df Sig. Sig. Bound Bound
Days with 2 3
WBC < 28 7.00 4.317 4 .365 432 419 444
500

1 Grouping Variable: Drug Regimen
2.9 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 1.7.
3-Based on 10000 sampled tables with starting seed 2000000.

The median for the pooled sample is 7.0. Thisresultsin the value 4.317 for the test sta-
tigtic, based on Equation 8.25. The exact p value is 0.429 and does not provide any ev-
idence that the five drugs produce different distributions for the WBC. The asymptotic
p value, 0.365, supports this conclusion, but in this small data set, it is not a good ap-
proximation of the exact p value. On the other hand, the Monte Carlo estimate of the
exact p value, 0.432, comes much closer to the exact p value. The 99% Monte Carlo con-
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fidence interval for the exact p value, (0.419, 0.444) also supports the conclusion that
thereis no significant difference in the distribution of WBC across the five drugs.

The following discussion shows the relationship between the median test and the
Pearson chi-sguare test. The median of these data is 7.0. The data can be divided into
two groups, with one group containing those cases with WBC < 7 and the other group
containing those caseswith WBC > 7. The crosstabulation of these two groups, divided
by the median, with the five drug regimens, is shown in Figure 8.4.

Figure 8.4 Hematologic toxicity data grouped into a 2 x K contingency table for the median test

Count

Drug Regimen
Drug 1 Drug 2 Drug 3 Drug 4 Drug 5
GROUP | WBC <=7 2
WBC > 7 2 1 2 3 4

Theresults of the Pearson chi-square test are shown in Figure 8.5. Notice that the results
arethe same as those obtained by running the median test on the original one-way layout
of data.

Figure 8.5 Pearson’s chi-square results for hematologic toxicity data, divided by the median

Chi-Square Tests

Asymp.
Sig. Exact Sig.
Value df (2-tailed) | (2-tailed)
Pearson 1
Chi-Square 4317 4 .365 429
N of Valid Cases 28

1. 9 cells (90.0%) have expected count less than 5. The minimum
expected count is 1.71.

Kruskal-Wallis Test

The Kruskal-Wallis test (Siegel and Castellan, 1988) is a very popular nonparametric
test for comparing K independent samples. When K = 2, it specializes to the Mann-
Whitney test. The Kruskal-Wallis test has good power against shift alternatives. Specif-
ically, you assume, asin Hollander and Wolfe (1973), that the one-way layout, u, shown
in Table 8.2, was generated by the model

Uij = UFT HE; Equation 8.29

forali =12,.n andj = 1.2,..K.Inthismodel, i isthe overall mean, 1 isthe
treatment effect, and the ¢;; 's are identically distributed unobservable error terms from
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an unknown distribution with a mean of 0. All parameters are unknown, but for identi-
fiability, you can assume that

K
Z =0 Equation 8.30
i=1

The null hypothesis of no treatment effect can be formally stated as

Ho: T4 = 1, = ... = T Equation 8.31

The Kruskal-Wallis test has good power against the alternative hypothesis

H,: leirjzforatlemt one (j;,j,) pair Equation 8.32

Notice that this alternative hypothesis does not specify any ordering of the treatmentsin
termsof increasesin response levels. The aternative to the null hypothesisis simply that
the treatments are different, not that one specific treatment elicits greater response than
another. If there were anatural ordering of treatments under the alternative hypothesis—
if, that is, you could state a priori that the T;’sare ordered under the alternative hypoth-
esis—amore powerful test would be the Jonckheere-Terpstratest (Hollander and Wolfe,
1973), discussed on p. 131.

Todefinethe Kruskal-Wallistest satistic, thefirst step isto convert the one-way layout,
u, of raw data, as shown in Table 8.2, into a corresponding one-way layout of scores, w, as
shown in Table 8.3. The scores, w;; , for the Kruskal-Wallis test are the ranks of the obser-
vetionsin the pooled sample of size N. If there were no ties, the set of w;; valuesin Table
8.3 would simply be some permutation of the first N integers. However, to alow for the
possibility that some observations might betied, you can assign the mid-rank of aset of tied
observations to each of them. The easiest way to explain how the mid-ranks are computed
isby considering anumerical example. Supposethat u,4,U;7,Uyq,U5, areal tied at thesame
numerical value, say 55. Assume that these four observations would occupy positions 15,
16, 17, and 18, if al the N observations were pooled and then sorted in ascending order. In
thiscase, youwould assignthemid-rank (15 + 16 + 17 + 18)/2 = 16.5 tothesefourtied
observations. Thus, W3 = Wy; = Wy = W, = 16.5.

More generdly, let a; <0, < ... <a, denote the pooled sample of all of the N ob-
servations sorted in ascending order. To alow for the possihility of ties, let there be g
distinct observations among the sorted a; 's, with e, distinct observations being equal
to the smallest value, e, distinct observations being equal to the second smallest value,
e, distinct observations being equal to the third smallest value, and so on, until, finally,
e, distinct observations are equal to the largest value. It is now possible to define the
mid-ranks precisely. For | = 1,2,...g, the distinct mid-rank assumed by all of the e,
observationstied in the Ith smallest positionis
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wl=e +e,+...+e_,+(g+1)/2

In this way, the original one-way layout of raw data is converted into a corresponding
one-way layout of mid-ranks.
Next, for any treatment j, where j = 1,2,...,K, define the rank-sum as

w, = W ; Equation 8.33

The Kruskal-Wallis test statistic, T(w) =T, for any w 0 W, can now be defined as

K

~ 2
T= 12 Z [wj—n;(N+1)/2] /n Equation 8.34
=1

T ON(N+ 1)[1—()\/(N3—N))]j

where A isatie correction factor given by

g
A= z (e|3—e|) Equation 8.35
=1

The Kruskal-Wallis test is also defined in Chapter 11, using the notation devel oped for
analyzing r x ¢ contingency tables. The two definitions are equivalent. Sincethetestis
applicable to both continuous and categorical data, the test statistic is defined twice,
once in the context of a one-way layout and once in the context of a contingency table.

Let t denote the value of T actually observed from the data. The exact, Monte Carlo,
and asymptotic p values based on the Kruskal-Wallis statistic can be obtained as dis-
cussed in“PValue Calculations” on p. 119. The exact two-sided p value is computed as
shown in Equation 8.7. The Monte Carlo two-sided p value is computed as in Equation
8.11, and the asymptotic two-sided p valueis computed as shown in Equation 8.16. One-
sided p values are not defined for tests against unordered aternatives like the
Kruskal-Wallistest.

Example: Hematologic Toxicity Data, Revisited

The Kruskal-Wallis test can be used to reconsider the hematologic toxicity data dis-
played in Figure 8.1. You can once again compare the five drugs to determine if they
have significantly different response distributions. This time, however, the test statistic
actually takes advantage of the relative rankings of the different observations instead of
simply using theinformation that an observation iseither above or bel ow the pooled me-
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dian. Thus, you can expect the Kruskal-Wallis test to be more powerful than the median
test. Although it istoo difficult to obtain the exact p value for this data set, you can ob-
tain an extremely accurate Monte Carlo estimate of the exact p value based on aMonte
Carlo sample of size 10,000. The results are shown in Figure 8.6.

Figure 8.6  Monte Carlo results of Kruskal-Wallis test for hematologic toxicity data

Ranks
Mean
N Rank
Days with | Drug Drug 1 4 11.88
WBC < Regimen
500 Drug 2 5 7.50
Drug 3 5 17.70
Drug 4 9 13.50
Drug 5 5 22.20
Total 28
Test Statistics™?
Monte Carlo Sig.
99% Confidence
Interval
Asymp. Lower Upper
Chi-Square df Sig. Sig. Bound Bound
Days with 3
WBC < 9.415 4 .052 .038 .033 .043
500

L Kruskal-Wallis Test
2- Grouping Variable: Drug Regimen
3- Based on 1000 sampled tables with starting seed 2000000.

As expected, the greater power of the Kruskal-Wallistest leadsto asmaller p value than
obtained with the median test. There is, however, a difference between the asymptotic
inference and the exact inference computed by the Monte Carlo estimate. The Monte
Carlo estimate of the exact p value is 0.038 and shows that the exact p value is guaran-
teed to lie in the range (0.033, 0.043) with 99% confidence. Thus, the null hypothesis
can be rejected at the 5% significance level. The asymptotic inference, in contrast, was
unable to estimate the true p value with this degree of accuracy. It generated a p value
of 0.052, which is not significant at the 5% level.



K-Sample Inference: Independent Samples 131

Jonckheere-Terpstra Test

The Jonckheere-Terpstra test (Hollander and Wolfe, 1973) is more powerful than the
Kruskal-Wallis test for comparing K samples against ordered alternatives. Once again,
assume that the one-way layout shown in Table 8.2 was generated by the model Equa-
tion 8.29. The null hypothesis of no treatment effect is again given by Equation 8.31.
This time, however, suppose that the aternative hypothesisis ordered. Specifically, the
one-sided alternative might be of the form

Hii 141, .. s 1¢ Equation 8.36

implying that as you increase the index j, identifying the treatment, the distribution of
responses shiftsto the right. Or else, the one-sided alternative might be of the form

Hi 121,221 Equation 8.37

implying that asyou increasetheindex j, identifying the treatment, the distribution shifts
to the left. The two-sided alternative would state that either H; or H, istrue, without
specifying which.

To define the Jonchkeere-Terpstra statistic, the first step, as usual, is to replace the
original observationswith scores. Here, however, let the score, w;; , be exactly the same
asthe actual observation, u;; . Then w = u and W, asdefined by Equation 8.3, isthe set
of all possible permutations of the one-way layout of actually observed raw data. Now,
for any w O W, you compute K (K —1)/2 Mann-Whitney counts (see, for example, Le-
hmann, 1976,), {A,}, 1sa<(K-1), (a+1)<bs<K asfollows. For any (ab), A,,
isthe count of the number of pairs, (Waa,Wgp) , Which are such that Wa < Wep plus half
the number of pairs, which are such that (Wqa = Wpb). The Jonckheere-Terpstratest sta-
tistic, T(w) =T, is defined as follows:

K-1 K
T= z z Aab Equation 8.38
a=1 b=a+1

The mean of the Jonckheere-Terpstra statistic is

2 K 2
- j= 1" .
E(T) = f Equation 8.39

Theformulafor the variance is more complicated. Suppose, asin “Kruskal-Wallis Test”
on p. 127, that there are g distinct u;;'samong all N observations pooled together, with
e, distinct observations being equal to the smallest value, e, distinct observations be-
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ing equal to the second smallest value, e, distinct observations being equal to the third
smallest value, and so on, until, finally, e, distinct observations are equal to the largest
value. The variance of the Jonckheere-Terpstrastatistic is

K g

o$ = 7_12 N(N-1)(2N+5) - Z n,(n;—1)(2n; +5) - Z e (e, —1)(2e +5)
i=1 =1
1 ¢ 9
NNy 2 D=2 x| S e(e-1)(e-2)
i=1 =1
1 < 9

tannD| 2 MDD ale-1)

i=1 -1

Now, let t(w) =t be the observed value of T. The exact, Monte Carlo, and asymptotic
p values based on the Jonckheere-Terpstra statistic can be obtained as discussed in “P
Value Calculations” on p. 119. The exact one- and two-sided p values are computed as
in Equation 8.8 and Equation 8.9, respectively. The Monte Carlo two-sided p value is
computed as in Equation 8.11, with an obvious modification to reflect the fact that you
want to estimate the probability insidetheregion { [t — E(T)| = |t — E(T)[} instead of the
region { T =t}. The Monte Carlo one-sided p value can be similarly defined. The as-
ymptotic distribution of Tisnormal, with mean of E(T) and variance cﬁ . The asymp-
totic one- and two-sided p values are obtained by Equation 8.17 and Equation 8.18,
respectively.

Example: Space-Shuttle O-Ring Incidents Data

Professor Richard Feynman, in his delightful book What Do You Care What Other Peo-
ple Think? (1988), recounted at great length his experiences as a member of the presi-
dential commission formed to determine the cause of the explosion of the space shuttle
Challenger in 1986. He suspected that the low temperature at takeoff caused the O-rings
tofail. In hisbook, he has published the data on temperature versus the number of O-ring
incidents, for 24 previous space shuttle flights. These data are shown in Figure 8.7.
There are two variables in the data—incident indicates the number of O-ring incidents,
and is either none, one, two, or three; temp indicates the temperature in Fahrenheit.



K-Sample Inference: Independent Samples

Figure 8.7  Space-shuttle O-ring incidents and temperature at launch
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The null hypothesisisthat the temperatures in the four samples (0, 1, 2, or 3 O-ring inci-
dents) have come from the same underlying population distribution. The one-sided alter-
native hypothesisisthat populations with a higher number of O-ring incidents have their
temperature distributions shifted to the right of populations with a lower number of
O-ring incidents. The Jonckheere-Terpstra test is superior to the Kruskal-Wallis test for
this data set because the populations have anatural ordering under the alternative hypoth-
esis. The results of the Jonckheere-Terpstra test for these data are shown in Figure 8.8.
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Figure 8.8  Jonckheere-Terpstra test results for O-ring incidents data

Jonckheere-Terpstra Test!

Number
of Std.
Levels Observed Mean Deviation Asymp. Exact
in O-Ring J-T J-T of J-T Std. J-T Sig. Significance |Exact Sig. Point
Incidents N Statistic Statistic Statistic | Statistic | (2-tailed) (2-tailed) (1-tailed) | Probability
Temperature 4 24 | 29500 | 65.000 | 15902 | -2.232 026 024 012 001
(Fahrenheit)

1. Grouping Variable: O-Ring Incidents

The Jonckheere-Terpstra test statistic is displayed in its standardized form

0= T=E(M Equation 8.40
Or
whose observed valueis
tO = t=E(M Equation 8.41
Ot

Theoutput showsthat t = 29.5, E(T) = 65, and o; = 15.9. Therefore, tU = —2.232.
The exact one-sided p valueis

p, = min{ Pr(TU=tD), Pr(TU< tD} Equation 8.42
The exact two-sided p valueis
p, = Pr(|T0 = [t0) Equation 8.43

These definitions are completely equival ent to those given by Equation 8.8 and Equation
8.9, respectively. Asymptotic and Monte Carlo one- and two-sided p values can be sim-
ilarly defined in terms of the standardized test statistic. Note that TU is asymptotically
normal with zero mean and unit variance.

