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Chapter One: Methods of solving partial differential equations

Section(1.1): Origin of Partial Differential Equations
(1.1.1) Introduction:

Partial differential equations arise in geometry, physics and
applied mathematics when the number of independent variables in
the problem under consideration is two or more. Under such a
situation, any dependent variable will be a function of more than
one variable and hence it possesses not ordinary derivatives with
respect to a single variable but partial derivatives with respect to

several independent variables.

(1.1.2) Definition Partial Differential Equations(P.D.E.)

An equation containing one or more partial derivatives of an

un known function of two or more independent variables is known
asa (P.D.E.).
For examples of partial differential equations we list the

following:

0z 0z
1'&+0__Z+Xy

6y{( )2+( )2 )
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(1.1.3) Definition: Order of a Partial
DifferentialEquation (O.P.D.E.)

The order of a partial differential equation is defined as the

order of the highest partial derivative occurring in the partial

differential equation.

The equations in examples (1),(3),(4) and (6) are of the first

order ,(5) is of the second order and (2) is of the third order.

(1.1.4)Definition: Degree of a Partial
DifferentialEquation (D.P.D.E.)

The degree of a partial differential equation is the degree of

the highest order derivative which occurs in it after the equation
has been rationalized, i.e made free from radicals and fractions so
for as derivatives are concerned. in (1.1.2), equations (1),(2),(3)
and (4) are of first degree while equations(5) and(6) are of second

degree.

(1.1.5) Definition: Linear and Non-Linear Partial

Differential Equations

A partial differential equation is said to be (Linear) if the
dependent variable and its partial derivatives occur only in the first
degree and are not multiplied . Apartial differential equation which

Is not linear is called a(non-linear) partial differential equation.
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In (1.1.2), equations (1) and (4) are linear while equation
(2),(3),(5) and (6) are non-linear.

(1.1.6) Notations:

When we consider the case of two independent variables we

usually assume them to be x and y and assume (z) to be the
dependent variable. We adopt the following notations throughout
the study of partial differential equations.

0z 0z 9*z 0%z dt_azz
p_ax'q_ay'r_axz's_axayan  Qy?

In case there are n independent variables, we take them to be

X1y X9y vee een uen ,X, and z is than regarded as the dependent variable.
In this case we use the following notations:

B 0z B 0z B 0z
—aX1 , P2 _axz ) e e e , Pn _axn

Sometimes the partial differentiations are also denoted by

P1

making use of suffixes. Thus we write :

du dou d0%u d0%u

ax W T Gy e T g Yy T 502

2
y

and so on.
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(1.1.7) Classification of First Order p.d.es into:

linear, semi-linear ,quasi-linear and non-linear equations

*|linear equation: A first order equation f(x,y,z p,q) = 0

Is known as linear if it is linear in p,q and z , that is ,if given
equation is of the form:
P(x,y)p + Qx,y)q = R(x,y)z + S(x,y)
for example:
1.yx%p + xy?q = xyz + x%y3
2.p+q=2z+Xxy
are both first order L.P.D.Es

*Semi-linear equation: A first order p.d.e. f(x,y,z,p,q) =0

Is known as a semi-linear equation, if it is linear in p and q and
the coefficients of p and q are functions of x and yonly. i.e if the
given equation is of the form:

P(x,y)p + Q(x,y)q = R(x,y,2)
for example:

1.xyp + x%yq = x%y?z?

Xzyz

72

2.yp +xq =
are both semi-linear equations

*Quasi-linear equation: A first order p.d.e.f(x,y,z,p,q) = 0

Is known as quasi-linear equation, if it is linear in p and q. i.e if

the given equation is of the form:

P(x,y,2)p + Qx,y,2)9 = R(x,y,2)
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for example:
1.x%zp + y?zq = xy

2.(x* —yz)p + (y* —zx)q = 2% —xy
are both quasi-linear equation.

*Non-linear_equation: A first order p.d.ef(x,y,z p,q) = 0 which

does not come under the above three types ,is known as a non-
linear equation.

for example:

1.p?+qg*=1

2.pq =z

3.x2p? + y2q? = 72

are all non-linear p.d.es.
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Section(1.2):Derivation of Partial Differential Equation
by the Elimination of Arbitrary Constants

For the given relation F(x,y,z a,b) = 0 involving variables
X,y,z and arbitrary constants a and b,the relation is differentiated
partially with respect to independent variables x and y. Finally

arbitrary constants a and b are eliminated from the relations

OF oOF
F(X,y,z,a,b)—O,g—O and a—y—O
The equation free from a and b will be the required partial

differential equation.

Three situations may arise:
Situation (1):
When the number of arbitrary constants is less than the
number of independent variables, then the elimination of arbitrary
constants usually gives rise to more than one partial differential

equation of order one.

Example: Considerz =ax+y ............ (1)
where a is the only arbitrary constant and x,y are two
independent variables.

Differentiating (1) partially w.r.t. x, we get
0z

& e (2)

Differentiating (1) partially w.r.t. y, we get
0z

o = 1 3)




Chapter One: Methods of solving partial differential equations

Eliminating abetween (1) and (2) yields

Z=X(%)+y ............ (4)

Since (3) does not contain arbitrary constant, so (3) is also
partial diff. equation under consideration thus, we get two p.d.es
(3) and (4).

Situation (2):
When the number of arbitrary constants is equal to the
number of independent variables, then the elimination of arbitrary

constants shall give rise to a unique partial diff. eq. of order one.

Example: Eliminate a and bfrom

az+b=a%x+y ... (1)

Differencing (1) partially w.r.t. x and y, we have
0z

a (&) =a%? (2)
0z

a (a—y) =1 ] 3)

Eliminating a from (2) and (3), we have

(62) (62) _ 4
ox/) \dy/
which is the unique p.d.e. of order one.

Situation (3):

When the number of arbitrary constants is greater than the
number of independent variables. Then the elimination of arbitrary
constants leads to a partial differential equation of order usually

greater than one.
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Example: Eliminate a, b and c from

Z=ax+by+cxy  ............ (1)

Differentiating (1) partially w.r.t. x andy we have
Zmatcy ) Z—;=b+cx ............ 3)
from (2)and (3) 2= = 027 =0 4)

afgy =C i, 5)

0 v~ x4 by 4 oxy +
X= yay—ax y +cxy +cxy

from (1) and (5)

2

0z 0z 0%y
xax+yay—z+xyaxay ............ (6)

Thus, we get three p.d.es given by (4) and (6) which are all of

order two.