The exact one-sided p value of 0.012 revealsthat thereisindeed astatistically signif-
icant correlation between temperature and number of O-ring incidents. The sign of the
standardized test statistic, tl = —2.232, is negative, thus implying that higher launch
temperatures are associated with fewer O-ring incidents. The two-sided p value would
be used if you had no a priori reason to believe that the number of O-ring incidents is
negatively correlated with takeoff temperature. Here the exact two-sided p value, 0.024,
isalso statistically significant.
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This chapter discusses hypothesistests on datathat are cross-classified into contingen-
cy tables with r rows and ¢ columns. The cross-classification is based on categorical
variablesthat may be either nominal or ordered. Nominal categorical variablestake
on distinct valuesthat cannot be positioned in any natural order. An example of anom-
inal variable is color (for example, red, green, or blue). In some statistical packages,
nominal variables are also referred to as class variables, or unordered variables. Or-
dered categorical variablestake on distinct valuesthat can be ordered in a natural way.
An example of an ordered categorical variable is drug dose (for example, low, medi-
um, or high). Ordered categorical variables can assume numerical values aswell (for
example, the drug dose might be categorized into 100 mg/m?, 200 mg/m?, and 300
mg/m?). When the number of distinct numerical values assumed by the ordered vari-
ableisvery large (for example, the weights of individuals in a population), it is more
convenient to regard the variable as continuous (possibly with ties) rather than cate-
gorical. Thereis considerable overlap between the statistical methods used to analyze
continuous data and those used to analyze ordered categorical data. Indeed, many of
the same statistical tests are applicable to both situations. However, the probabilistic
behavior of an ordered categorical variable is captured by a different mathematical
model than that of a continuous variable. For this reason, continuousvariablesare dis-
cussed separately in Part 1.

This chapter summarizes the statistical theory underlying the exact, Monte Carlo,
and asymptotic p value computations for all the tests in Chapter 10, Chapter 11, and
Chapter 12. Chapter 10 discusses tests for r x ¢ contingency tables in which the row
and column classifications are both nominal. These are referred to as unordered con-
tingency tables. Chapter 11 discusses tests for r x ¢ contingency tables in which the
column classifications are based on ordered categorical variables. These arereferred to
as singly ordered contingency tables. Chapter 12 discusses tests for r x ¢ tablesin
which both the row and column classifications are based on ordered categorical vari-
ables. These are referred to as doubly ordered contingency tables.

Table 9.1 shows an observed r x ¢ contingency table in which X;; is the count of
the number of observations falling into row category i and column category j.
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Table 9.1 Observed r x ¢ contingency table

Rows Col 1 Co 2 .. Col ¢ Row _Total
Row_1 X11 X12 . X1¢ my
Row_2 Xo1 Xop . Xoe m,

Row_r X1 X, o . X ¢ m,
Col_Total ng n, e n. N

The main objective is to test whether the observed r x ¢ contingency tableis consistent
with the null hypothesis of independence of row and column classifications. SPSS Exact
Tests computes both exact and asymptotic p values for many different tests of this hy-
pothesis against various alternative hypotheses. Thesetests are grouped in alogical man-
ner and are presented in the next three chapters, which discuss unordered, singly ordered,
and doubly ordered contingency tables, respectively. Despite these differences, thereisa
unified underlying framework for performing the hypothesistestsin all three situations.
This unifying framework is discussed below in terms of p value computations.

Thepvalueof theobserved r x ¢ contingency tableisused to test the null hypothesis
of no row-by-column interaction. SPSS Exact Tests providesthree categories of p values
for each test. The “gold standard” is the exact p value. When it can be computed, the
exact p valueis recommended. Sometimes, however, adata set istoo large for the exact
p value computations to be feasible. In this case, the Monte Carlo technique, which is
easier to compute, is recommended. The Monte Carlo p value is an extremely close ap-
proximation to the exact p value and is accompanied by afairly narrow confidence in-
terval within which the exact p value is guaranteed to lie (at the specified confidence
level). Moreover, by increasing the number of Monte Carlo samples, you can make the
width of this confidence interval arbitrarily small. Finally, the exact p value is always
recommended. For large, well-balanced data sets, the asymptotic p value is not too dif-
ferent from its exact counterpart, but, obviously, you can’'t know this for the specific
data set on hand without also having the exact or Monte Carlo p value avail able for com-
parison. In this section, all three p valueswill be defined. First, you will see how the ex-
act p value is computed. Then, the Monte Carlo and asymptotic p values will be
discussed as convenient approximations to the exact p value computation.

To computetheexact p value of theobserved r x ¢ contingency table, it isnecessary to:

1. Define a reference set of r x ¢ tables in which each table has a known probability
under the null hypothesis of no row-by-column interaction.

2. Order al thetablesin the reference set according to adiscrepancy measure (or test sta-
tistic) that quantifies the extent to which each table deviates from the null hypothesis.

3. Sum the probabilities of all tablesin the reference set that are at least as discrepant as
the observed table.
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Defining the Reference Set

Throughout this chapter, x will be used to denote the r x ¢ contingency table actually
observed, and y will denote any generic r x ¢ contingency table belonging to somewell-
defined reference set of r x ¢ contingency tablesthat could have been observed. The ex-
act probability of observing any generic table y depends on the sampling scheme used
to generate it. When both the row and column classifications are categorical, Agresti
(1990) lists three sampling schemes that could give rise to y—full multinomial sam-
pling, product multinomia sampling, and Poisson sampling. Under all three schemes,
the probability of observing y depends on unknown parametersrelating to the individual
cellsof the r x ¢ table. The key to exact nonparametric inference is eliminating all nui-
sance parameters from the distribution of y. Thisisaccomplished by restricting the sam-
ple spaceto the set of all r x ¢ contingency tables that have the same marginal sums as
the observed table x. Specifically, define the reference set:

0 0
o . . < [ 0

r=ry:yisrxc; Zyij =m; Zyij =n fordli,jg Equation 9.1
E =1 i1 E

Then, you can show that, under the null hypothesis of no row-by-column interaction, the
probability of observingany yO T is

C r
I'Ij - 1nj!l'li -1 m!

P(y) = Equation 9.2

r

C
NIMT_ oy

Equation 9.2, whichisfree of all unknown parameters, holdsfor categorical datawheth-
er the sampling scheme used to generate y is full multinomial, product multinomial, or
Poisson (Agresti, 1990).

The reference set I' need not be the actual sample space of the data-generating pro-
cess. In product multinomial sampling, the row sums are fixed by the experimental de-
sign, but the column sums can vary from sample to sample. In full multinomial and
Poisson sampling, both the row and column sums can vary. Conditioning on row and
column sumsis simply a convenient way to eliminate nuisance parameters from the ex-
pression for P(y), compute exact p values, and thus guarantee that you will be protected
from aconditional type 1 error at any desired significance level. Moreover, since the un-
conditional type 1 error is a weighted sum of conditional type 1 errors, where the
weights are the probabilities of the different marginal configuration, the protection from
type 1 errors guaranteed by the conditional test carries over to the unconditional setting.
The idea of conditional inference to eliminate nuisance parameters was first proposed
by Fisher (1925).
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Defining the Test Statistic

For statistical inference, each table y O " is ordered by atest statistic or discrepancy
measure that quantifies the extent to which the table deviates from the null hypothesis
of no row-by-column interaction. The test statistic will be denoted by D(y). Large abso-
lute values of D furnish evidence against the null hypothesis, while small absolute values
are consistent with it. The functional form of D(y) for each test is given in the chapter
specific to each test. Throughout this chapter, the function D(y) will be used to denote a
generic test statistic. Specific instances of test statistics will be denoted by their own
unique symbols. For example, for the Pearson chi-square test, the generic symbol D(y)
is replaced by CH(y), and the test statistic has the functional form of

2
r ¢ (yij—minj/N) _
CH(y) = —_— Equation 9.3
&S minj/N

Exact Two-Sided P Values

The exact two-sided p value is defined as the sum of null probabilities of all the tables
inT that are at least as extreme as the observed table x with respect to D. Specifically,

P, = P(y) = Pr{D(y) 2 D(x)} Equation 9.4
D(y) =D(x)

For later reference, define the critical region of the reference set:

I = {yOr:D(y)=D(x} Equation 95

Computing Equation 9.4 is sometimes rather difficult because the size of the reference
set I grows exponentially. For example, the reference set of all 5x 6 tables with row
sumsof (7, 7, 12, 4, 4) and column sums of (4, 5, 6, 5, 7, 7) contains 1.6 billion tables.
However, the tables in this reference set are all rather sparse and unlikely to yield accu-
rate p values based on large sample theory. SPSS Exact Tests uses network algorithms
based on the methods of Mehta and Patel (1983, 19863, 1986b) to enumerate the tables
in I implicitly and thus quickly identify thosein I' . This makesit feasible to compute
exact p values for many seemingly intractable data sets such as the one above.
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Notwithstanding the availability of the network algorithms, a data set is sometimes
too large for the exact p value to be feasible to compute. But it might be too sparse for
the asymptotic p value to bereliable. For this situation, SPSS Exact Tests also provides
a Monte Carlo option, where only a small proportion of the r x ¢ tablesin I are sam-
pled, and an unbiased estimate of the exact p value is obtained.

Monte Carlo Two-Sided P Values

TheMonte Carlo two-sided p valueisavery close approximation to the exact two-sided
p value, but it is much easier to compute. The examples in Chapter 10, Chapter 11, and
Chapter 12 will show that, for all practical purposes, the Monte Carlo results can be used
in place of the exact results whenever the latter are too difficult to compute. The Monte
Carlo approachisasteady, reliable procedure that, unlike the exact approach, awaystakes
up a predictable amount of computing time. While it does not produce the exact p value,
it does produce a fairly tight confidence interval within which the exact p value is con-
tained, with a high degree of confidence (usually 99%).

In the Monte Carlo method, atotal of M tables is sampled from I, each table being
sampled in proportion to its hypergeometric probability (see Equation 9.2). (Sampling ta-
blesin proportion to their probabilitiesis known as crude Monte Carlo sampling.) |

For eachtable y; T that is sampled, define the binary outcome z = 1 if y; 0T ;
0 otherwise. The arithmetic average of all M of these 7z 's is taken as the Monte Carlo
point estimate of the exact two-sided p value:

Z Equation 9.6

It is easy to show that E)Z is an unbiased estimate of the exact two-sided p value. Next,

172

A 1 M ~ 2
o= M.Zl(zj -p,) Equation 9.7
J =

is the sample standard deviation of the z 's. Then a 99% confidence interval for the ex-
act pvalueis

Cl = E)z + 2.5766/(JI\—/I) Equation 9.8
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A technical difficulty arises when either p, = 0 or p, = 1. The sample standard de-
viation is now zero, but the data do not support a confidence interval of zero width. An
alternative way to compute a confidence interval that does not depend on ¢ isbased on
inverting an exact binomial hypothesis test when an extreme outcomeis encountered. It
can be easily shown that if p, = 0, an a % confidence interval for the exact p valueis

/M

Cl=[0,1-(1-0a/100)"" ] Equation 9.9

Similarly, when |52 = 1, an a % confidence interval for the exact p valueis

Cl = [(1—as100"M 1] Equation 9.10

Asymptotic Two-Sided P Values

For all the tests in this chapter, the test statistic D(y) has an asymptotic chi-square dis-
tribution. The asymptotic two-sided p value is obtained as

52 = Pr(x?=D(x)|df) Equation 9.11

where X? isarandom variable with a chi-sguare distribution and df are the appropriate
degrees of freedom. For testson unordered r x ¢ contingency tables, the degrees of free-
domare (r—1)x(c—1);fortestsonsingly ordered r x c contingency tables, the de-
grees of freedom are (r —1); and tests on doubly ordered contingency tables have one
degree of freedom. Since the square root of a chi-square variate with one degree of free-
dom has astandard normal distribution, you can also work with normally distributed test
statistics for the doubly ordered r x ¢ contingency tables.
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The tests in this chapter are applicable to r x ¢ contingency tables whose rows and col-
umns cannot be ordered in anatural way. In the absence of such an ordering, it is not pos-
sible to specify any particular direction for the dternative to the null hypothesis that the
row and column classifications are independent. The tests considered here are appropriate
in this setting because they have good power against the omnibus aternative, or universal
hypothesis, that the row and column classifications are not independent. Subsequent chap-
ters deal with teststhat have good power against more specific dternatives.

Available Tests

SPSS Exact Tests offers three tests for analyzing unordered r x ¢ contingency tables.
They are the Pearson chi-square test, the likelihood-ratio test, and Fisher’s exact test.
Asymptotically, al three tests follow the chi-square distribution with (r —1)(c—1)
degrees of freedom. Both exact and asymptotic p values are avail able from SPSS Exact
Tests. The asymptotic p value is provided by default, while the exact p value must be
specifically requested. If a data set is too large for the exact p value to be computed,
SPSS Exact Tests offers a special option whereby the exact p value is estimated up to
Monte Carlo accuracy. Table 10.1 shows the three available tests, the procedure from
which they can be obtained, and a bibliographical reference for each test.

Table 10.1 Available tests

Test Procedure  Reference

Pearson chi-squaretest  Crosstabs Agresti (1990)
Likelihood-ratio test Crosstabs Agresti (1990)
Fisher’s exact test Crosstabs Freeman and

Halton (1951)
When to Use Each Test

Any of the three tests, Pearson, likelihood-ratio, or Fisher’s, may be used when both
the row and column classifications of the r x ¢ contingency table are unordered. All
three tests are asymptotically equivalent. The research in this areais scant and has fo-
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cused primarily on the question of which of the three asymptotic tests best matches its
exact counterpart. (See, for example, Roscoe and Byars, 1971; Chapman, 1976; Agresti
and Yang, 1987; Read and Cressie, 1988.) It is very likely that the Pearson chi-square
asymptotic test converges to its exact counterpart the fastest. You can use the SPSS Ex-
act Tests option to investigate this question and also to determine empirically which of
the three exact tests has the most power against specific alternative hypotheses.

Statistical Methods

For the r x ¢ contingency table shown in Table 9.1, T1; denotes the probability that an
observation will be classified as belonging to row i and column j. Define the marginal
probabilities:

C
T, = zrtij,fori=1,2,...,r
=1

r
T[+j = ZT[IJ,fOrJ :1;21--'10
i=1

The Pearson chi-sguare test, the likelihood-ratio test, and Fisher’s exact test are all ap-
propriate for testing the null hypothesis

Ho:nij =TT foral (i,])pairs Equation 10.1

against the general (omnibus) alternative that Equation 10.1 doesnot hold. An alternative
hypothesis of this form is of interest when there is no natural ordering of the rows and
columnsof the contingency table. Thus, thesethreetestsare usually applied to unordered
r x ¢ contingency tables. Note that all three tests are inherently two-sided in the follow-
ing sense. A large positive value of the test statistic is evidence that thereis at least one
(i,j) pair for which Equation 10.1 failsto hold, without specifying which pair.

If the sampling process generating the data is product multinomial, one set of mar-
ginal probabilities (the Tt ’s, say) will equal unity. Then H, reduces to the statement
that the ¢ multinomial probabilities are the same for all rows. In other words, the null
hypothesisis equivalent to

HoTy = Ty = .. =1 =y forall j=1,2,..c Equation 10.2
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In practice, product multinomial sampling arises when r populations are compared and
the observations from each population fall into ¢ distinct categories. The null hypothesis
is that the multinomial probability of falling in the jth category, | = 1,2, ...c, isthe
samefor each population. The Pearson, likelihood-ratio, and Fisher’stests are most suit-
ablewhen the c categories have no natural ordering (for example, geographic regions of
the country). However, more powerful tests, such as the Kruskal-Wallis test, are avail-
able if the ¢ categories have a natural ordering (for example, levels of toxicity). Such
tests are discussed in Chapter 11 and Chapter 12.

Oral Lesions Data

The exact, Monte Carlo, and asymptotic versions of the Pearson chi-squaretest, the like-
lihood-ratio test, and Fisher’s exact test can beillustrated with the following sparse data
set. Suppose that data were obtained on the location of oral lesions, in house-to-house
surveys in three geographic regions of rural India. These data are displayed here in the
form of a 9 x 3 contingency table, as shown in Figure 10.1. (See the SPSSBase User’s
Guide for information on how to enter the data into the Data Editor.) The variables
showninthetable aresite, which indicatesthe specific site of the oral lesion, and region,
which indicatesthe geographic region. Count representsthe number of patientswith oral
lesions at a specific site and living in a specific geographic region.

Figure 10.1 Crosstabulation of oral lesions data set

Site of Lesion * Geographic Region Crosstabulation

Count

Geographic Region

Kerala Gujarat Andhra

Site of Labial

. 1
Lesion Mucosa

Buccal
Mucosa

8 1 8
Commissure 1
Gingiva 1
Hard Palate 1
Soft Palate 1
Tongue 1
Floor of Mouth 1 1

Alveolar
Ridge
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The question of interest is whether the distribution of the site of the oral lesion is signif-
icantly different in the three geographic regions. The row and column classificationsfor
this 9 x 3 table are clearly unordered, making it an appropriate data set for either the
Pearson, likelihood-ratio or Fisher’s tests. The contingency table is so sparse that the
usual chi-sguare asymptotic distribution with 16 degrees of freedomisnot likely toyield
accurate p values.

Pearson Chi-Square Test

The Pearson chi-square test is perhaps the most commonly used procedure for testing
null hypotheses of the form shown in Equation 10.1 or Equation 10.2 for indepen-
dence of row and column classificationsin an unordered r x ¢ contingency table. For
any observed r x c table, the test statistic, D(X), is denoted as CH(x) and is com-
puted by the formula

mn/N)

= DG~/ i
CH(x) = z z /N Equation 10.3
i=1lj=1

For the 9x 3 contingency table of ora lesions data displayed in Figure 10.1,
CH(x) = 22.1. The test statistic and its corresponding asymptotic and exact p values
are shown in Figure 10.2.

Figure 10.2 Exact and asymptotic Pearson chi-square test for oral lesions data

Asymp.
Sig. Exact Sig.
Value df (2-tailed) | (2-tailed)
Pearson 1
Chi-Square 22.099 16 .140 .027

1. 25 cells (92.6%) have expected count less than 5. The
minimum expected count is .26.

The results show that the observed value of thetest statisticis CH(x) = 22.1. Thissta-
tistic has an asymptotic chi-square distribution with 16 degrees of freedom.

The asymptotic p value is based on the chi-square distribution with 16 degrees of
freedom. The asymptotic p value is computed as the area under the chi-square density
function to theright of CH(x) = 22.1. The p value of 0.14 implies that thereisno row-
by-column interaction. However, this p value cannot be trusted because of the sparse-
ness of the observed contingency table.

The exact p value is shown in the portion of the output entitled Exact Sg. (2-tailed). It
isdefined by Equation 9.4 asthe permutational probability Pr(CH(y) 222.1|y O T). The
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exact p valueis0.027, showing that thereisasignificant interaction between the site of the
lesion and the geographic region, but the asymptotic p value failed to demonstrate this. In
this example, the asymptotic p val ue was more conservative than the exact p value.

Sometimesthe dataset istoo large for an exact analysis, and the Monte Carlo method
must be used instead. Figure 10.3 shows an unbiased estimate of the exact p value for
the Pearson chi-square test based on a crude Monte Carlo sample of 10,000 tables from
the reference set.

Figure 10.3 Monte Carlo results for oral lesions data

Chi-Square Tests

Values
Monte Carlo Significance
(2-tailed)
99% Confidence
Asymp. Interval
Sig. Lower Upper
Value df (2-tailed) Sig. Bound Bound
Statistics | Pearson 22.009" 16 140 026° 022 030
Chi-Square

1. 25 cells (92.6%) have expected count less than 5. The minimum expected count is .26.
2. Based on 10000 and seed 2000000 ...

The Monte Carlo method produces a 99% confidence interval for the exact p value.
Thus, athough the point estimate might change dlightly if you resample with adifferent
starting seed or adifferent random number generator, you can be 99% confident that the
exact p value is contained in the interval 0.022 to 0.030. Moreover, you could always
sample more tables from the reference set if you wanted to further narrow the width of
thisinterval. Based on thisanalysis, it is evident that the Monte Carlo approach leads to
the same conclusion as the exact approach, demonstrating that there is indeed a signifi-
cant row-by-column interaction in this contingency table. The asymptotic inference
failed to demonstrate any row-by-column interaction.

Likelihood-Ratio Test

Thelikelihood-ratio test is an alternative to the Pearson chi-square test for testing inde-
pendence of row and column classifications in an unordered r x ¢ contingency table.
For any observed r x ¢ contingency table, the test statistic, D(x), is denoted as LI(x)
and is computed by the formula

r C
X:
LI(x) =2 Z Z Xijlog%‘ni n;J/N% Equation 10.4

i=1j=1
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For the oral lesions data displayed in Figure 10.1, LI(x) = 23.3. The test statistic and
its corresponding asymptotic and exact p values are shown in Figure 10.4.

Figure 10.4 Results of likelihood-ratio test for oral lesions data

Chi-Square Tests

Values
Asymp.
Sig. Exact Sig.
Value df (2-tailed) | (2-tailed)
Statistics | Likelihood Ratio 23.297 16 .106 .036

The output shows that the observed value of the test statisticis LI1(x) = 23.3. Thissta-
tistic has an asymptotic chi-square distribution with 16 degrees of freedom. The asymp-
totic p value is computed as the area under the chi-square density function to the right
of LI(x) = 23.3. The p value of 0.106 implies that there is no row-by-column interac-
tion. However, this p value cannot be trusted because of the sparseness of the observed
contingency table.

The exact p value is defined by Equation 9.4 as the permutational probability
Pr(LI(y) 2 23.3|y U T'). Theexact p valueis 0.036, showing that thereisasignificant in-
teraction between the site of lesion and the geographic region, but the asymptatic p value
failed to demongtrate this. In this example, the asymptotic p value was more conservative
than the exact p value.

Sometimesthe dataset istoo large for an exact analysis, and the Monte Carlo method
must be used instead. Figure 10.5 shows an unbiased estimate of the exact p value for
the likelihood-ratio test based on a crude Monte Carlo sample of 10,000 tables from the
reference set.

Figure 10.5 Estimate of exact p value for likelihood-ratio test based on Monte Carlo sampling

Chi-Square Tests

Values
Monte Carlo Significance
(2-tailed)
99% Confidence
Asymp. Interval
Sig. Lower Upper
Value df (2-tailed) Sig. Bound Bound
Statistics | Likelihood Ratio 23.297 16 .106 .0352 .030 .039

2. Based on 10000 and seed 2000000 ...
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The Monte Carlo point estimate is 0.035, which is acceptably close to the exact p value
of 0.036. More important, the Monte Carlo method also produces a confidence interval
for the exact p value. Thus, although this point estimate might change slightly if you re-
sample with a different starting seed or a different random number generator, you can
be 99% confident that the exact p valueis contained in theinterval 0.030to 0.039. More-
over, you could always sample more tables from the reference set if you wanted to fur-
ther narrow the width of thisinterval. Based on thisanalysis, it is evident that the Monte
Carlo approach leads to the same conclusion as the exact approach, demonstrating that
there is indeed a significant row-by-column interaction in this contingency table. The
asymptotic inference failed to demonstrate any row-by-column interaction.

Fisher's Exact Test

Fisher's exact test istraditionally associated with the single 2 x 2 contingency table. Its
extension to unordered r x ¢ tables was first proposed by Freeman and Halton (1951).
Thus, it is also known as the Freeman-Halton test. It is an aternative to the Pearson chi-
square and likelihood-ratio tests for testing independence of row and column classifica
tionsin an unordered r x ¢ contingency table. Fisher’s exact test is available for tables
larger than 2 x 2 through the SPSS Exact Tests option. Asymptotic results are provided
only for 2 x 2 tables, while exact and Monte Carlo results are availablefor larger tables.
For any observed r x ¢ contingency table, the test statistic, D(x), isdenoted as FI(x)
and is computed by the formula

Fl(x) = =2log(yP(x)) Equation 10.5

where

r c
_ (r=1)(c-1)/2,~(rc-1)/2 (c-1)/2 (r=1)/2 .
y = (2m) N | | (my) | | (nj) Equation 10.6
i=1 j=1

For the oral lesions data displayed in Figure 10.1, FI(x) = 19.72. The exact p values
are shown in Figure 10.6.

Figure 10.6 Fisher’s exact test for oral lesions data

Chi-Square Tests

Exact Sig.
Value (2-tailed)

Fisher’s Exact

Test 19.721 .010
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The exact p value is defined by Equation 9.4 as the permutational probability
Pr(FI(y) 2 19.72|y 0 T) . The exact p value is 0.010, showing that there is a significant
interaction between the site of the lesion and the geographic region. The asymptotic result
was off the mark and failed to demonstrate a significant outcome. In this example, the as-
ymptotic p value was more conservative than the exact p value.

Sometimesthe data set istoo largefor an exact analysis, and the Monte Carlo meth-
od must be used instead. Figure 10.7 shows an unbiased estimate of the exact p value
for Fisher’s exact test based on a crude Monte Carlo sample of 10,000 tablesfrom the
reference set.

Figure 10.7 Monte Carlo estimate of Fisher’s exact test for oral lesions data

Chi-Square Tests

Values

Monte Carlo Significance
(2-tailed)

99% Confidence
Interval

Lower Upper
Value Sig. Bound Bound
Statistics $§;er s Bxact 19.721 010" 007 013

1. Based on 10000 and seed 2000000 ...

The Monte Carlo method produces a 99% confidence interval for the exact p value.
Thus, although this point estimate might change slightly if you resample with adifferent
starting seed or adifferent random number generator, you can be 99% confident that the
exact p value is contained in the interval 0.007 to 0.013. Moreover, you could always
sample more tables from the reference set if you wanted to further narrow the width of
thisinterval. Based onthisanalysis, it is evident that the Monte Carlo approach leads to
the same conclusion as the exact approach, demonstrating that there isindeed a signifi-
cant row-by-column interaction in this contingency table. The asymptotic inference
failed to demonstrate any row-by-column interaction.
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Thetest in this chapter is applicable to r x ¢ contingency tables in which the rows are
unordered but the columns are ordered. This is a common setting, for example, when
comparing r different drug treatments, each generating an ordered categorical response.
It is assumed a priori that the treatments cannot be ordered according to their rate of
effectiveness. If they can be ordered according to their rate of effectiveness—for exam-
ple, if the treatments represent increasing doses of some drug—the tests in the next
chapter are more applicable.

Available Test

SPSS Exact Tests offersthe Kruskal-Wallistest for analyzing r x ¢ contingency tables
in which the rows (r) are unordered but the columns (c) have a natural ordering. Al-
though thelogic of the Kruskal-Wallistest can be applied to singly ordered contingency
tables, thistest is performed through the Nonparametric Tests. Tests for Several Inde-
pendent Samples procedure. (See Siegal and Castellan, 1988.)

When to Use the Kruskal-Wallis Test

Usethe Kruskal-Wallistest for an r x ¢ contingency tablein which the rows (r) are un-
ordered but the columns (c) are ordered. Note that it is very important to keep the col-
umns ordered, not therows. In this chapter, the Kruskal-Wallistest is applied to ordinal
categorical data. See Chapter 8 for a discussion of using thistest for continuous data.

Statistical Methods

The data consist of ¢ categorical responses generated by subjects in r populations,
and cross-classified intoan r x ¢ contingency table, asshownin Table9.1. Thec cat-
egorical responses are usually ordered, whereas the r populations are not. Suppose
there are m; subjects in population i and each subject generates a multinomial re-
sponse falling into one of ¢ ordered categories with respective multinomial probabil -

itiesof M, = (T4, T4y, ..., ) fori = 1,2,...,r.
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The null hypothesisis

Ho:My =M, = ... =1, Equation 11.1

Thedternative hypothesisisthat at |east one set of multinomial probabilitiesis stochas-
tically larger than at least one other set of multinomial probabilities. Specifically, for
i=1,2,...,r,let

TheKruskal-Wallistest isespecially suited to detecting departures from the null hypoth-
esis of theform

H,: for at least one(i4, i,) pajr,Y'ilj > Y'izj,j =12, ...c Equation 11.2

with strict inequality for at least onej. In other words, you want to reject H, when at
least one of the populations is more responsive than the others.

Tumor Regression Rates Data

The tumor regression rates of five chemotherapy regimens, Cytoxan (CTX) alone, Cyclo-
hexyl-chloroethyl nitrosurea (CCNU) alone, Methotrexate (MTX) aone, CTX+MTX,
and CTX+CCNU+MTX were compared in a small clinicd trial. Tumor regression was
measured on athree-point scale: no response, partial response, or complete response. The
crosstabulation of the resultsis shown in Figure 11.1.

Figure 11.1 Crosstabulation of tumor regression data

Chemotherapy Regimen * Tumor Regression Crosstabulation

Count
Tumor Regression
No Partial Complete
Response | Response | Response
Chemotherapy | CTMX 2
Regimen CCNU 1 1
MTX 3
CTX+CCNU 2 2
CTX+CCNU+MTX 1 1 4
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Although Figure 11.1 shows the datain crosstabulated format to illustrate the concept
of applying the Kruskal-Wallistest to singly ordered tables, thistest is obtained from the
Nonparametric Tests procedure, and your datamust be structured appropriately for Non-
parametric Tests. Figure 11.2 shows these data displayed in the Data Editor. The data
consist of two variables. Chemo is a grouping variable that indicates the chemotherapy
regimen, and regressn is an ordered categorical variable with three values, where 1=No
Response, 2=Partial Response, and 3=Complete Response. Note that although variable
labels are displayed, these variables must be numeric.