... Examples ...
Examplel: Find a p.d.e. by eliminating a and bfrom
z = ax + by + a% + b?
Sol. Givenz =ax+by+a?+b% ............ (1)
differentiating (1) partially with respect to x and y,

0z 0z
weget —-=a and O_y_b
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substituting these values of a and b in (1) we see thatthe

arbitrary constants a and b are eliminated and we obtain

(2 o)+ G+

which is required p.d.e.

Example2: Eliminate arbitrary constants a and b from
z=(x—a)?+ (y —b)? to form the p.d.e.

Sol. Given z=(x—a)’+(y—b)? ............ (1)

differentiating (1) partially with respect to x and y, to get

0z .
&—2(x—a) a—y—Z(y b)

Squatring and adding these equations, we have

2
(5) + G0 = 4= + 4y - b)?

A
—\2 — _ 2
(52) + (o2 =4lc= a7 + @ =)
) :

(a—i) + (—)2 =4z  using (1)

Example 3: from p.d.es by eliminating arbitrary constants a and b

from the following relations:

@ z=akx+y)+b (b) z=ax+ by + ab
(c)z=ax+a’y’+b (d)z=(x+a)(y+b)
Sol.(a) Givenz=a(x+y)+b ............ (1)

Differentiating (1) w.r.t.x and y, we get
0z 0z

ax a "oy
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eliminating a between these, we get

0z % P :
x oy which is the required p.d.e.

(b)  Tryyourself  (c) Tryyourself (d) Try yourself

... Exercises ...
Ex.(1):Eliminate a and b from z = axe¥ + %aze2y +b to form

the partial differential equation.

Ex.(2): Eliminate h and k from the equation(x — h)? + (y — k)? +

z? = a?to form the p.d.e.

Ex.(3): Eliminate a and b from the following equations to form the

p.d.es
@22=25+% (b)2z = (ax + y)? + b(c)log(az —
1) =x+ay+b

Ex.(4): Eliminate the arbitrary constants indicated in brackets from
the following equations and form corresponding partial diff. eqs
(1) z = AePlsinpx , (pand A)
(2) z= AePtcospx, (p and A)
(3) z=ax®+by> ,(aandb)
2
(4) 4z=|ax+(¥)+b| (aandb)

(5) z=ax?+bxy+cy? , (ab,)

10
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Section (1.3): Methods for solving linear and non-linear
partial differential equations of order one

(1.3.1) Lagrange's method of solving Pp + Qg = R,
when P, Q and R are function of x,v, Z.

A guasi-linear partial differential equation of order one is of
the form Pp + Qq = R, where P,Q and R are function of x,y,z.
Such a partial differential equation is known as (Lagrange
equation), for example: * xyp + yzq = zx

*E-y)p+(y-z)qg=z—-x

(1.3.2) Working Rule for solving Pp + Qq = R by
Lagrange's method

Step 1. Put the given linear p.d.e. of the first order in the standard
form Pp+Qgq=R ............ (1)

Step 2. Write down Lagrange's auxiliary equations for (1) namely
x _dy _ dz

PTG TR e (2)

Step 3. Solve (2) by using the method for solving ordinary
differential equation of order one. The equation (2) gives three
ordinary diff. egs. every two of them are independent and give a

solution.

11
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Let u(x,y,z) =a and v(x,y,z) = b, then the (general
solution) is @(u,v) = 0, wher @ is an arbitrary function and the
complete solution is u = av + 3 where «, 3 are arbitrary constant.

Ex.1: Solve 2E — 3E = 2X
== 9x Ay

; 0z 0z
Sol. Given 2& — 3a_y =2X iiiiiiinnn. (1)

The Lagrange's auxiliary for (1) are

dx _ dy _ dz

S T T T g e (2)

Taking the first two fractions of (2), we have
%:f_i_) —3dx—2dy =0 .......... 3)
Integrating (3), —3x—2y=a ............ 4)

a being an arbitrary constant

Next, taking the first and the last fractions of (2), we get

KL, ydx=dz —xdx—dz=0...... ®))
2 2X

2
Integrating (5), >~ —z=b ............ (6)

b being an arbitrary constant

From (4) and (6) the required general solution is
X2
@d(a,b) =0 - Q)(—SX- 2y,7—z) =0

Where @ is an arbitrary function.

2
Ex.2: Solve (y Z) p + xzq = y?

X

12
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Sol. leen( )p+xzq V2 o (1)

The Lagrange's auxiliary equation for (1) are
dx dy dz

L )

yz  xz  y?
X

Taking the first two fractions of (2), we have

x?zdx = y?zdy - x?dx—y?dy=0 ............ (3)

3
Integrating (3), X? — y? =a > x>—y3=a; ...... (4)

a, being an arbitrary constant.

Next, taking the first and the last fractions of (2), we get
xy?dx = y?zdz —» xdx—zdz=0 ............ (5)

i x2  z?
Integrating (5), > ——=b - x? —z? =by ...(6)

b, being an arbitrary constant

From (4) and (6) the general solution is
®(a;, b)) =0 - O(x3—y3,x2—-22)=0
Ex.3:Solve x% + y% + t% = xyt

Sol. Given x—+ya +t——xyt ............ (1)

The Lagrange's auxiliary equation for (1) are
x _dy _dt_ dz

Ty T gt (2)

Taking the first two fractions of (2), we have
T LE oo 3)
X y X y

Integrating (3), Inx —Iny =lna - § =a ...... (4)
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Taking the second and the third fractions of (2), we get
dy _dt _ dy dt_

———=0 ............ (5)

y t y t

Integrating (5),Iny —Int=Inb - ==b ...... (6)

Next, taking the second and the last fractions of (2), we get
dy dz

S T xtdy —dz=0 ............ (7)
Substituting (4) and (6) in (7), we get
cyfdy—dz=0 ... (8)

Integrating (8), --y* —z = ¢
Using (4) and (6), sxyt—z=c ... (9)
Where a, b and c are an arbitrary constant

The general solution is

@®(a,b,c) =0 Q)(Xy 1 t ) 0
= - _ - - — =
(a,b,c y't'3Xy 7

@ being an arbitrary function.

Rule: for any equal fractions, if the sum of the denominators

equalto zero,then the sum of the numerators equal to zero also.