Figure 11.2 Tumor regression data displayed in the Data Editor

chemao regressn
1 CTX No Response
2 CTX No Response
3 CCNU No Response
4 CCNU Partial Response
5 MTX No Response
i MTX No Response
i MTX No Response
8 CTX+CCNU No Response
9 CTX+CCNU No Response
10 CTX+CCNU Partial Response
11 CTX+CCNU Partial Response
12 CTX+CCNU+MTX No Response
13 CTX+CCNU+MTX Partial Response
14 CTX+CCNU+MTX | Complete Response
15 CTX+CCNU+MTX | Complete Response
16 CTX+CCNU+MTX | Complete Response
17 CTX+CCNU+MTX | Complete Response

Small pilot studies like this one are frequently conducted as a preliminary step to plan-
ning alarge-scale randomized clinical trial. The test in this section may be used to de-
termine whether or not the five drug regimens are significantly different with respect to
their tumor regression rates. Notice how appropriate the alternative hypothesis, shown
in Equation 11.2, is for this situation. It can be used to detect departures from the null
hypothesisin which one or more drugs shift the responses from no response to partial or
complete responses. The results of the Kruskal-Wallis test are shown in Figure 11.3.
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Figure 11.3 Results of Kruskal-Wallis test for tumor regression data

Ranks
Mean
N Rank
Tumor Chemotherapy | CTMX 2 5.00
Regression | Regimen CCNU 2 8.95
MTX 3 5.00
CTX+CCNU 4 8.25
CTX+CCNU+MTX 6 13.08
Total 17
Test Statistics® 2
Asymp. Exact Point
Chi-Square df Sig. Sig. Probability
Tumor 8.682 4 070 039 .001
Regression

1. Kruskal Wallis Test
2. Grouping Variable: Chemotherapy Regimen

The observed value of the test statistic t, calculated by Equation 8.34, is 8.682. The as-
ymptotic two-sided p value is based on the chi-square distribution with four degrees of
freedom. The asymptotic p value is obtained as the area under the chi-square density
function to theright of 8.682. Thisp value is 0.070. However, thisp valueisnot reliable
because of the sparseness of the observed contingency table.

The exact p value is defined by Equation 8.7 as the permutational probability

Pr(T=8.682|y 0T). Theexact p vaueis 0.039, which implies that there is a statisti-
cally significant difference between the five modes of chemotherapy. The asymptotic
inference failed to demonstrate this. Below the exact p value is the point probability

Pr(T = 8.682). This probahility, 0.001, is a natural measure of the discreteness of the
test statistic. Some statisticians recommend subtracting half of its value from the exact
p value, in order to yield aless conservative mid-p value. (For more information on the
role of the mid-p method in exact inference, see Lancaster, 1961; Pratt and Gibbons,
1981; and Miettinen, 1985.)

Sometimesthe data set istoo large for an exact analysis, and the M onte Carlo method
must be used instead. Figure 11.4 shows an unbiased estimate of the exact p value for
the Kruskal-Wallis test based on a crude Monte Carlo sample of 10,000 tables from the
reference set.
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Figure 11.4 Monte Carlo results for tumor regression data

Test Statistics12

Monte Carlo Sig.
99% Confidence
Interval
Asymp. Lower Upper
Chi-Square df Sig. Sig. Bound Bound
3
Tumor 8.682 4 070 043 037 048
Regression

L Kruskal Wallis Test
2 Grouping Variable: Chemotherapy Regimen
3- Based on 10000 sampled tables with starting seed 20000000.

The Monte Carlo point estimate is 0.043, which is practically the same as the exact p
value of 0.039. Moreover, the Monte Carlo method also produces a confidence interval
for the exact p value. Thus, although this point estimate might change slightly if you re-
sample with a different starting seed or a different random number generator, you can
be 99% confident that the exact p valueis contained in theinterval 0.037 to 0.048. More
tables could be sampled from the reference set to further narrow the width of thisinter-
val. Based on thisanalysis, it is evident that the Monte Carlo approach |eads to the same
conclusion as the exact approach, demonstrating that there is indeed a significant row
and column interaction in this contingency table. The asymptotic inference produced a
p value of 0.070, and thusfailed to demonstrate a statistically significant row-by-column
interaction.






Doubly Ordered R x C
Contingency Tables

The tests in this chapter are applicable to r x ¢ contingency tables in which both the
rows and columns are ordered. A typical example would be an r x ¢ table obtained
from a dose-response study. Here the rows (r) represent progressively increasing doses
of some drug, and the columns (c) represent progressively worsening levels of drug
toxicity. The goal isto test the null hypothesisthat the response rates are the same at al
dose levels. The tests in this chapter exploit the double ordering so as to have good
power against alternative hypotheses in which an increase in the dose level leadsto an
increase in the toxicity level.

Available Tests

SPSS Exact Tests offers two tests for doubly ordered r x ¢ contingency tables: the
Jonckheere-Terpstra test and the linear-by-linear association test. Asymptotically,
both test statistics converge to the standard normal distribution or, equivalently, the
squares of these statistics converge to the chi-square distribution with one degree of
freedom. Both the exact and asymptotic p values are available from SPSS Exact Tests.
The asymptotic p valueis provided by default, while the exact p value must be specif-
icaly requested. If a data set istoo large for the exact p value to be computed, SPSS
Exact Tests offers a special option whereby the exact p valueis estimated up to Monte
Carlo accuracy. Although the logic of the Jonckheere-Terpstra test can be applied to
doubly ordered contingency tables, this test is performed through the Nonparametric
Tests: Tests for Several Independent Samples procedure. Table 12.1 shows the two
available tests, the procedure from which each can be obtained, and a bibliographical
reference to each test.

Table 12.1 Available tests

Test Procedure Reference

Jonckheere-Terpstra test Nonparametric Tests: Lehmann (1973)
K Independent Samples

Linear-by-linear associationtest ~ Crosstabs Agresti (1990)
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In this chapter, the null and alternative hypotheses for these tests are specified, appro-
priate test statistics are defined, and each test isillustrated with a data set.

When to Use Each Test

The Jonckheere-Terpstraand linear-by-linear association tests, while not asymptotically
equivalent, are competitors for testing row and column interaction in a doubly ordered
r x ¢ table. There hasbeen no formal statistical research on which test has greater pow-
er. Historically, the Jonckheere-Terpstra test was developed for testing continuous data
in a nonparametric setting, while the linear-by-linear association test was used for test-
ing categorical datain aloglinear models setting. However, either test is applicable for
computing p valuesin r x ¢ contingency tables as long as both the rows and columns
have anatural ordering. In this chapter, the Jonckheere-Terpstratest is applied to ordinal
categorical data. See Chapter 8 for a discussion of using this test for continuous data.
The linear-by-linear association test has some additional flexibility in weighting the or-
dering and in weighting the relative importance of successive rows or columns of the
contingency table through a suitable choice of row and column scores. This flexibility
isillustrated in the treatment of the numerical examplein“Linear-by-Linear Association
Test” on p. 161.

Statistical Methods

Suppose that each response must fall into one of ¢ ordinal categories according to amul-
tinomial distribution. Let m responses from populationi fall into the c ordinal categories
with respective multinomial probabilities of

M, = (1, Ty, .., TG,)

fori = 1,2,..,r. Thenull hypothesisis

Ho:My =My, =..=T, Equation 12.1

To specify the aternative hypothesis, define

Y, = z us Equation 12.2
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fori = 1,2,...,r.Sincetherowsare ordered, it is possible to define one-sided alterna-
tive hypotheses of the form

HitY S Y <2 Y Equation 12.3
or
H’l:Y'1j > Y2j 2.2 Y'rj Equation 12.4

forj = 1,2,...,c, with strict inequality of at least onej. Both the Jonckheere-Terpstra
and the linear-by-linear association tests are particularly appropriate for detecting depar-
tures from the null hypothesis of the form H; or H';, or for detecting the two-sided al-
ternative hypothesis that either H; or H’y istrue. Hypothesis H; implies that as you
move from row i to row (i + 1), the probability of the response falling in category
(j + 1) rather than in category j increases. Hypothesis H'; states the opposite, that as
you move down arow, the probability of falling into the next higher category decreases.
The test statistics for the Jonckheere-Terpstra and the linear-by-linear association tests
are so defined that large positive values regject H, in favor of H; , while large negative
valuesreject H infavor of H';.

Dose-Response Data

Patients were treated with a drug at four dose levels (100mg, 200mg, 300mg, 400mg)
and then monitored for toxicity. The data are tabulated in Figure 12.1.

Figure 12.1 Crosstabulation of dose-response data

Drug Dose * TOXICITY Crosstabulation

Count
TOXICITY
Mild Moderate | Severe Death
Drug | 100 100 1
Dose | 200 18 1 1
300 50 1 1 1
400 50 1 1 1

Noticethat thereisanatural ordering across both the rows and the columns of the above
4 x 4 contingency table. Thereis also the suggestion that progressively increasing drug
doses lead to increases in drug toxicity.
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Jonckheere-Terpstra Test

Figure 12.1 showsthe data in crosstabul ated format to illustrate the concept of applying
the Jonckheere-Terpstratest to doubly ordered tables, however thistest is obtained from
the Nonparametric Tests procedure, and your data must be structured appropriately for
Nonparametric Tests. Figure 12.2 shows a portion of these data displayed in the Data
Editor. The data consist of two variables. Dose is an ordered grouping variable that in-
dicates dose level, and toxicity isan ordered categorical variable with four values, where
1=Mild, 2=Moderate, 3=Severe, and 4=Death. Note that although value labels are dis-
played, these variables must be numeric. This is a large data set, with 227 cases, and
therefore Figure 12.2 shows only a small subset of these data in order to illustrate the
necessary data structure for the Jonckheere-Terpstra test. The full data set was used in
the following example.

Figure 12.2 Dose-response data, displayed in the Data Editor

dose toxicity
1 100 mg Mild
2 100 mg Mild
3 200 mg Severe
4 100 mg Mild
g 400mg | Moderate
& 400 myg Mild
7 100 mg Mild
8 100 mg Mild
g 300 myg Mild
10 300 mg Severe
" 200 myg Mild
12 100 mg Mild
13 100 mg Mild
14 100 mg Moderate
15 100 mg Mild
16 400 myg Mild
17 400 mg Mild

You can run the Jonckheere-Terpstra test on the dose-response data shown in Figure
12.2. Theresults are shown in Figure 12.3.
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Figure 12.3 Results of Jonckheere-Terpstra test for dose-response data

Number
of Std.
Levels Observed Mean Deviation Asymp. Exact
in Drug J-T J-T of J-T Std. J-T Sig. Significance |Exact Sig. Point
Dose N Statistic Statistic Statistic Statistic | (2-tailed) (2-tailed) (1-tailed) | Probability
TOXICITY 4 227 | 9127.000 |8827.500 | 181.760 1.648 .099 .100 .049 .000

1. Grouping Variable: Drug Dose

The value of the observed test statistic, defined by Equation 8.38,ist = 9127, the mean
is E(T) = 8828, the standard deviation is 181.8, and the standardized test statistic, cal-
culated by Equation 8.41, is t = 1.65. The standardized statistic is normally distributed
with amean of 0 and avariance of 1, while its square is chi-square distributed with one
degree of freedom.

The asymptotic two-sided p values are evaluated as the tail areas under a standard
normal distribution. In calculating the one-sided p value, which is not displayed in the
output, a choice must be made as to whether to select the left tail or theright tail at the
observed value tU = 1.65. In SPSS Exact Tests, this decision is made by selecting the
tail area with the smaller probability. Thus, the asymptotic one-sided p value is
caculated as

p1 = min{ d(t*), 1 - d(t*)} Equation 12.5

where ®©(z) isthetail areafrom —o to z under a standard normal distribution. In the
present example, it istheright tail areathat isthe smaller of the two, so that the asymp-
totic one-sided p value is evaluated as the normal approximation to Pr(T* = 1.65),
which works out to 0.0490. The asymptotic two-sided p value is defined as double the
one-sided:

P = 2p; = 0.0994 Equation 12.6

Since the square of a standard normal variate is a chi-square variate with one degree of
freedom, an equivalent alternative way to compute the asymptotic two-sided p valueis
to evaluate the tail areato theright of (1. 65) from a chi-sguare distribution with one
degree of freedom. It is easy to verify that this too will yield 0.099 as the asymptotic
two-sided p value.

The exact one-sided p value is computed as the smaller of two permutational
probabilities:

p, = min{ Pr(T* < 1.65), Pr(TU> 1.65)} Equation 12.7
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In the present example, the smaller permutational probability is the one that evaluates
the right tail. It is displayed on the screen as Pr(T" = 1.65) = 0.049. The exact one-
sided p valueisthe point probability Pr(T" = 1.65). Thisprobability, 0.000, isanatural
measure of the discreteness of the test statistic. Some statisticians advocate subtracting
half its value from the exact p value, thereby yielding a less conservative mid-p value.
(See Lancaster, 1961; Pratt and Gibbons, 1981; and Miettinen, 1985 for more informa-
tion on the role of the mid-p value in exact inference.) Equation 12.8 defines the exact
two-sided p value

p, = Pr(|T"| =21.648) = 0.100 Equation 12.8
Notice that this definition will produce the same answer as Equation 9.4, with
D(y) = (THy)y foral yOT.

Sometimesthe data set istoo large for an exact analysis, and the Monte Carlo method
must be used instead. Figure 12.4 displays an unbiased estimate of the exact one- and
two-sided p valuefor the Jonckheere-Terpstratest based on acrude Monte Carlo sample
of 10,000 tables from the reference set.

Figure 12.4 Monte Carlo results for Jonckheere-Terpstra test for dose-response data

Jonckheere-Terpstra Test!

Monte Carlo Sig. (2-tailed) Monte Carlo Sig. (1-tailed)
Numb N )
urgf er Std 99% Confidence 99% Confidence
Levels Observed Mean Deviation Asymp. Interval Interval
in Drug J-T J-T of J-T Std. J-T Sig. Lower Upper Lower Upper
Dose N Statistic Statistic Statistic | Statistic | (2-tailed) Sig. Bound Bound Sig. Bound Bound
TOXICITY 4 227 | 9127.000 |8827.500 181.760 1.648 .099 .1012 .093 .109 .0512 .045 .057

1. Grouping Variable:

Drug Dose

2-Based on 10000 sampled tables with starting seed 2000000.

The Monte Carlo point estimate of the exact one-sided p value is 0.051, which is very
close to the exact one-sided p value of 0.049. Moreover, the Monte Carlo method also
produces a confidence interval for the exact p value. Thus, although this point estimate
might change dlightly if you resamplewith adifferent starting seed or adifferent random
number generator, you can be 99% confident that the exact p value is contained in the
interval 0.045 to 0.057. The Monte Carlo point estimate of the exact two-sided p value
is0.101, and the corresponding 99% confidence interval is 0.093 to 0.109. More tables
could be sampled from the reference set to further narrow the widths of these intervals.



Doubly Ordered R x C Contingency Tables 161

Linear-by-Linear Association Test

The linear-by-linear association test orders the tables in I according to the linear rank
statistic. Thus, if the observed table is x, the unnormalized test statisticis

r Cc
LL(x) = z Z UiV Equation 12.9
i=1j=1
where u;, i = 1,2, ..., r are arbitrary row scores, and v;, j = 1, ..., ¢ are arbitrary col-

umn scores. Under the null hypothesis of no row-by-column interaction, the linear-by-
linear statistic has a mean of

Or
E(LL(X)) = N l%z u;m; Equation 12.10
D e

oooo
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E c
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and a variance of

2
var(LL(X)) = (N=1)™* Zufmi_m Zvjznj—(zjvjnj
J

N N

i
Equation 12.11

See Agresti (1990) for more information. The asymptotic distribution of

LL(X) —E(LL(X))
Jvar(LL(X))

isnormal, withamean of 0 and avariance of 1, where LL* denotesthe standardized ver-
sion of LL. The square of the normalized statistic is distributed as chi-sguare with one
degree of freedom.

Next, run the linear-by-linear association test on the dose-response data shown in
Figure 12.1. The results are shown in Figure 12.5.

LL*(X) = Equation 12.12
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Figure 12.5 Results of linear-by-linear association test

Chi-Square Tests

Asymp.
Sig. Exact Sig. |Exact Sig. Point
Value df (2-tailed) | (2-tailed) | (1-tailed) | Probability
Linear-by-Linear 3.264° 1 o071 079 044 012
Association

2. Standardized stat. is 1.807 ...

The upper portion of the output displays the asymptotic two-sided p value. The p values
are evaluated astail areas under a chi-square distribution. The standardized value for the
linear-by-linear associationtestis LL* = 1.807. Thisvalueisnormally distributed with a
mean of 0 and avariance of 1. The chi-square value, 3.264, isthe square of this standard-
ized value. The asymptotic two-sided p valueis cal culated under a chi-square distribution.
The exact one- and two-sided p values are also displayed in the output. The exact
one-sided p value is computed as the smaller of two permutational probabilities:

p, = min{ (PrlLLO(y) <1.807ly O T), Pr(LLC(y) > 1.807]ly O T')} Equation 12.13

In the present example, the smaller permutational probability is the one that evaluates
the right tail. This value is 0.044. The exact one-sided p value is the point probability
Pr(LL"(X) = 1.807) . This probability, 0.012, is a natural measure of the discreteness
of the test statistic. Some statisticians advocate subtracting half its value from the exact
p value, thereby yielding aless conservative mid-p value. (For more information on the
role of the mid-p method in exact inference, see Lancaster, 1961; Pratt and Gibbons;
1981, and Miettinen, 1985.) In Equation 12.14, the point probability is the exact two-
sided p value

p, = Pr(|LL*(X)| = 1.807) = 0.0792 Equation 12.14

Notice that this definition will produce the same answer as Equation 9.4, with
D(y) = (LLO(y))* foral yOT .

Sometimesthe dataset istoo large for an exact analysis, and the Monte Carlo method
must be used instead. Figure 12.6 displays an unbiased estimate of the exact one- and
two-sided p valuesfor the linear-by-linear association test based on a crude Monte Carlo
sample of 10,000 tables from the reference set.



Figure 12.6 Monte Carlo results for linear-by-linear association test
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i-Square Tests

Monte Carlo Significance

Monte Carlo Significance

(2-tailed) (1-tailed)
99% Confidence 99% Confidence
Asymp. Interval Interval
Sig. Lower Upper Lower Upper
Value df (2-tailed) Sig. Bound Bound Sig. Bound Bound
i -by-Li 3 2 2
Linear-by-Linear | 5 564 1 071 081 073 088 046 040 051
Association

2. Based on 10000 and seed 2000000 ...
3. Standardized stat. is 1.807 ...

The Monte Carlo point estimate of the exact one-sided p value is 0.046, which is very
close to the exact one-sided p value of 0.044. Moreover, the Monte Carlo method aso
produces a confidence interval for the exact p value. Thus, although this point estimate
might change slightly if you resamplewith adifferent starting seed or adifferent random
number generator, you can be 99% confident that the exact p value is contained in the
interval 0.040 to 0.051. The Monte Carlo point estimate of the exact two-sided p value
is0.081, and the corresponding 99% confidence interval is 0.073 to 0.088. More tables
could be sampled from the reference set to further narrow the widths of these intervals.
One important advantage of the linear-by-linear association test over the Jonckheere-
Terpstra test isits ability to specify arbitrary row and column scores. Suppose, for ex-
ample, that you want to penalize the greater toxicity levels by greater amounts through
the unequally spaced scores (1, 3, 9, 27). The crosstabulation of the new datais shown
in Figure 12.7.

Figure 12.7 Drug dose data penalized at greater toxicity levels

Drug Dose * TOXICITY Crosstabulation

Count
TOXICITY
Mild Severe
1 3 9 27

Drug | 100 mg 100 1
Dose | 500 mg 18 1 1

300 mg 50 1 1 1

400 mg 50 1 1
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Figure 12.8 shows the results of the linear-by-linear association test on these scores.
Figure 12.8 Results of linear-by-linear association test on adjusted data

Chi-Square Tests

Asymp.
Sig. Exact Sig. |Exact Sig. Point
Value df (2-tailed) | (2-tailed) | (1-tailed) | Probability
Linear-by-Linear 3.008° 1 083 078 .050 005
Association

2. Standardized stat. is 1.734 ...

Observe now that the one-sided asymptotic p valueis 0.042, (0.083)/2, which is sta-
titically significant, but that the one-sided exact p value (0.050) is not statistically sig-
nificant at the 5% level. Inference based on asymptotic theory, with arigid 5% criterion
for claiming statistical significance, would therefore lead to an incorrect conclusion.



Measures of Association

This chapter introduces some definitions and notation needed to estimate, test, and in-
terpret the various measures of association computed by SPSS Exact Tests. The meth-
ods discussed here provide the necessary background for the statistical procedures
described in Chapter 14, Chapter 15, and Chapter 16.

Technically, thereis adistinction between an actual measure of association, regarded
as apopulation parameter, and its estimate from afinite sample. For example, the corre-
lation coefficient p is a population parameter in a bivariate normal distribution, whereas
Pearson’ s product moment coefficient Risan estimate of p, based on afinite samplefrom
thisdistribution. However, in this chapter, the term “ measure of association” will be used
to refer to either a population parameter or an estimate from a finite sample, and it will
be clear from the context which is intended. In particular, the formulas for the various
measures of association discussed in this chapter refer to sample estimates and their as-
sociated standard errors, not to underlying population parameters. Formulas are not pro-
vided for the actual population parameters. For each measure of association, the
following statistics are provided:

» A point estimate for the measure of association (most often this will be the maxi-
mum-likelihood estimate [MLE]).

» Its asymptotic standard error, evaluated at the maximum-likelihood estimate
(ASEL).

» Asymptotic two-sided p values for testing the null hypothesis that the measure of
association is 0.

» Exact two-sided p values (possibly up to Monte Carlo accuracy) for testing the null
hypothesis that the measure of association is 0.

Representing Data in Crosstabular Form

All of the measures of association considered in this book are defined from data that
can be represented in the form of the r x ¢ contingency table, as shown in Table 13.1.
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Table 13.1 Observed r x ¢ contingency table

Row Column Number Row

Number col1 Col2 .. Colc Totals Row Scores
Row_1 X1 X1o - X1¢ m; u,

Row_2 Xo1 Xop - Xo¢ m, u,

Row_r Xr1 Xro Xrc m, u,
Col_Totals n, n, ng N

Col_Scores v, Vs Ve

This r x ¢ tableisformed from N observations cross-classified into row categories (r)
and column categories (c), with x;; of the observations falling into row category i and
column category j. Such atableis appropriate for categorical data. For example, therow
classification might consist of three discrete age categories (young, middle-aged, and
elderly), and the column classification might consist of three discrete annual income cat-
egories ($25,000-50,000, $50,000-75000, and $75,000-100,000). These are examples
of ordered categories. Alternatively, one or both of the discrete categories might be nom-
inal. For example, the row classification might consist of three cities (Boston, New
York, and Philadelphia). In this chapter, you will define various measures of association
based on crosstabulations such as the one shown in Table 13.1.

M easures of association are also defined on data sets generated from continuous bi-
variate distributions. Although such data sets are not naturally represented as crosstab-
ulations, it is nevertheless convenient to create artificial crosstabulations from them in
order to present one unified method of defining and computing measures of associa-
tion. To seethis, let A, B represent apair of random variablesfollowing abivariate dis-
tribution, and let { (a;,b,), (a,b,), ...(ay,by)} be N pairs of observations drawn from
thisbivariate distribution. The datamay contain ties. Moreover, the original data might
be replaced by rank scores. To accommodate these possibilities, let (u; <u, <... <u,)
ber distinct scores assumed by the A component of the data series, sorted in ascending
order. The u; ’smight represent the raw data, the datareplaced by ranks, or the raw data
replaced by arbitrary scores. When there are no ties, r will equal N. Similarly, let
(vq <V, <... <v.) becdistinct scores assumed by the B component of the data series.
Now the bivariate data can be cross-classified into an r x ¢ contingency table such as
Table 13.1, with u; asthe score for row i and v; as the score for column j.

For example, consider the bivariate data set shown in Figure 13.1. This data set is
adapted from Siegel and Castellan (1988) with appropriate alterations to illustrate the
effect of ties. The original data are shown in Chapter 14. Each subject was measured on
two scales—authoritarianism and social status striving—and the goal was to estimate
the correlation between these two measures. Figure 13.1 showsthe data displayed in the
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Data Editor. Author contains subjects’ measurements on the authoritarianism scale, and
status contains subjects measurements on the social status striving scale. Figure 13.2
shows the same data set crosstabulated asa 5 x 5 contingency table.

Figure 13.1 Bivariate data set

subject authaor social
1 82 46
2 87 46
3 g7 39
4 40 96
] 111 65
b 113 i)
7 111 Lili]
] 82 46

Figure 13.2 Crosstabulation of bivariate data set

Authoritarianism * social status striving Crosstabulation

Count
social status striving
39 46 56 65 88
Authoritarianism | 40 1
82 2
87 1 1

111 1 1
13 1

Theoriginal dataconsist of N = 8 pairsof observations. These data are replaced by an
equivalent contingency table. Because these data contain ties, the contingency tableis
5x 5 instead of 8 x 8. Had the data been free of ties, every row and column sum would
have been unity, and the equivalent contingency table would have been 8 x 8. In this
sense, the contingency table is not a natural representation of paired continuous data,
sinceit can artificially expand N bivariate pairsinto an N x N rectangular array. How-
ever, it is convenient to represent the datain this form, sinceit provides a consistent no-
tation for defining all of the measures of association and related statistics that you will
be estimating.
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Point Estimates

Maximum-likelihood theory isused to estimate each measure of association. For thispur-
pose, Table 13.1 is constructed by taking N samples from a multinomial distribution and
observing counts x;; in cells (i,j) with the probability T;, where Z; ;1;; = 1. Measures
of association arefunctlons of these cell probabilities. A maximum- Ilkellhood estimate
(MLE) is provided for each measure, along with an asymptotic standard error (ASE1)
evaluated at the MLE. All of the measures of association defined from ordinal datain
Chapter 14 and all of the measures of agreement in Chapter 16 fall in the range of -1 to
+1, with 0 implying that there is no association, —1 implying a perfect negative associa-
tion, and +1 implying a perfect positive association.

All of the measures of association defined from nominal datain Chapter 15 fall in
the range of 0 to 1, with 0 implying that there is no association and 1 implying perfect
association.

Exact P Values

Exact p values are computed by the methods described in Chapter 9. First, thereference
set, I, isdefined to be all r x ¢ tables with the same margins as the observed table, as
shown in Equation 9.1. Under the null hypothesisthat there isno association, each table
y O T hasthe hypergeometric probability P(y), given by Equation 9.2. Then each ta-
bley 0T isassignedavalue M(y) corresponding tothe measure of association being
investigated.

Nominal Data

For measures of association on nominal data, only two-sided p values are defined. The
exact two-sided p value is computed by Equation 9.4, with M(y) substituted for D(y) .
Thus,

z P(y) = Pr{M(y) = M(x)} Equation 13.1
M(y) 2 M(x)

Ordinal and Agreement Data

For measures of association based on ordinal data and for measures of agreement, only
two-sided p values are defined. Now M(y) isaunivariate test statistic ranging between
—1 and +1, with amean of 0. A negative value for M(y) implies a negative association
between the row and column variables, while a positive value implies a positive associa
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tion. The exact two-sided p valueis obtained by Equation 9.4, with M 2(y) substituted for
D(y) . Thus,

p, = Z P(y) = Pr{ |\/|2(y) > Mz(x)} Equation 13.2
M2(y) = M?(x)

An equivalent definition of the two-sided p valueis

= Y PY) =P{IM(Y) 2 M)} Equation 133
IM(Y)] 2 IM(x)|

This definition expresses the exact two-sided p value as a sum of two exact one-sided p
values, onein the left tail and the other intheright tail of the exact distribution of M(y) .
Exact permutational distributions are not usually symmetric, so the areasin the two tails
may not be equal. Thisis an important distinction between exact and asymptotic p val-
ues. In the latter case, the exact two-sided p value is always doubl e the exact one-sided
p value by the symmetry of the asymptotic normal distribution of M(y).

Monte Carlo P Values

Monte Carlo p values are very close approximations to corresponding exact p values but
have the advantage that they are much easier to compute. These p values are computed
by the methods described in Chapter 9 in “Monte Carlo Two-Sided P Values’ on p. 139.
For nominal data, only two-sided p values are defined. The Monte Carlo estimate of the
exact two-sided p value is obtained by Equation 9.6, with an associated confidence in-
terval given by Equation 9.8. In this computation, the critical region I'Uis defined by

ri={yor:M(y) = M(x)} Equation 13.4

For measures of association based on ordinal data and for measures of agreement, two-
sided p values are defined. For two-sided p values,

ri= {yOr:My)l <M} Equation 13.5

Asymptotic P Values

For measures of association based on nominal data, only two-sided p values are defined.
These p values are obtained as taill areas of the chi-square distribution with
(r—1)(c—1) degreesof freedom.
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For measures of association on ordinal dataand for measures of agreement, the asymptotic
standard error of the maximum-likelihood estimate under the null hypothesis (ASEQ) is ob-
tained. Then asymptotic one- and two-sided p values are obtained by using the fact that the
ratio M(x)/ASEO convergesto a standard normal distribution.



Measures of Association
for Nominal Data

Measures of association for nominal data are defined on r x ¢ contingency tables like
Table 13.1. However, these measures do not depend on the particul ar order in which the
rows and columns are arranged, nor do they depend on row and column scores. Inter-
changing two rows or two columns does not alter these measures of association. SPSS
Exact Tests provides the following measures of association between pairs of nominal
categorical variables:

Contingency Coefficients. These coefficients are derived from the Pearson chi-square sta-
tistic. They include the Pearson coefficient, Cramér’sV coefficient, and the phi coefficient.

Proportional Reduction in Prediction Error. Goodman and Kruskal’s tau and the uncertain-
ty coefficient are measures for assessing the power of one variable to predict the clas-
sification of members of the population with respect to a second variable.

These measures of association range between 0 and 1, with 0 signifying no associa-
tion and 1 signifying perfect association.

Available Measures

Table 15.1 shows the available tests, the procedure from which they can be obtained,
and a bibliographical reference for each test.

Table 15.1 Available tests

Measure of Association Procedure Reference
Contingency coefficients Crosstabs Liebetrau (1983)
Goodman and Kruskal's tau Crosstabs Bishop et al. (1975)
Uncertainty coefficient Crosstabs IMSL (1994)

Contingency Coefficients

All of the measures of association in thisfamily are functions of the Pearson chi-square
statistic CH(x), specified by Equation 10.3. They include the phi contingency coeffi-
cient, the Pearson contingency coefficient, and Cramér’s V contingency coefficient. All

185
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of these measures have an identical two-sided p valuefor testing the null hypothesisthat
there is no association, which is the same as the Pearson chi-square p value and which
isbased onthedistribution of CH (y). SPSS Exact Tests reports both the asymptotic and
exact p values.