Now, Return to the last example depending on the Rule
above we will find the constant c.
Multiplying each fraction in Lagrange's auxiliary (2) by

yt, xt, xy, —3 respectively, we get the sum of the denominators is

14




Chapter One: Methods of solving partial differential equations

xyt+ xyt+xyt—3xyt=0 ............ (10)

Then the sum of the numerators equal to zero also:

ytdx + xtdy + xydt — 3dz =0 - d(xyt) —3dz=0...... (11)
Integrating (11), xyt—3z=c ............ (12)

Note that (12) and (9) are the same.

Ex.4:Solve (y—z)p+(z—x)q=x—-Yy
Sol.Given(y —z2)p+ (z—X)q=X—V .ceeevn..... (1)

The Lagrange's auxiliary equations for (1) are
dx dy dz

-y _d )

y—-z Z—-X X-y

The sum of the denominators is
y—zZz+z—x+x—y=0

Then, the sum of the numerators is equal to zero also, (by Rule)
dx+dy+dz=0 ............ (3)

Integrating (3), x+y+z=a ............ (4)

To find b, multiplying (2) by x,y,z resp. the sum of the
denominators is
X(y—2z)+y(z—x)+z(x—y) = xy—x2+yz—xy+zx—yz=0
Then, the sum of the numerators is equal to zero

xdx +ydy +zdz=0 ............ (5)

2 2 2
Integrating (5), X? + y? + Z; =b ............ (6)

Where, a and b are arbitrary constants.

The general solution is

15
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x2 y? 72
@(a,b) =0 - ®<x+y+z,7+7+?>=0

... Exercises ...

Solve the following partial differential equation:
1. p tanx + q tany = tanz .

2. Zp = —Xx .

3.y°p —xyq = x(z —2y).

4. (x*+2y*)p —xyq = xz .

S. xp+yq=1z.
6.(—a+x)p+(-b+y)g=(—c+2).
7.x°p+vy3q+2z2=0.

8.vzp + zxq = xy .

9.v%p + x%q = x%y?z? .

10 p=a=c35

(1.3.2) The equation of the form f(p,q) = 0

Here we consider equations in which p and g occur other
than in the first degree, that is non-linear equations. To solve the

equation f(p,q) =0 ......... (1)
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Taking p=constant=a ............ (2)
q=constant =b ............ 3)
Substituting (2),(3) in (1), we get
F(a,b)=0 - b= F;(a) or a=F,(b)........... 4)
Fromdz =pdx +qdy ............ &)
Using (2),(3) = dz=adx +bdy ........... (6)
Integrating (6), z=ax +by+c ........... (7)
Where c is an arbitrary constant
Substituting (4) in (7) to obtain the complete integral (complete
solution)

z=ax+F,(a)y+c or z=F,(b)x+by+c .......... (8)

Ex.1: Solve p? + p = ¢
Sol. p2+p—q*=0 ........... (1)
The equation (1) of the form f(p,q) = 0
Let p=a,q=5>b
Substituting in (1)

a’+a—b>=0- b?’=a’+a »b=+ya%+a
The complete integral is

z=ax+by+c

=ax t+a’+ay+c

Where c is an arbitrary constant.

Ex.2: Solve pq = k, where k is a constant.
Sol. Giventhat pg =k ............ (1)

17
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Since (1) is of the form f(p, q) = 0, it's solution is

zZz=ax+by+c ............ (2)

Letp = a,q = b, substituting in (1) , thenab =k » b =% ...(3)

a

Putting (3) in (2), to get the complete solution

Z=ax + Sy + ¢ ; cisan arbitrary constant .

. 02 _ 50z _ 023
Ex.3: Solve o Bay—(ay)

Sol. Giventhatp —3g =¢q3 ........... (1)

Since (1) is of the form f(p,q) = 0, then

Let p=a, qgq=0b

Substitutingin (1), a—3b=b3 - a=b3+3b ......... (2)

Putting (2) in the equation z = ax + by + c , we get
z=(b>+3b)x+by+c

Where c is an arbitrary constant

The equation (3) is the complete integral .

(1.3.3) The Equation of the form z = px + qy + f(p.q)

A first order partial differential equation is said to be of

Clariaut form if it can be written in the form
z=px+qy+f®q) (1)
to solve this equation taking p = a , ¢ = b and substituting
in (1), so the complete integral is
z=ax+by+ f(a,b) ...(2)

18
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Example 1: Solve z = px + qy + pq
Sol. The given equation is of the form z = px + qy + f(p,q)
let p = a and q = b substituting in the given equation, so

the complete integral is

Z =ax + by +ab

where a, b being arbitrary constant.

Example 2: Solve x %+y Z—;= Z—5—+—.—

Sol. Rearrange the given equation, we have
Xp+yq=2z-—5p+pq

Z=xp+yq+5p—pq ...(3)

Equation (3) is of Clariaut form

let p = a and g = b substituting in (3), then the complete

integral is |z = ax + by +5a —ab

where a, b being arbitrary constant.

Example 3: Solve px + qy = z — p3 — q3

Sol. Rearrange the given equation, we have
z=px+qy+p3+q° ...(4)
let p = a and g = b substituting in (4)

z = ax + by + a® + b3that is the complete integral and

19
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a, b being arbitrary constants.

(1.3.4) The Equation of the form f(z,p,.q) = 0

To solve the equation of the form
f(z,p,q) =0 ...(1)

1. Let u=x+ay ...(2)
where a is an arbitrary constant

2. Replace p and g by % and aZ—z respectively in (1) as follows,

_62_62 Ou_az Ou_dz
p_ax_ax'au_au'ax_du

0z 0z Ou 0z du _ dz
q___—.—_—.—_a— ...(3)
dy dy ou du 0dy du
ou ou
from (2) P 1 and 3 — @

3. Substituting (3) in (1) and solve the resulting ordinary
differential equation of first order by usual methods.
4. Next, replace u by x + ay in the solution obtained in step 3 to

get the complete solution.

Example 1: Solve z=p+¢q
Sol. Given equationis z=p+q ...(4)
which is of the form f(z,p,q) = 0. Let u = x + ay where a isan
arbitrary constant.

Now, replacing p and g by Z—i and aZ—z respectively in (4),

we get

20
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dz dz

Z=@+a%

dz
=>z=(1+a)%

=>du=(1+a)% ...(5)
Integrating (5), u+c=1+a)lnz
where c is an arbitrary constant
Replacing u,
x+ay+c=Inz1+4

— epXtay+c — ,(1+a)

x+ay+c
— Z =€ 1l+a (6)

and that is the complete integral.