The formulas for computing the three contingency coefficients are given below. The
formulafor each measure involves taking the square root of afunction of CH(x). The
positive root is always selected. For amore detailed discussion of these measures of as-
sociation, see Liebetrau (1983).

The phi contingency coefficient is given by the formula

p= CH(x) Equation 15.1

N

The minimum value assumed by @ is 0, signifying no association. However, its upper
bound is not fixed but depends on the dimensions of the contingency table. Therefore,
it is not a very suitable measure for arbitrary r x ¢ tables. For the specia case of the
2 x 2 table, Gibbons (1985) showsthat ¢ isidentical to the absolute value of Kendall's
T, coefficient and is evaluated by the formula

_ X1 Xpp = X0Xp1
JMMyNy Ny

Notice from Equation 15.2 that, for the 2 x 2 contingency table, ¢ could be either pos-
itive or negative, which implies a positive or negative association in the 2 x 2 table.
The Pearson contingency coefficient is given by the formula

C = /L(X) Equation 15.3
CH(x) +N

This contingency coefficient assumes a minimum value of 0, signifying no association.
It is bounded from above by 1, signifying perfect association. However, the maximum
value attainable by CCis /(q—1)/qg, where g = min(r, c). Thus, the range of this
contingency coefficient still depends on the dimensions of the r x ¢ table. Cramér’s V
coefficient ranges between 0 and 1, with O signifying no association and 1 signifying
perfect association. It is given by

v = |CHX) Equation 15.4
N(gq-1)

SPSS Exact Testsreportsthe point estimate of the contingency coefficient. Theformulas
for these asymptotic standard errors are fairly complicated. These formulas are de-
scribed in SPSS Statistical Algorithms, 2nd Edition (1991).

(0] Equation 15.2
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These measures may be used to analyze an unordered contingency table givenin Sie-
gel and Castellan (1988). The data consist of a crosstabul ation of three possible responses
(completed, declined, no response) to a questionnaire concerning the financial account-
ing standards used by six different organizations responsible for maintaining such stan-
dards. These organizations are identified only by their initials (AAA, AICPA, FAF, FASB,
FEI, and NAA). The crosstabulated data are shown in Figure 15.1.

Figure 15.1 Crosstabulation of response to survey and finance organization

Survey Disposition * Finance Organization Crosstabulation

Count
Finance Organization
AAA AICPA FAF FASB FEI NAA
Survey Disposition | Completed 8 8 3 11 17 2
Declined 2 5 1 2 13
ggsponse 12 8 15 19 18

First, these data are analyzed using only the first three columns of Figure 15.1. For this
subset of the data, Figure 15.2 shows the results for the contingency coefficients. The
exact two-sided p valuefor testing the null hypothesisthat thereis no association isalso
reported. Its valueis 0.090, slightly lower than the asymptotic p value of 0.092.

Figure 15.2 Phiand Cramér’s V for first three columns for survey and finance organization data

Symmetric Measures

Approx. Exact
Value Sig. Significance
Nominal by Nominal | Phi .359 .092 .090
Srame’ s 254 092 .090

N of Valid Cases
62

The next analysis usesthe full data set, which consists of all six columns of Figure 15.1.
This data set is too large to compute the exact p value. However, a 99% confidence in-
terval on the exact p value based on 10,000 Monte Carlo samplesis easily obtained. The
results are shown in Figure 15.3.
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Figure 15.3 Monte Carlo results for phi and Cramér’s V

Symmetric Measures

Monte Carlo Significance

99% Confidence
Interval

Approx. Lower Upper

Value Sig. Sig. Bound Bound
Nominal by Nominal | Phi 723 .000 .0000? .0000 .0005
Srame’ s 511 000 .0000"| .0000 .0005

N of Valid Cases
144

1. Based on 10000 and seed 2000000 ...

The p value for testing the null hypothesis that there is no association is at most 0.0005
with 99% confidence, which implies that the row and column classifications are not
independent.

Proportional Reduction in Prediction Error

In regression problems involving continuous data, the coefficient of determination (or R

statistic) is often used to measure the proportion of the total variation attributable to the
explanatory variable. It would be useful to provide an anal og of thisindex for nominal cat-
egorical data. Two measures of association are available for thispurpose. Oneis Goodman
and Kruskal’stau, and the other isthe uncertainty coefficient. Both measure the proportion
of variation in the row variable that can be attributed to the column variable.

Goodman and Kruskal’s Tau

Goodman and Kruskal’s tau coefficient for measuring the proportion of the variation in
the row variable attributable to the column variable is estimated by

s¢

—1r 2 —1r
=M% 2= X -N %o m

{'R\C(X) = ) 5 Equation 15.5
N-N"Z _,m
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This coefficient ranges between 0 and 1, with 0 implying no reduction in row variance
when the column category isknown, and 1 implying complete reduction in row variance
when the column category is known. An asymptotic confidence interval for the Good-
man and Kruskal’s tau can be obtained by computing the asymptotic standard error
ASEL1 and applying it to Equation 13.1. The exact two-sided p valuesfor testing the null
hypothesis that there is no association is obtained by substituting Trjc(x) for M(x) in
Equation 13.1. The corresponding asymptotic two-sided p valueis obtained by using the
fact that Trjc(X) convergesto achi-squaredistributionwith (r —1)(c—1) degreesof
freedom.

Uncertainty Coefficient

The uncertainty coefficient is derived from the likelihood-ratio statistic and is an alter-
native way to measure the proportion of the variation in the row variable attributable to
the column variable. It is estimated by

Zir: lzf: 1xijlog(mi nj/inj)

UR\C(X) = Equation 15.6

Zir:lmilog(mi/N)

This uncertainty coefficient ranges between 0 and 1, with 0 implying no reduction in
row variance when the column category is known, and 1 implying complete reduction
in row variance when the column category is known.

An asymptotic confidence interval for the uncertainty coefficient can be obtained by
computing the asymptotic standard error ASE1 and applying it to Equation 13.1. The
exact two-sided p values for testing the null hypothesis that there is no association is
obtained by substituting UR‘C(X) for M(x) in Equation 13.1. The corresponding as-
ymptotic two-sided p value is obtained by using the fact that UR‘C(X) convergesto a
chi-square distribution with (r —1)(c—1) degreesof freedom.

Example: Party Preference Data

The data set shown in Figure 15.4 illustrates the use of Goodman and Kruskal's tau and
the uncertainty coefficient. The data set compares party preference with preferred cold war
ally in Great Britain. These data are taken from Bishop, Fienberg, and Holland (1975).
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Figure 15.4 Crosstabulation of party preference with preferred cold war ally

Count
Preferred Cold War
Ally
u.s. U.S.S.R.
Party Preference | Right 225 3
Center 53 1
Left 206 12

First, Goodman and Kruskal’s tau is estimated, a confidence interval is obtained for it,
and the null hypothesisthat thereis no association in the population istested. Theresults
are shown in Figure 15.5.

Figure 15.5 Goodman and Kruskal’s tau for party preference and preferred cold war ally data

Directional Measures

Asymp. Approx. Exact
Value |Std. Errort|  Sig. Significance
Nominal Goodman | Party 4
by Nominal | and Preference .010 .006 .008 .015
Kruskal Dependent
tau Preferred
Cold War 013 010 036" 045
Ally
Dependent

1 Not assuming the null hypothesis
4 Based on the chi-square approximation

The observed value of Goodman and Kruskal’s tau with ally, 0.013, israther small and
leads to the conclusion that 1.3% of the variation in choice of preferred aly isexplained
by knowing a person’s party preference. The exact p value, 0.045, implies that the null
hypothesis that there is no association can be rejected at the 5% level. In other words,
the small amount of explained variation is real, not due to sampling error.

Next, the uncertainty coefficient is estimated, a confidence interval is obtained for it,
and the null hypothesisthat thereis no association in the population istested. Theresults
are shown in Figure 15.6.
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Figure 15.6 Uncertainty coefficient for party preference and preferred cold war ally data

Directional Measures

Asymp. Approx. Exact
Value Std. Errort | Approx. T2 Sig. Significance
Nominal by Nominal Uncertainty | Symmetric .012 .009 1.346 .033% .034
Coefficient Party ,
Preference .007 .005 1.346 .033 .034
Dependent
Preferred
iﬁ)'/d War 048 034 1.346 033’ 034
Dependent

1 Not assuming the null hypothesis

2. Using the asymptotic standard error assuming the null hypothesis

3 Likelihood ratio chi-square probability

Once again, the observed value of the uncertainty coefficient with aly, 0.007, is ex-
tremely small. However, the exact two-sided p value, 0.034, is statistically significant
and indicates that the measure isindeed greater than O.






Kappa

Measures of Agreement

This chapter discusses kappa, a measure used to assess the level of agreement between
two observers classifying a sample of objects on the same categorical scale. Thejoint rat-
ingsof the observersaredisplayed onasquare r x r contingency table such as Table 13.1.
Kappa (see Agresti, 1990) can be obtained using the Crosstabs procedure.

The kappa coefficient isdefined onasquare r x r contingency table. It is estimated by

r r
_ NZ - X -2 - min,

. Equation 16.1
N2— 2, - mn;

Notice that the kappa statistic does not depend on the off-diagonal elements of the ob-
served contingency table. If the row classification is by one observer, and the column
classification is by asecond observer, this measure of agreement is determined entirely
by the diagonal elements.

Example: Student Teacher Ratings

Consider the following data on student teachers who were rated by their supervisors,
represented by variables superl and super2. The students were rated as authoritarian,
democratic, or permissive. The full data set of 72 student teachersisavailablein Bish-
op, Fienberg, and Holland (1975). In the following example, a subset of 10 studentsis
considered. The crosstabulated data are shown in Figure 16.1.
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Figure 16.1 Crosstabulation of student teachers rated by supervisors (partial data)

Rating by Supervisor 1 * Rating by Supervisor 2 Crosstabulation

Count
Rating by Supervisor 2
Authoritarian | Democratic | Permissive
Rating by | Authoritarian 3 1
fupervisor Democratic 2
Permissive 2 2

The results for the kappa statistic are shown in Figure 16.2.

Figure 16.2 Kappa for student teacher ratings data

Symmetric Measures

Asymp. Approx. Exact
Value Std. Error | Approx. T Sig. Significance
Measure of Agreement Kappa 531 .237 2.348 .019 .048
N of Valid Cases 10

The value of kappais estimated at K = 0.531. The positive sign on the kappa statistic
implies that the agreement is positive. The exact two-sided p value of 0.048 is signifi-
cant; thus, you can reject the null hypothesis that there is no agreement. Notice, howev-
er, that the asymptotic two-sided p value isnot very accurate for this small data set. It is
less than one half of the exact p value.

The same analysis conducted with the full data set of 72 observationsistabulated in
Figure 16.3.

Figure 16.3 Crosstabulation of student teachers rated by supervisors (full data)

Rating by Supervisor 1 * Rating by Supervisor 2 Crosstabulation

Count
Rating by Supervisor 2
Authoritarian | Democratic | Permissive
Rating by | Authoritarian 17 4 8
fupervisor Democratic 5 12
Permissive 10 3 13
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For this larger data set, it is more efficient to perform the Monte Carlo inference rather
than the exact inference. Figure 16.4 shows the results based on 10,000 Monte Carlo

samples.

Figure 16.4 Monte Carlo results for student teacher ratings data

Symmetric Measures

Monte Carlo Significance

99% Confidence

Interval
Asymp. Approx. Lower Upper
Value Std. Error |Approx. T Sig. Sig. Bound Bound
Measure of Agreement Kappa .362 .091 4.329 .000 .0000! .0000 .0005
N of Valid Cases 72

1. Based on 10000 and seed 2000000 ...

In the full data set, the kappa statistic has a smaller value, 0.362. However, due to the
larger sample size this observed statistic is highly significant, with atwo-sided p value
guaranteed to be less than 0.0005 with 99% confidence.
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CROSSTABS

General mode:

CROSSTABS [TABLES=]varlist BY varlist [BY...] [/varlist...]

[/MISSING={TABLE**}]
JINCLUDE }

[/WRITE[={NONE**{]]
{CELLS }

Integer mode:

CROSSTABS VARIABLES=varlist (min,max) [varlist...]

/TABLES=varlist BY varlist [BY...] [/varlist...]
[/MISSING={TABLE**}]

{INCLUDE }

{REPORT }

[/WRITE[={NONE**}]]

{CELLS |
{ALL t
Both modes:

[/FORMAT={LABELS** | {AVALUE**} |NOINDEX**}| {TABLES**} {BOX**}]
{NOLABELS | {DVALUE } {INDEX ! {NOTABLES} {NOBOX}
{NOVALLABS}

[/CELLS=[ {COUNT**}{] [ROW ] [EXPECTED] [SRESID ]

{NONE ¢ [COLUMN]  [RESTD ] [ASRESID]
[TOTAL ] [ALL ]

[/STATTSTICS=[CHTSQ] [LAMBDA] [BTAU] [GAMMA] [ETA ]

[PHT 1 [UC ] [cTAaUl  [D ] [CORR]

[/METHOD={MC [CIN({99.0**})] [SAMPLES(10000**})] 1}]

(value) (value)
{EXACT [TIMER({5})] }
{valuet

**Default if the subcommand is omitted.

Example:

CROSSTABS TABLES=FEAR BY SEX
/CELLS=ROW COLUMN EXPECTED RESIDUALS
/STATISTICS=CHISQ
/METHOD=MC SAMPLES{(10000) CIN({95).
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New Syntax

A new /METHOD subcommand allows you to specify the method used to calculate signifi-
cance levels. See the SPSS Base Syntax Reference Guide for a complete description of the
full CROSSTABS syntax.

METHOD Subcommand

Displays additional results for each statistic requested. If no METHOD subcommand is spec-
ified, the standard asymptotic resultsare displayed. If fractional weights have been specified,
results for all methods will be calculated on the weight rounded to the nearest integer.

MmC

CIN(n)

SAMPLES

EXACT

TIMER(n)

Displays an unbiased point estimate and confidence interval based on the
Monte Carlo sampling method, for al statistics. Asymptotic results are al'so
displayed. When exact results can be calculated, they will be provided instead
of the Monte Carlo results. See Appendix A for details of the situations under
which exact results are provided instead of Monte Carlo results. Two optional
keywords, CIN and SAMPLES, are provided if you choose /METHOD=MC.

Controls the confidence level for the Monte Carlo estimate. CIN is available
only when /METHOD=MC is specified. CIN has a default value of 99.0. You
can specify aconfidence interval between 0.01 and 99.9, inclusive.

Specifies the number of tables sampled from the reference set when calcul at-
ing the Monte Carlo estimate of the exact p value. Larger sample sizeslead to
narrower confidence limits, but also take longer to calculate. Y ou can specify
any integer between 1 and 1,000,000,000 as the sample size. SAMPLES hasa
default value of 10,000.

Computesthe exact significancelevd for al statistics, in addition to the asymp-
totic results. If both the EXACT and MC keywords are specified, only exact re-
sults are provided. Calculating the exact p value can be memory-intensive. If
you have specified /METHOD=EXACT and find that you have insufficient
memory to calculate results, you should first close any other applications that
are currently running in order to make more memory available. You can aso
enlarge the size of your swap file (see your Windows manua for more infor-
mation). If you still cannot obtain exact results, specify /METHOD=MC to ob-
tain the Monte Carlo estimate of the exact p value. An optional TIMER keyword
isavailableif you choose /METHOD=EXACT.

Specifies the maximum number of minutes allowed to run the exact analysis
for each statistic. If thetime limit is reached, the test is terminated, no exact
results are provided, and SPSS begins to calculate the next test in the analy-
Sis. TIMER is available only when /METHOD=EXACT is specified. You can
specify any integer value for TIMER. Specifying avalue of O for TIMER turns
the timer off completely. TIMER hasadefault value of 5 minutes. If atest ex-
ceeds atime limit of 30 minutes, it is recommended that you use the Monte
Carlo, rather than the exact, method.



NPAR TESTS

NPAR TESTS [CHISQUARE=varlist[(lo,hi)]/] [/EXPECTED={EQUAL 11
$f1,f2,...fnt

[/K-S({UNIFORM [min,max] })=varlist]
{NORMAL [mean, stddev]}
{POISSON [mean] ¢

[/RUNS ({MEAN [)=varlist]
{MEDTAN }
{MODE.  }
{value }
[/BINOMIAL[ ({.5})]=varlist[({valuel,value2})]]
pi ivalue {

[/MCNEMAR=varlist [WITH varlist [(PAIRED)]]]
[/SIGN=varlist [WITH varlist [(PAIRED)]]]
[/WILCOXON=varlist [WITH varlist [(PAIRED)]1]]
| /MH=varlist [WITH varlist [(PATRED)]]]
[/COCHRAN=varlist]

[/FRIEDMAN=varlist]

[/KENDALL=varlist]

[/M-W=varlist BY var (valuel,value2)]
[/K-S=varlist BY var (valuel,value2)]
[/W-W=varlist BY var (valuel,value2)]
[/MOSES[ (n)]=varlist BY var (valuel,value2)]
[/K-W=varlist BY var (valuel,value2)]
[/MEDIAN[ (value)l=varlist BY var (valuel,value2)]

[/J-T=varlist BY var (valuel, value2)]

[/MISSING=[ {ANALYSTS**}] [INCLUDE]]
ILISTWISE ¢
[ /SAMPLE]
[/STATISTICS=[DESCRIPTIVES] [QUARTILES] [ALL]]
[/METHOD={MC [CIN({99.0**{)] [SAMPLES(10000**}{)] {]
(value) (value)
{EXACT [TIMER({5})] }
{value}

**Default if the subcommand is omitted.

Example:
NPAR TESTS K-S (UNIFORM)=V1 /K-S (NORMAL,(,1)=V2.
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New Syntax

A new /METHOD subcommand allows you to specify the method used to calculate signifi-
cance levels. See the SPSS Base Syntax Reference Guide for a complete description of the
full CROSSTABS syntax. A new /MH subcommand performs the marginal homogeneity test.
A new /3-T subcommand performs the Jonckheere-Terpstra test.

METHOD Subcommand

Displays additional results for each statistic requested. If no METHOD subcommand is spec-
ified, the standard asymptotic results are displayed.

MmC

CIN(n)

SAMPLES

EXACT

TIMER(n)

Displays an unbiased point estimate and confidence interval based on the
Monte Carlo sampling method, for al statistics. Asymptotic results are al'so
displayed. When exact results can be calculated, they will be provided instead
of the Monte Carlo results. See Appendix A for details of the situations under
which exact results are provided instead of Monte Carlo results. Two optional
keywords, CIN and SAMPLES, are provided if you choose /METHOD=MC.

Controls the confidence level for the Monte Carlo estimate. CIN is available
only when /METHOD=MC isspecified. Y ou can specify aconfidenceinterval
between 0.01 and 99.9, inclusive.

Specifies the number of tables sampled from the reference set when calcul at-
ing the Monte Carlo estimate of the exact p value. Larger sample sizeslead to
narrower confidence limits, but also take longer to calculate. Y ou can specify
any integer between 1 and 1,000,000,000 as the sample size. SAMPLES hasa
default value of 10,000.

Computesthe exact significancelevd for al statistics, in addition to the asymp-
totic results. If both the EXACT and MC keywords are specified, only exact re-
sults are provided. Calculating the exact p value can be memory-intensive. If
you have specified /METHOD=EXACT and find that you have insufficient
memory to calculate results, you should first close any other applications that
are currently running in order to make more memory available. You can aso
enlarge the size of your swap file (see your Windows manua for more infor-
mation). If you still cannot obtain exact results, specify /METHOD=MC to ob-
tain the Monte Carlo estimate of the exact p value. An optional TIMER keyword
isavailableif you choose /METHOD=EXACT.

Specifies the maximum number of minutes allowed to run the exact analysis
for each statistic. If thetime limit is reached, the test is terminated, no exact
results are provided, and SPSS begins to calculate the next test in the analy-
Sis. TIMER is available only when /METHOD=EXACT is specified. You can
specify any integer value for TIMER. Specifying avalue of O for TIMER turns
the timer off completely. TIMER hasadefault value of 5 minutes. If atest ex-
ceeds atime limit of 30 minutes, it is recommended that you use the Monte
Carlo, rather than the exact, method.
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MH Subcommand

Syntax

Operations

Example

NPAR TESTS /MH=varlist [WITH varlist [ (PAIRED)]]

MH performsthe marginal homogeneity test, which tests whether combinations of values be-
tween two paired ordinal variables are equally likely. The marginal homogeneity test istyp-
ically used in repeated measures situations. This test is an extension of the McNemar test
from binary response to multinomial response. The output shows the number of distinct val-
ues for al test variables, the number of valid off-diagonal cell counts, mean, standard devi-
ation, observed and standardized values of the test statistics, the asymptotic two-tailed
probability for each pair of variables, and, if a/METHOD subcommand is specified, one-tailed
and two-tailed exact or Monte Carlo probabilities.

» The minimum specification is a list of two variables. Variables must be polychotomous
and must have more than two values. If the variables contain more than two values, the
McNemar test is performed.

 |If keyword WITH is not specified, each variable is paired with every other variable in the
list.

o If wiTH isspecified, each variable before wiTH is paired with each variable after wiTH. If
PAIRED isalso specified, thefirst variable beforewITH is paired with the first variable af-
ter WITH, the second variable before wITH with the second variable after wiTH, and so on.
PAIRED cannot be specified without WITH.

« With PAIRED, the number of variables specified before and after wiTH must be the same.
PAIRED must be specified in parentheses after the second variable list.

» The data consist of paired, dependent responses from two populations. The marginal
homogeneity test teststhe equality of two multinomial ¢ x 1 tables, and the data can be
arranged in the form of a square ¢ x ¢ contingency table. A 2 x ¢ tableis constructed
for each off-diagonal cell count. The marginal homogeneity test statistic is computed
for cases with different values for the two variables. Only combinations for which the
values for the two variables are different are considered. The first row of each 2% c
table specifies the category chosen by population 1, and the second row specifies the
category chosen by population 2. The test statistic is calculated by summing the first
row scores across all 2 x ¢ tables.

NPAR TESTS /MH=V1 V2 V3
/METHOD=MC.

» This example performs the margina homogeneity test on variable pairs v1 and v2, v1 and
V3, and V2 and v3. Theexact p valuesare estimated using the Monte Carl o sampling method.
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J-T Subcommand

Syntax

Operations

Example

NPAR TESTS /J-T=varlist BY variable(valuel,value?2)

J-T (alias JONCKHEERE-TERPSTRA) performs the Jonckheere-Terpstra test, which tests
whether k independent samples defined by agrouping variable arefrom the same population.
Thistest is particularly powerful when the k populations have a natural ordering. The output
shows the number of levels in the grouping variable, the total number of cases, observed,
standardized, mean and standard deviation of the test statistic, the two-tailed asymptotic sig-
nificance, and, if a /METHOD subcommand is specified, one-tailed and two-tailed exact or
Monte Carlo probabilities.

The minimum specification is atest variable, the keyword BY, agrouping variable, and a
pair of valuesin parentheses.

Every value in the range defined by the pair of values for the grouping variable forms a
group.

If the /METHOD subcommand is specified, and the number of populations, k, is greater

than 5, the p valueis estimated using the Monte Carlo sampling method. The exact p value
is not available when k exceeds 5.

Cases from the k groups are ranked in a single series, and the rank sum for each group is
computed. A test statistic is calculated for each variable specified before BY.

The Jonckheere-Terpstra statistic has approximately a normal distribution.

Cases with values other than those in the range specified for the grouping variable are
excluded.

The direction of a one-tailed inference is indicated by the sign of the standardized test
statistic.

NPAR TESTS /J-T=V1 BY V2(0,4)

/METHOD=EXACT.

» This example performs the Jonckheere-Terpstra test for groups defined by values 0

through 4 of v2. The exact p values are calculated.



SEED

SET [SEED={n ]
{RANDOM }

New Syntax

A new RANDOM keyword on the SEED subcommand allows you to specify arandomiinitial
seed. See the SPSS Base Syntax Reference Guide for a complete description of the full SET
syntax.

SEED Subcommand

SEED specifies the random number seed. You can specify any integer, preferably a number
greater than 1 but less than 2,000,000,000. Y ou can also choose to have a seed randomly
selected by your system.

¢ SPSS uses a pseudo-random-number generator to select random samples or create uni-
form or normal distributions of random numbers. The generator begins with a seed, a
large integer. Starting with the same seed, the system will repeatedly produce the same
sequence of numbers and will select the same sample from a given datafile.

¢ At the start of each session, the seed is set by SPSS to avalue that may be fixed or may
vary, depending on whether you have specified SET SEED=n Or SET SEED=RANDOM.

¢ By default, the seed value changes each time arandom-number seriesis needed in a ses-
sion. To repeat the same random distribution within a session, specify the same seed

each time.
« Therandom number seed can be changed any number of times within a session.
RANDOM Selectsarandom initial seed.
Example

SET SEED=987654321.

* The random number seed is set to the value 987,654,321. The seed will be in effect the
next time the random-number generator is called.
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Conditions for Exact Tests

There are certain conditions under which exact results are always provided, even when
you have specified the Monte Carlo method either through the dialog box or through
syntax. Table A.1 displays the conditions for the relevant tests under which exact re-
sults are always provided and a request for the Monte Carlo method is ignored.

Table A.1  Conditions under which exact tests are always provided

Test Procedure Condition

Binomial test Nonparametric tests. Binomial Exact results are always
Tests provided

Fisher’s exact test Crosstabs 2x 2 table

Likelihood-ratio test Crosstabs 2x 2 table

Linear-by-linear association  Crosstabs 2x 2 table

test

McNemar test Nonparametric tests. Tests for Exact results are always
two related samples provided

Median test Nonparametric tests: Tests for k =2 andn<30
several related samples

Pearson chi-square test Crosstabs 2x 2 table

Sign test Nonparametric tests. Tests for n<25
two related samples

Wald-Wolfowitz runs test Nonparametric tests: Tests for n<30

two independent samples
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Algorithms in SPSS Exact Tests

Exact Algorithms

An exact p value is computed by enumerating every single outcome in some suitably
defined reference set, identifying all outcomesthat are more extreme than the observed
one, and summing their probabilities under the null hypothesis. Although this might
appear to be aformidable computing problem by the time the size of the reference set
exceeds, say, afew million, it is till feasible. Many researchers have worked on this
problem and have devel oped fast numerical agorithms that enumerate all of the possi-
ble outcomes implicitly rather than explicitly. That is, these algorithms don’t examine
each individual outcome separately. There are ways to identify large numbers of out-
comes at one time and classify them as either more or less extreme than the observed
outcome. A complete collection of referencefilesfor all of these algorithmsisavailable
in the Exact-Stats Mailbase on the Internet. These references can be accessed through
FTP, Gopher, or World Wide Web at the following addresses:

ftp://mailbase.ac.uk/pub/lists/exact-stats/files

gopher://mailbase.ac.uk/Mailbase Lists - A-E/exact-stats/Other
Files

http://www.mailbase.ac.uk/Mailbase Lists - A-E/exact-
stats/Other Files

Oneclass of algorithms, called network algorithms, was devel oped by Mehta, Patel, and
their colleagues at the Harvard School of Public Health. These algorithms are referenced
below in chronological order. Many of them have aready been incorporated into SPSS
Exact Tests, and others will be incorporated into future releases of the software.

Mehta, C. R., and N. R. Patel. 1980. A network algorithm for the exact treatment of the
2 x k contingency table. Communications in Satistics, 9:6, 649-664.

Mehta, C. R., and N. R. Patel. 1983. A network algorithm for performing Fisher’ s exact test
in r x ¢ contingency tables. Journal of the American Statistical Association, 78:382,
427-434.

Mehta, C. R., N. R. Patel, and A. Tsiatis. 1984. Exact significance testing to establish treat-
ment equivalence ordered categorical data. Biometrics, 40: 819-825.

Mehta, C. R., N. R. Patel, and R. Gray. 1985. On computing an exact confidence interval
for the common oddsratioin several 2 x 2 contingency tables. Journal of the American
Satistical Association, 80:392, 969-973.
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Mehta, C. R., and N. R. Patel. 1986. A hybrid algorithm for Fisher’s exact test in unordered
r x ¢ contingency tables. Communications in Statistics, 15:2, 387—403.

Mehta, C. R, and N. R. Patel. 1986. FEXACT: A FORTRAN subroutine for Fisher's exact
test on unordered r x ¢ contingency tables. ACM Transactions on Mathematical Soft-
ware, 12:2, 154-161.

Hirji, K., C. R. Mehta, and N. R. Patel. 1987. Computing distributions for exact logistic re-
gression. Journal of the American Satistical Association, 82:400, 1110-1117.

Mehta, C. R., N. R. Patel, and L. J. Wei. 1988. Constructing exact significance testswith re-
stricted randomization rules. Biometrika, 75:2, 295-302.

Hirji, K., C. R. Mehta, and N. R. Patel. 1988. Exact inference for matched case control stud-
ies. Biometrics, 44:3, 803-814.

Agresti, A., C. R. Mehta, and N. R. Patel. 1990. Exact inference for contingency tables with
ordered categories. Journal of the American Statistical Association, 85:410, 453-458.
Mehta, C. R., N. R. Patel, and P. Senchaudhuri. 1992. Exact stratified linear rank tests for
ordered categorical and binary data. Journal of Computational and Graphical Satistics,

1: 21-40.

Mehta, C. R. 1992. An interdisciplinary approach to exact inference for contingency tables.
Satistical Science, 7: 167-170.

Hilton, J., and C. R. Mehta. 1993. Power and sample size calculations for exact conditional
tests with ordered categorical data. Biometrics, 49: 609-616.

Hilton, J,, C. R. Mehta, and N. R. Patel. 1994. Exact Smirnov p values using a network al-
gorithm. Computational Statistics and Data Analysis, 17:4, 351-361.