. a2\ % 92\ 2 .
Example 2: Solve (5) z— (a_y) =1
Sol. Rearrange the given equation, we have
ptz—q*=1...(7)
This equation is of the form f(z,p,q) = 0

Letu = x + ay , where a is an arbitrary constant
Now, replacing p and g by % and a;l—z respectively in (7), we

get

(dZ)2 ( dZ)2 _4
du ‘ . du)
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= +Vz — a? Z—i =1 by taking the square root
= +Vz —a?dz =du...(8)

Integrating (8),

t2(z—a?)z=u+c..(9

Replacing u in (9) to get the complete integral

2 3
ig(z—a2)5=x+ay+c

(1.3.5) The Equation of the form f;(x,p) = f-(y.q) =0

In this form z does not appear and the terms containing x and p
are on one side and those containing y and g on the other side.
To solve this equation putting
fitp) = f2(y,9) = a...(1)
where a is an arbitrary constant
~ filkp)=a = p=g:(x,a)...(2)
L@ =a = q=g,a)...03)
Substituting (2) and (3) in dz = pdx + qdy, we get
dz = g,(x,a)dx + g,(y,a)dy...(4)
Integrating (4),

z = jgl(x,a)dx+fgz(y,a)dy+b

which is a complete integral containing two arbitrary constantsa
and b.

Example 1: Solve p = 2xq?

22
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Sol. Separating p and x from g and y, the given equation reduces
D _ 2
tox = 2q*“...(5)

Equating each side to an arbitrary constant a, we have

P a = p =ax
x p
202 =a =qg=+ |=
q° = 9=x7
Putting these values of p and g in
dz = pdx + qdy , we get
dz = axdx + \/%dy ...(6)

Integrating (6), z = %xz + \/% y+b

where a and b are two arbitrary constants.

Example 2: Solve xq — y*p — x*y* =0

Sol. Separating p and x from g and y, the given equation reduces

2
to ZX =2 (7

. y2

Equating each side to an arbitrary constant a, we have

p;x2=a = p=ax—x? ...(8)
%=a = qg=ay? ...(9)
Putting (8) and (9) in dz = pdx + qdy , we get
dz = (ax — x?)dx + ay*dy ...(10)
2 3
Integrating (10) , [z = = — %3 +a>=+b

23
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which is a complete integral containing two arbitrary constantsa
and b.

Example 3: Solve p —3x? = ¢*> —y

Sol. Equating each side to an arbitrary constant a, we get
p—3x2=a = p=a+3x? ..(11)
@°-y=a = gq=+Ja+y ...(12)

Putting these values of p and g in dz = pdx + qdy , we get
dz = (a + 3x%)dx + \Ja + ydy ...(13)

Integrating (13) ,z = ax + x3 + % (a + y)3/2 + b

which is a complete integral containing two arbitrary constant a
and b.

(1.3.6) Charpit’s Method (General Method of Solving

p.d.es of Order One but of any Degree)

Let the given p.d.e of first order and non- linear in p and g be
fx,y,z,p,q) =0 (D)

To solve this equation we will use the following charpit’s

auxiliary equations.

dp dq dz dx dy
T T T ) ) ) )
ox 0z ady 0z dap aq dp dq
or
dp dq dz dx dy

fe¥0fs fotafs —Pho—afy —fo I

24
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After substituting the partial derivatives in charpit’s auxiliary
equations select the proper fractions so that the resulting integral
may come out to be the simplest relation involving at least one of p
and gq.

Then, putting p and q in the relation dz = pdx + qdy which

on integration gives the complete integral of the given equation.

Example 1: Solve z = px + qy + p*? + q* by charpit’s method.
Sol. Let f(x,v,2z,p,9) =z—px —qy —p? —q% = 0...(2)
charpit’s auxiliary equation are

dp dq dz dx _ dy

ftvoh htafh ph—dfs ~h 4
From(z)fx:_plfy:_CIlfz:1lfp:_x_2p’fq:_y_2q

dp. _ dq _ dz _ dx
—p+p —q+q px+2p)+qy+2q) x+2p
dy
Ty +2q

Taking the first fraction dp =0 - p =a...(3)
Taking the second fraction dg =0 - q=0b ...(4)
Substituting (3) and (4) in (2) to get the complete integral

z = ax + by + a? + b?

where a and b are arbitrary constants.

Example 2: Solve 2zx — px* —2qxy + pq = 0 by charpit’s
method.
Sol. Let f(x,v,2z,p,q) = 2zx —px* — 2qxy + pq = 0...(5)
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fx =2z —2px —2qy, f, = —2qx, fz =2xf, =
—x%+q, fo=—2xy+p

Substituting in charpit’s auxiliary equations , we get

dp _ dq _ dz __dx _dy (6)

27-2px—2qy+2px  -2qx+2qx —-p(—x2+q)—q(-2xy+p) T x2—q  2xy-p "’

Taking the second fraction of (6)
dg=0 - qg=c...(7)
Substituting (7) in (5)
2zx —px*> —2cxy+cp =0

...(8)
Putting (7) and (8) in dz = pdx + qdy

2x(z — cy)
 x2—c¢
dz—cdy _ 2xdx

__ 2xz-2cxy N _2x(z-cy)

x2—c x2—c

2x(z—c
(z y)dx

dz
x%2 —¢

dx + cdy = dz — cdy =

..(9)

Integrating (9), In|z — cy| =In|x? —c| +Inb

(z—cy)  x2-c”

z—cy =b(x?-c¢)

z=b(x*>—c)+cy

which is a complete integral where b and c are two arbitrary
constants.
... Exercises ...

Solve the following equations:

1. g = 3p?

2.zpq=p+q

3. p*—y*q=y*—x*

4, (y* +4)xpqg — (x> +2) =0
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Chapter One: Methods of solving partial differential equations

5.q—px—p*=0

6. px +qy = pq
0z 62_2

loxtay =%

8.p*—q* =z

(1.3.7) Using Some Hypotheses in the Solution

Sometimes we need some hypotheses to solve the partial
differential equation, here we will give three types of hypotheses.

A) When the equation contains the term (px) or its’ powers we use

the hypothesis X = Inx

as follows
0z 0z 0X 0z 0X 0z 1, . 0X 1
p=a=a.a—x=a—x.a=a—x.;(5m0e X=lhx = 522)

0z

=>xp—a

Then substituting this result in the given equation and solve it by

previous methods.

Example 1: Solve z = px by hypotheses

Sol. From X = Inx we have xp = Z—)Z( ..(1)

Substituting (1) in the given equation, we get

) d
2= o gx =2 E)
Integrating (2), X =Inz +1n@(y) ...(3)

where @ is an arbitrary function for y
replacing X in (3) to get the complete integral
Inx =Ind(y).z
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— X
= |z = (b(y)"'(4)

Example 2: Solve ¢ = px + p*x? by hypotheses
Sol. Given that g = px + (px)? ...(5)

0z

from X =Inx we have Xp = % ...(6)

Substituting (6) in (5), we get

g=+ (2_;)2 (7)

0z .
Let P tthen (7) will be

q=-t+t? ..(8)
The equation (8) is of the form f(t,q) = 0

Thenlett = a and g = b, puttingin (8) b = a + a?
Substitutingin z=aX + by + ¢
=z=aX+(a+a®)y+c...(9

where c is an arbitrary constant

replacing X in (9) to get the complete integral

z=alnx+(a+a®)y+c

B) When the equation contains the term (qy) or its’ powers we use

the hypothesisY =1ny

as follows:

0z 0z 9y _ 0z 0Y _ 0z 1(SiﬂC€Y_ln :>6Y_1)
T 9y o9y'ay avy'oy ov'y =y dy vy
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0z
=>qy=ﬁ

Then solving by the same way in (A).

Example 3: Solve 2p + qy = 4 by hypotheses
Sol. Giventhat 2p+qy =4

fromY =Iny we have gy = Z—i

Substituting (11) in (10), we get
0z

— =4
ayY

2p +

Let 9z _ tthen,
Y

2p+t=4
The equation (12) is of the form f(p,t) = 0

Thenletp =aandt = b, puttingin (12) 2a+b =4

= b=4-2a

Substituting (13) in z =ax + bY + ¢
= z=ax+ (4 —-2a)Y +c...(14)
where c is an arbitrary constant

replacing Y in (14) to get the complete integral

z=ax+ (4 —-2a)lny+c

Example 4: Solve p?x? = z% + q*y? by hypotheses

Sol. Given that p?x? = z% + g%y*

fromX =Inxand Y =Iny we have

...(10)
(1)

...(12)

..(13)

..(15)
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d G
xp=£and qy=a—i ...(16)

Substituting (16) in (15), we get

9z\2 ) 9z 2
() =22+ (%) (17)
0z . % ; ;
Let t = X and r = 5, putting in (17)
t? —r? =72 ...(18)
Note that (18) is of the form f(t,r,z) = 0

Taking u=X+aY (a is constant)

_ 0z _ 0z du_ 0z ou_dz
89X 98X 'du ou'9X du

0z 0z 0u Jdz Jdu dz
T—E—E.a—a.g—aa (19)

Then ¢t

Ju
because ( a_x=1 and Eza)

putting (19) in (18)
dz\* dz\*
Y 222 = 2
(du) “ (du) z

(1—a?) (dz)z = 72

du
+v1 — a? % =z (taking the square root)
+V1-a2Z = du ...(20)
Integrating (20),
+V1—a?lnz=u+c (cisconstant) ...(21)

Now, replacing u in (21) to get the complete integral

tV1l—a?lnz=X+a¥Y+Inc ...(22)
Next, replacing X and Y in (22) to get the complete integral
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+v1—a?lnz=Inx+alny+Inc

Inz? =Ilncxy®  where b = +V1 —a?

b =cxy? ...(23)
So, (23) is the complete integral.

= Z

C) When the equation contains the terms > or * or its’ powers we

use the hypothesis|Z = Inz

as follows:
=2 _%202_0%2 02 _ 0% (smcea =z)
T 9x o9x'9z 9z ax  ox FYA
YA
hence 2=22
z ox
BYA
by the same way we have = P

then substituting this terms in the given equation and solve it by the

same way in (A) and (B).

Example 5: Solve px+qy =2z by Z=1nz

Sol. Giventhat px +qy =z ...(24)
Dividingonz, Zx+1y=1 ...(25)
inq 7 = P _9Z 0049 = %% gunstituting i
usingZ =Inz we have ~ = and ke ve ,substituting in (25)
YA
x—+yay 1 ...(26)

YA
Let t = a and r = 5thus, (26) would be

xt+yr=1 ...(27)
Clear that (27) is of the form f;(x, t) = f,(y, 1)
Then putting x, pin one side and y, g in the other side
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xt=1—-ry=a (a is constant)

Then xt=a —-t= % ...(28)
l—ry=a —>r=% ...(29)
Substituting (28), (29) in  dZ = tdx + rdy
=>dz=§dx+$dy ...(30)

Integrating (30), we get
Z=alnx+(1—-a)lny +1Inb (where b is constant)
Replacing Z from the hypothesis to get the complete integral

~Inz = In(bx%y(1-9) (by properties of In)

= |z = b x?y(1-9) ...(31)

Then (31) is the complete integral.

Example 6: Solve p? + q* = z*(x +y) by hypotheses

Sol. Dividing on z?2,
2 qZ
—+==x+y ...(32)

z2 z2

. 9z
usingZ =Inz we have g =—

(Z_i)z + (Z_i)z =xty ..(33)

YA 0Z ... .
Let t = F and r = aputtlng in (33)

and 1 = g—i substituting in (32)

t’+r2=x+y ...(34)
Then t?—x=a ->t=+Va+x
y—ré=a or=%/y—a

Substituting in  dZ = tdx + rdy
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= dZ = +Va+ xdx + +,/y — ady ...(35)
Integrating (35), we get

Z=4= g (a + x)3/2 + g (y — a)3/2 +c (where c is constant)

Replacing Z from the hypothesis to get the complete integral

2 2
=|nz = ig(a+x)3/2 ig(y—af/z + ¢

... Exercises ...
p’x* =z(z - qy)
pq = z%ysecx
p+q=ze Y
p* +2q = z*(x — )
p?+zp =2z°(x — y)
p? 4 g2 = 72
xp +4q = cosy

© N o 00k~ 0 DN PE

p*+q* =2z%




Chapter One: Methods of solving partial differential equations

Section(1.4): Homogeneous linear partial differential
equations with constant coefficients and higher order

A linear partial differential equation with constant coefficients is
called homogeneous if all it's derivatives are of the same order.

The general form of such an equation is

oz omn

an
AOax_er+A1 T + ...+An# =f(xYy) ... (1)

Where Ay, A4, ..., A, are constant coefficients.