Mehta, C. R., N. R. Patel, P. Senchaudhuri, and A. A. Tsiatis. 1994. Exact permutational tests
for group sequential clinical trials. Biometrics, 50:4, 1042—1053.

Monte Carlo Algorithms

Monte Carlo algorithms solve a slightly easier computational problem. They do not at-
tempt to enumerate all of the members of the reference set. Instead, they estimate the p
value by taking arandom sample from the reference set. The Monte Carlo algorithmsin
SPSS Exact Tests make use of ideas in the following papers (in chronological order):

Agresti, A., D. Wackerly, and J. M. Boyett. 1979. Exact conditional tests for cross-classifi-
cations: Approximations of attained significance levels. Psychometrika, 44: 75-83.

Patefield, W. M. 1981. An efficient method of generating r x ¢ tables with given row and
column totals. (Algorithm AS 159.) Applied Statistics, 30: 91-97.

Mehta, C. R., N. R. Patel, and P. Senchaudhuri. 1988. Importance sampling for estimating
exact probabilities in permutational inference. Journal of the American Satistical Asso-
ciation, 83:404, 999-1005.

Senchaudhuri, P., C. R. Mehta, and N. R. Patel. 1995. Estimating exact p values by the method
of control variates, or Monte Carlo rescue. Journal of American Statistical Association.
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Index

asymptotic method, 1

asymptotic one-sided p value
Jonckheere-Terpstra test, 159
K independent samples, 122, 129, 131
Mann-Whitney test, 84
asymptotic p value, 12
assumptions, 12
defined, 16
measures of association, 169
obtaining, 7
Pearson’s chi-square, 16
when to use, 16, 29-37
asymptotic two-sided p value
chi-square test, 40
Jonckheere-Terpstra test, 159
K independent samples, 122
K related samples, 101
Mann-Whitney test, 84
McNemar test, 69
r x c tables, 140
sign test, 62
Wilcoxon signed-ranks, 62

binary data

one-sample test, 49-55
binomial test, 49-50

example: pilot study for new drug, 50
bivariate data

measures of association, 166-167
blocked comparisons, 95
BY (keyword)

NPAR TESTS command, 204

categorical data

assumptions, 12
categorical variables, 135
chi-square test

asymptotic two-sided p value, 40

215

exact two-sided p value, 41
example: medium-sized data set, 44-45
example: small data set, 42-44
goodness-of -fit test, 39-41
Monte Carlo two-sided p value, 41
two-sided p value, 40
CIN (keyword)
CROSSTABS command, 200
NPAR TESTS command, 202
classvariables, 135
Cochran’s Q test, 108-111
example: crossover clinical trial, 109-111
when to use, 96
Cohen's kappa. See kappa
confidence levels
specifying, 7
contingency coefficients
measures of association, 185-188
contingency tables. Seer x ¢ contingency tables
continuous data
assumptions, 12
continuous variables, 135
correlations
Pearson’ s product-moment correl ation coefficient,
172-174
Spearman’ s rank-order correlation coefficient,
174-176
Cramér'sV
example, 187-188
measures of association, 185-188
CROSSTABS (command)
new syntax, 200
Crosstabs procedure, 199-200
asymptotic p value, 7
confidence levels, 7
contingency coefficients, 185
exact pvalue, 8
exact statistics, 6-8
Fisher's exact test, 141
gamma, 171
Goodman and Kruskal’ stau, 185
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Kendall’ s tau-b, 171
Kendal’stau-c, 171
likelihood-ratio test, 141
linear-by-linear association test, 155
Monte Carlo p value, 7

Pearson chi-square test, 141

Pearson’ s product-moment correlation coefficient,

171
samples, 7
Somers d, 171

Spearman’ s rank-order correlation coefficient, 171

time limit, 8

uncertainty coefficient, 185
crosstabulated data

measures of association, 165-167

crosstabulation, 199-200
See also Crosstabs procedure

data sets
small, 30
sparse, 36-37
tied, 31-34
unbalanced, 35
doubly ordered contingency tables, 135
Seealsor x ¢ contingency tables

EXACT (keyword)
CROSSTABS command, 200
NPAR TESTS command, 202

exact method, 1-3

exact one-sided p value
Jonckheere-Terpstra test, 159
K independent samples, 134
linear-by-linear association test, 162
Mann-Whitney test, 82
McNemar test, 69
runstest, 92

exact pvalue, 12, 16
defined, 1
example: fire fighter data, 1-3
obtaining, 8
r x c tables, 136
when to use, 24

exact statistics
obtaining, 6-8

exact tests
memory limits, 8
setting time limit, 8
when to use, 4

exact two-sided p value
chi-square test, 41
Jonckheere-Terpstra test, 160
K independent samples, 134
K related samples, 99
Kolmogorov-Smirnov, 88
linear-by-linear association test, 162
Mann-Whitney test, 82
McNemar test, 69
measures of agreement, 168
median test, 124
nominal data, 168
ordinal data, 168
r x ctables, 138
runs test, 52

Fisher's exact test, 147-148
example: 2 x 2 table, 18-24
example: tea-tasting experiment, 18-24
when to use, 141

Friedman’s test, 101-104
example: effect of hypnosis, 102-104
when to use, 96

full multinomial sampling, 137

gamma, 171
example: smoking habit data, 183-184
measures of association, 183-184
Goodman and Kruskal’s tau
example: party preference data, 189-191
measures of association, 185, 188-191
goodness-of -fit tests
chi-square, 39-45
Kolmogorov-Smirnov, 45-47
one-sample, 39-47

independent samples, 75-94
Jonckheere-Terpstratest, 114, 131-134
when to use each test, 76



Jonckheere-Terpstra test
asymptotic one-sided p value, 159
asymptotic two-sided p value, 159
exact one-sided p value, 159
exact two-sided p value, 160
example: dose-response data, 157-160
example: space shuttle O-ring incidents, 132-134
in Tests for Severa Independent Samples
procedure, 204
r X ¢ contingency tables, 156-160
when to use, 115, 156
JT (subcommand)
NPAR TESTS command, 204

K independent samples tests, 113-134
Jonckheere-Terpstra test, 131-134
Kruskal-Wallis test, 127-130
median test, 122-127
when to use, 114-115

K related samples tests, 95-111
Cochran’s Q, 108-111
Friedman's, 101-104
Kendall’s W, 104-107
when to use, 96
kappa
example: student teacher ratings, 193-195
measures of agreement, 193-195
Kendall’ scoefficient of concordance. See Kendall’sW
Kendall’stau
example: smoking habit data, 180-182
measures of association, 177-182
Kendall’ stau-b, 171
Kendall’stau-c, 171

Kendall’s W test, 104-107
example: attendance at annual meeting, 105-107
example: relationship to Spearman’s R, 107
when to use, 96

Kolmogorov-Smirnov test, 87-91
example: effectiveness of vitamin C, 90-91
example: uniform distribution, 47
example: diastolic blood pressure data, 31-34
goodness-of-fit, 45-47
when to use, 76

Kruskal-Wallis test, 149-153
example: hematologic toxicity data, 129-130
example: tumor regression rates, 150-153
when to use, 115, 143, 149
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likelihood-ratio test, 145-147
example: sports activity data, 25-27
when to use, 141
linear-by-linear association test
exact one-sided p value, 162
exact two-sided p value, 162
example: alcohol and birth defect data, 35
example: dose-response data, 161
r X ¢ contingency tables, 161-164
when to use, 156

|ocation-shift alternatives, 115

Mann-Whitney test, 80-86
example: blood pressure data, 84-86
when to use, 76
Mantel-Haenszel test. Seelinear-by-linear association
test
margina homogeneity test, 71-73
example: matched-case control study, 71-72
example: Pap-smear classification, 72-73
in Two-Related-Sampl es Tests procedure, 203
when to use, 58
MC (keyword)
CROSSTABS command, 200
NPAR TESTS command, 202
McNemar test, 68-70
exact one-sided p value, 69
exact two-sided p value, 69
example: voters' preference, 70
when to use, 58
measures of agreement
exact two-sided p value, 168
kappa, 193-195
measures of association
asymptotic p values, 169
bivariate data, 166-167
contingency coefficients, 185-188
Cramér'sV, 185-188
crosstabulated data, 165-167
exact p values, 168-169
gamma, 183-184
Goodman and Kruskal’ s tau, 188-191
introduction, 165-170
Kendal’stau, 177-182
Kendal’sW, 171
Monte Carlo p values, 169
nominal data, 185-191
ordinal data, 171-184
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p values, 168-170
Pearson’ s product-moment correlation coefficient,
171, 172-174
phi, 185-188
point estimates, 168
proportional reduction in prediction error, 185,
188-191
Somers' d, 177-182
Spearman’ srank-order correlation coefficient, 171,
174-176
uncertainty coefficient, 189-191
median test, 122-127
example: hematologic toxicity data, 124-127
when to use, 115
memory limits
exact tests, 8
METHOD (subcommand)
CROSSTABS command, 200
NPAR TESTS command, 202, 204
MH (subcommand)
NPAR TESTS command, 203
Monte Carlo method, 3
defined, 3
example: fire fighter data, 3
random number seed, 8-9
Monte Carlo one-sided p value
sign test, 63
Wilcoxon signed-ranks test, 63
Monte Carlo p value
obtaining, 7
when to use, 24-29
Monte Carlo p values
measures of association, 169
Monte Carlo two-sided p value
chi-square test, 41
K independent samples, 120
K related samples, 100
Kolmogorov-Smirnov, 88
Mann-Whitney test, 83
median test, 124
r x c tables, 139
sign test, 64
Wilcoxon signed-ranks test, 64

nomina data
contingency coefficients, 185-188
Cramér'sV, 185-188

exact two-sided p values, 168

Goodman and Kruskal’s tau, 188-191

phi, 185-188

proportional reduction in prediction error, 188-191
uncertainty coefficient, 189-191

nominal variables, 135

nonparametric tests
assumptions, 12
asymptotic p value, 7
binomial, 49
chi-square, 39
Cochran’s Q, 95
confidence levels, 7
exact pvalue, 8
exact statistics, 6-8
Friedman’s, 95
Jonckheere-Terpstratest, 114, 155
Kendall’s W, 95
Kolmogorov-Smirnov, 39, 75
Kruskal-Wallis, 114, 149
Mann-Whitney test, 75
margina homogeneity, 57
McNemar, 57
median test, 114
Monte Carlo p value, 7
new syntax, 202
new tests, 8
runs, 49, 75
samples, 7
sign, 57
time limit, 8
two-related samples, 57
Wald-Wolfowitz runstest, 75
Wilcoxon signed-ranks, 57

NPAR TESTS (command), 201-204
J-T subcommand, 204
METHOD subcommand, 202
MH subcommand, 203
new syntax, 202
pairing variables, 203

observed r x c tables, 135-136
computing exact p value for, 136
one-sample tests
binary data, 49-55
chi-square, 39-45
Kolmogorov-Smirnov, 45-47
runs test, 51-55



one-sided p value
binomial test, 50
K independent samples, 120, 122
Mann-Whitney test, 82, 84
McNemar test, 69
runs test, 92
sign test, 62-63
Wilcoxon signed-ranks test, 62-63
ordered alternatives, 115
ordered variables, 135
ordinal data
exact two-sided p values, 168
gamma, 183-184
Kendall’s tau, 177-182
measures of association, 171-184
Pearson’ s product-moment correlation coefficient,
172-174
Somers d, 177-182

Spearman’ s rank-order correlation coefficient,
174-176

p value
choosing a method, 22-37
hypothesis testing, 11-14
in two-sample tests, 80
measures of association, 168-170
See also one-sided p value; two-sided p value
PAIRED (keyword)
NPAR TESTS command, 203
paired samples, 57-73
when to use each test, 58
Pearson chi-square
example: 3x 4 table, 14-18
example: fire fighter data, 14-18
example: sparse contingency table, 12-14
example: sports activity data, 36-37
Pearson chi-square test, 138, 144-145
when to use, 141
Pearson’s product-moment correlation coefficient
example: social striving data, 30, 172-174
measures of association, 172-174
phi
example, 187-188
measures of association, 185-188
point estimates
measures of association, 168
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Poisson sampling, 137
preferences
random number seed, 205
product multinomial sampling, 137, 143
proportional reduction in prediction error
measures of association, 185, 188-191

See also Goodman and Kruskal’ s tau; uncertainty
coefficient

I X ¢ contingency tables
doubly ordered, 155-164
example: ora lesions data, 143-144
Jonckheere-Terpstra test, 156-160
Kruskal-Wallis test, 149-153
linear-by-linear association test, 161-164
observed, 135-136
reference sets for, 136
singly ordered, 149-153
tests on, 135-140
unordered, 141-148
RANDOM (keyword)
SET command, 205
random number seed, 8-9
specifying, 205
reference sets, 16-17, 21, 137
forr x c tables, 136
runs test, 51-55, 91-94
example: children’s aggression scores, 53-54
example: discrimination against female workers,
92-94
example: small data set, 54-55
when to use, 76

samples

Monte Carlo method, 7
SAMPLES (keyword)

NPAR TESTS command, 202
sampling

full multinomial, 137

Poisson, 137

product multinomial, 137
SEED (subcommand)

SET command, 205
seed. See random number seed
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SET (command) runs test, 52
SEED subcommand, 205 sign test, 62, 64
sign test, 59-67 Wilcoxon signed-ranks test, 62, 64

when to use, 58

singly ordered contingency tables, 135
Seealso r x ¢ contingency tables uncertainty coefficient

Somers’ d, 171, 177-182 example: party preference data, 189-191
example: smoking habit data, 180-182 measures of association, 185, 189-191
measures of association, 177-182 unordered continuous contingency tables, 135

Spearman’ s rank-order correlation coefficient dered ti tables. See
example: social striving data, 175-176 unor eéontzrggnccc}),ntgglg;ncy &s. rxc

measures of association, 174-176

Wald-Wolfowitz. See runs test

tﬁﬁgﬁ;ﬁ 40 Wilcoxon rank-sum test, 11
defining for r x ¢ tables, 138 Wilcoxon signed-ranks test, 11, 59-67
K olmogorov-Smirnov, 46 e’ﬂ?jmpli Ag(;l’ for AIDS, 64-67
mid-ranks,
Testsf% 1S_e%/g£al Independent Samples procedure, permutational distribution, 60

when to use, 58

Wilcoxon Mann-Whitney test. See Mann-Whitney
test
WITH (keyword)
NPAR TESTS command, 203

grouping variables, 204
time limit

setting for exact tests, 8
TIMER (keyword)

NPAR TESTS command, 202

Two-Related-Samples Tests procedure, 203

two-sample tests
independent samples, 75-94
Kolmogorov-Smirnov, 87-91
Mann-Whitney, 80-86
margina homogeneity, 71-73
McNemar, 68-70
median, 94
paired samples, 57-73
runs, 91-94
sign, 59-67
Wilcoxon signed-ranks, 59-67
two-sided p value
binomial test, 50
chi-square test, 40
K independent samples, 115, 120-121
K related samples, 99, 101
Kolmogorov-Smirnov, 88
Mann-Whitney test, 82, 84
McNemar test, 69
median test, 124
r x ctables, 138, 140
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