For example:
9%z 9%z 9%y
1. 3-5+5 ooy Tz = 0 homo. of order 2.
03z 9%z 9%z 0%y
2. 2-5- 3555yt 56x6y2 —855=xty homo. of order 3.

For convenience aa_x and % will be denoted by D or D, and D’

or D,, respectively. Then (1) can be rewritten as:

(AoD} + A1DY™'Dyy. v ADNz = f(x,y) oo, (2)

On the other hand, when all the derivatives in the given equation
are not of the same order, then it is called a non-nomogenous linear

partial differential equation with constant coefficients.
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Chapter One: Methods of solving partial differential equations

In this section we propose to study the various methods of solving
homogeneous linear partial differential equation with constant
coefficients, namely (2).

Equation (2) may rewritten as:

F(Dy,Dy)z=f(x,¥)| weeeeeeeiiin (3)

Where F(Dy,Dy) = AoD} + A1 D} 1Dy  AnDY
Equation (3) has a general solution when f(x,y) =0

i.eF(Dy,Dy)z =0

- (AoDJTCl + AlD;l_lDy+...+AnD§})Z = 0 (4)

And a particular solution (particular integral) when f(x,y) # 0

s Now, we will find the general solution of (4)
Let z = @(y + mx) Dbe a solution of (4) where @ is an arbitrary

functionand m is a constant , then
D,z=0"(y+mx).m
D%z =@ (y + mx).m?

Dz = 9™ (y + mx). m"
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D,Dyz =m@'(y + mx)

DD,z = m*@®(y + mx)

DIDyz = m" @+ (y + mx)

= m" 0™ (y + mx) ,where r+s=n
Substituting these values in (4) and simplifying, we get :
(Agm™ + A;m™ L+ A,m™ 2 + -+ A4,)0W(y + mx) =0 ...(5)
Which is true if m is a root of the equation
Aom" + Am" 1+ A,m" 2+ + A, =0 ... (6)

The equation (6) is known as the (characteristic equation) or the
(auxiliary equation(A.E.)) and is obtained by putting D, = m and
D, =1 inF(D,,D,)z = 0, and it has nroots.

Let m;,m,,...,m, be n roots of A.E. (6). Three cases arise:

when the roots are distinct.

If my,m,,..,m, aren distinct roots of A.E. (6) then

0, (y + myx), 0, (y + myx), ... ... ... ,0,(y + m,x) are the linear
solution corresponding to them and since the sum of any linear

solutions is a solution too than the general solution in this case is:

z=0;(y+mx)+0,(y +myx)+ -+ 0,y + myx) .....(7)

Ex.1: Find the general solution of
(D3 +2D3iD, — 5D,D% — 6D;)z =0
Sol. The AEE.ism3 +2m? —-5m—6 =0
- m+1D(mM*+m-6=0
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- mM+1)(m+3)(m—-2)=0
my=-1, m,=-3, my=2
Note that m;,m, and ms are different roots, then the general
solution is
z=0:(y + mx) + 0, (y + myx) + @3(y + mzx)
- z=0,(y—x)+ 0,y —3x) + 03(y + 2x)
Where @, , 0, ,®5 are arbitrary functions.

Ex.2: Find the general solution of m? — a? = Owhere a is a
real number.

Sol. Giventhat m? —a? =0 — m? = a?

The general solution is

z=0,(y+ax) + @,(y — ax)
Where @,,@, are arbitrary functions.

when the roots are repeated.

If the root m is repeated k times.lem; =m, = - =my,

then the corresponding solution is :

z=0.(y + mx) + x0,(y + myx) + -+ x*710,, (y + myx) }..(8)

Where @4, ..., @, are arbitrary functions.

Note: If some of the roots m,,m,,...,m, are repeated and the
other are not . i.e. my = m, = -+ = my, * My, * -+ ¥ m, then

the general solution is :
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z=0.(y + mx) + x0,(y + myx) + -+ x*71@,, (y + myx) +
®k+1(y + mk+1x) + -+ @n(y + mnx) ............ (9)

Ex.3: Solve (D3 — D%D, — 8D,D3 + 12D3)z = 0
Sol. The AE.is m®-m?-8m+12=0
- (mM-2)(m-2)(m+3)=0
m =m,=2 , mg=-3
Then, the general solution is
z=0.(y+2x) +x0,(y + 2x) + O3(y — 3x)
Where @, , @, , @5 are arbitrary functions.

Ex.4: Find the general solution of the equation that it's A.E. is :
(m-1?m+2m-3)(m+4)=0
Sol. Giventhat (m—1)?2(m+2)*(m—-3)(m+4)=0
m=my,=1 mg=my=mg=-2 ,mg=3 ,m;,=—4
The general solution is
z=0.(y+x)+x0,(y +x) + 03y — 2x) + x4 (y — 2x)
+x%@5(y — 2x) + B6(y + 3x) + B, (y — 4x)

Where @, , ... ,@, are arbitrary functions.

When the roots are complex.
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If one of the roots of the given equation is complex let be m;,
then the conjugate of m, is also a root, let be m, , so the general

solution is:

z=0,(y+mx)+0,(y + myx) + -+ 0,(y + myk)

Where @, , ... ,@,, are arbitrary functions.

Ex.5: Solve (D5 + D3)z = 0
Sol. The A. E. is m?>+1=0 -» m=+i

The general solution is
zZ = (251()/ + lX) + @z(y - lX)
Where @,,@, are arbitrary functions.

Ex.6: Solve (D5 — 2D,D, + 5D3)z = 0
Sol. The A.E.is m?-2m+5=0

2++v4—20 ,
= > =1+2i

m1=1+21 ,m2=1—2i
z=0;(y + (1 +2D)x) + 0,(y + (1 — 2)x)
That is the general solution where @, , @, are arbitrary functions.

- m

Ex.7: Solve (D; — D3D,, + 2D3D% — 5D, D3 + 3D})z = 0
Sol. The AE.is m*-m3+2m?-5m+3=0
-» (Mm-1?m?*+m+3)=0
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-1+v1-12 —-1+vV11i
m=m,=1 , m= =

2 2
—1 +/11i —1—+/11i
. m3 e 2 ,m4 = 2
Then, the general solution is
—14+/11i
z=@1(y+x)+x®2(y+x)+®3<y+( 5 )x)
+ D4 (3’
—1 —+/11i
+ ( > )x

Where @,,...,0, are arbitrary functions.
¢ Particular integral (P.l1.) of homogeneous linear

partial differential equation
When f(x,y) # 0in the equation (3) which it'sF(D,, D, )z = f(x,)

multiplying (3) by the inverse operator; of the operator
F(Dy,Dy)

F(Dy,Dy) to have

1
F(Dx,Dy)

1
F(Dx,Dy)

'F(Dx' Dy) z= f(xy)

1

-l z =
F(Dy.Dy)

ey e, (11)

Which it's the particular integral (P.1.)

The operator F(D,, D,,) can be written as
F(Dy,Dy) = (Dy —myD,)(Dy — myD,) ... (Dy — myDy) ....(12)
Substituting (12) in (11) :
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1
~ (Dx—myDy)(Dx—m;Dy)...(Dx—mpDy)

VA

f(X! }’) ............ (13)
Teking u; = 5— -~ f(x,y)

. (Dx - mnDy)ul = f(xry)
This equation can be solved by Lagrange's method .

The Lagrange's auxiliary equations are

dx dy  duy
1 -mp  f(xY)

Taking the first two fractions of (14)

mydx +dy=0 ->|mx+y=al| .......... (15)
Taking the first and third fractions of (14)

_ d‘u,1 _
dx = rrorelin flx,y)dx =duy| .......... (16)

Substituting (15) in (16) we have
f(x,a —myx)dx = du,

Integrating the last one we have
U, = jf(x,a —myx)dx + b

Let b =0, thenwe have u,
By the same way , we take

1
DX - mn_lDy

uz == ul

And solve it by Lagrange's method to get wu, , then continue in

this way until we get to
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And by solving this equation we get the particular integral (P.1.)

Ex.1: solve (D% — D3)z = sec*(x +y)

Sol. Firstly, we will find the general solution of

(DZ-D%)z=0 ... (1)

The A.E.is m?—-1=0->m?=1 - m=+1
m =1, m, =-1

L Zz=0(y+x)+0,(y—x) .l (2)

Where @,,®, are arbitrary functions.

Second, we will find the particular integral as follows

1 2
Z =—Dzsec (x+y)

DZ — D2
. “(x+ )
= sec’(x +y
(Dx - Dy)(Dx + Dy)
_ 1 2
Let u, = DrtDy) sec“(x +y)

(Dy + Dy)uy = sec?(x +y)
The Lagrange's auxiliary equations are

dx dy duq
1 1 sec?(x+y)

Taking the first two fractions

dx=dy - x—y=a .......... (3)
Taking the first and third fractions
d
X = Wf;y) - sec’(x+y)dx=du; .......... (4)

Substituting (3) in (4), we have
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sec?(2x —a)dx =du;  ............ )

Integrating (5), we have

1
u, = Etan(Zx —a)+b

Let b =0 andreplacing a , we get
U, = %tan(x +y) (6)

Putting (6) in z,

1 1
=———— - —tan(x +

1
> (Dy —Dy)z, = Stan(x +y)

The Lagrange's auxiliary equation are
dx dy dz,
1 -1 %tan(x +y)

Taking the first two fractions

dx=—dy - x+y=a .......... (7)
Taking the first and third fractions
dz
dx = 7 2
Etan(x +y)
%tan(x +y)dx=dz, ... (8)
Substituting (7) in (8)
%tan adx=dz, ... 9)

Integrating (9) , we get

1
Extana =Z,+b

43



Chapter One: Methods of solving partial differential equations

Let b = 0, and replacing a from (7) we get the particular integral
Z, = %xtan(x +Y) (10)

Hence the required general solution is
Z=2Z1+2,

=@1(y+x)+®2(y—x)+§tan(x+y) .......... (11)

Short methods of finding the P.I. in certain cases :

Case 1 |When f(x,y) = e®**2Y where a and b are arbitrary

constants
To find the P.l. when F(a,b) # 0, we derive f(x,y) for x any y

n times:

Dxeax+by — aeax+by

D}%eax+by — azeax+by

D}rcleax+by — aneax+by
Dyeax+by — beax+by

D)%eax+by — bzeax+by

Djr}eax+by — bneax+by
DyDse®*by = q"pSe®*bY where r+s=n
S0
F(Dx, Dy)eax+by — F(a, b)eax+by

44




Chapter One: Methods of solving partial differential equations

1

Multiplying both sides by FnDy) | we get
eax+by — 1 F(a b)eax+by
F (D, Dy)
Since F(a,b) # 0, then we can divide on it :
1 ax+by __ 1 ax+by *
D) = F0nDy) ey

Whichitisequalto z ,thentheP.I.is

— 1 ax+by _— 1 ax+by
Z FnDy) e oD e , where F(a,b) #0

when F(a,b) = 0, then analyze F(D,,D,) as follows
a
F(Dy,Dy) = (Dx — EDy)rG(Dx»Dy)

Where G(a,b) # 0, we get
1 1

— ax+by _— eaxtby
F(Dx, Dy) (Dx =5 Dy)7G(Dy, Dy)

Z

1 1

= eX*by from *
(Dx_EDy)r G(a,b)

Since G(a,b) # 0
1 1
G(a,b) (D, — %Dy)r

eax+by

Then by Lagrange's method r times , we get

1 1 x’

7 = ax+by _ _eax+by
F(Dy,Dy)

G(a,b) |7

Which it's the P.l. where F(a,b) =0, G(a,b) # 0
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Ex.2: Solve (D2 — D,D, — 6D3)z = e**~3¥
Sol.
1) To find the general solution
The A.E. of the given equation is
m?—-m—-6=0 - (m-3)(m+2)=0
. omqp =3, m, = —2
vz = 0.y +3x) + 0,(y — 2x)
Where @,and@,are arbitrary functions
2) To find the particular Integral (P.1.)
a=2,b=-3
F(a,b) = a? — ab — 6b?
F(2,-3)=4+4+6—-54=—-44+0

eax+by — er—3y

“2 = F(a b) —44

n Z=2Z1+ 2

1
=0,(y +3x) + 0,(y — 2x) _EQZx—w

Ex.3: Solve (D% — D, D, — 6D%)z = e3**Y
Sol.
1) The general solution is similar to that in Ex.2
2) To find P.1.
a=3,b=1
F(a,b) = a® — ab — 6b?
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F31)=9-3-6=0,

analyze F(Dy,D,),F(Dy,D,) = D% — D,D,, — 6D;
= (D, — 3D,)(Dy + 2D,)

(Dx—%Dy)T—x.r:l, 342=5#0=G

1 x’

— . e3x+y — Ee3x+y
G(a,b) 1!

eax+by —

X
ZZ I

+ v

Y Z = Zl ZZ
X
=0,(y +3x) + 0,(y — 2x) + §e3x+3’

Where @,and@,are arbitrary functions

Case 2 I when f(x,y) = sin(ax + by) or cos(ax + by)

where a and b are arbitrary constant
Here, we will find the P.I. of (H.L.P.D.E.) of order 2 only, by
the same way that in case 1 we will derive f(x,y) forx andy .
Let f(x,y) = sin(ax + by)
D,sin(ax + by) = a cos(ax + by)
D2sin(ax + by) = —a? sin(ax + by)
Dysin(ax + by) = b cos(ax + by)
D3sin(ax + by) = —b* sin(ax + by)
D,.D, sin(ax + by) = D,[b cos(ax + by)]
= —ab sin(ax + by)
F(D% D,D,,D?)sin(ax + by) = F(—a? —ab,—b?) sin(ax + by)

Multiplying both sides by

F(D,ZC,Dny,D§,)
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sin(ax + by) = ! Dz)F(—az, —ab,—b?) sin(ax + by)

2
F(D%,DxDy,D3

If |F(—a? —ab,—b?) # 0 | then we can divide on it
1
= “ 7 F(D% D,D,, D)
1
- F(—a?,—ab,—b?)
Which it is the particular integral.
And if F(—a? —ab,—b?) = 0 then we write

sin(ax + by)

sin(ax + by)

. plf _ o . o0 4 o—if
sin =— , cosf =——
21 2

And follow the solution of the exponential function in casel.

Ex.4: Solve (D% — D, D, — 6D%)z = sin(2x — 3y)
Sol.
1) The general solution z;is the same in Ex.2
2) The P.l.z,
a=2,b=-3
F(—a? —ab,—b?) = —a? + ab + 6b?
F(—4,6,-9) = —4—6+54=44%0

1
Z, = Esin(Zx — 3y)
The required general solution

nZ=2Z1+ 2

1
=0,y +3x)+0,(y —2x) + Esin(Zx — 3y)
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Where @,and@,are arbitrary functions.

Ex.5: Solve (D% —3D,D, + D%)z = e***3Y + e**Y + sin(x — 2y)
Sol.
1) Finding the general solution z;
The AE. is
m?2—-3m+2=0 = (m-2)(m—-1)=0
smyp=2,my=1
n 21 =01y +2x) + 0,(y + x)
where @, and @, are arbitrary functions.

2) The P.1. of the given equation is

1 1
Pl =z,=———— ™y 4 ——___ ¥ty sin(x — 2
2~ F(Dy.Dy) F(DxDy) F(DwDy) SN = 2y)
1
Letu, = e?xt3y a=2,b=3
F(Dy,Dy)

F(D,,D,) = a* — 3ab + 2b?
F(1,1)=4-18+4+18=4#0
1

U, = Z62x+3y

1

= xty = =
U, F(Dx’Dy)e a=1b=1

F(D,,D,) = a? — 3ab + 2b?

F(1,1)=1-3+2=0

Analyze F(D,,D,),

F(Dy, D) = (Dy — 2D,)(Dy — D,)
1 x7

___ ax+by

- G(a,b) r!

U,
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_1x
=7

x+y

16

x+y

U, = —xe

B 1

~ F(Dy,Dy)
F(—a? —ab,—b?) = —a?® + 3ab — 2b?
F(-12,-4)=-1-6—-8=—-15#0

1
U, = ——sin(x — 2
3 1 ( y)

U3 sin(x — 2y)

Then, the required general solution is

1
z=2z,+2, =0,(y+2x) + 0,(y + x) +Z€2x+3y — xe*tY

1
— Esm(x —2y)

where @, and @, are arbitrary functions.

EX. 6: Find the P.I. of the equation

(DZ — 4D,D, + 3D2)z = cos(x + y)
Sol.a=1,b=1
F(—a? —ab,—b?) = —a® + 4ab — 3b?
F(-1,-1,-1)=-14+4-3=0

. ix+iy —ix—iy
Taking cos(x +vy) = %

7 = 1 1 eix+iy 1 —ix—iy
2|D2 — 4D, D, + 3D2 Dz — 4D, D, + 3D?
X x“y y X y y
Letu, = L e Xty

DZ—4DyDy+3D3
Tofinduja=ib=i

F(a,b) = a? — 4ab + 3b?
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F(i,i) =i%2—4i2+3i2=0
Analyze F(D,,D,),

F(Dy, Dy) = (D; — Dy)(Dy — 3D,)
ul — __Zixeix+iy

1 .
By the same way u, = z—l_xe‘”“ly

. — 1 l 1 ix+iy 1 —ix—iyl
--Z—2 _Zixe +2ixe

—x [eix+iy_e—ix—iy]

— = %xsin(x + y)which is the P.I.

Cabe 3 Wh}n f(x,y) = x*y? where a and b are Non- Negative

Integer Number

The particular integral (P.l.) is evaluated by expanding the

function in an infinite series of ascending powers of D, or

F(Dy,Dy)

1
F(Dx,Dy)

D,, (i.e.) by transfer the function according to the following

1 =14+60+6%+
1—-60

Ex.7: Find P.1. of the equation (D% — 2D,D,)z = x°y

1
SoLP.I. = —————x3y
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1 .
:mx yDyy =0ifn>m
x Dy

1 1
=D_§[x3y+2x4]
1 [x*y x° x°y  x®
D,| 4 10 2 60

Ex.8: Find P.1. of the equation (D3 — 7D, D% — 6D3)z = x*y

Sol. P.I. :D,?g—7Dx1D32,—6D33,x2y
= L) since (128 + ) =0, (2 4 ) 0

1xy 1xy_x5y
"DZ'3 D,12 60

Ex.9: Solve (D; —a®D,D%)z = x ,wherea € R
Sol.
1) the general solution z;
The A.E. of the given equation is
mi—a’m=0 = m(m?—-a?)=0

= mm—-—a)(m+a)=0
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~my =0,m, =a ,m3; =—a (differentroots) . z;, = 0,(y) +
?,(y + ax) + @3(y — ax)
where @,,®, and @5 are arbitrary functions.

2) The P.I. of the given equation is

Pl =2z=
27 D}-a2D,D2
_ 1
3 azDJZ/ x
D3[1-—
Dx
1 a2D32, a2D32, 2 azDJZ, a2D32, 2
==[1+22+ (52) +|xEE=0,(52) =0
Dx Dx Dx Dx Dx
L
= —[x
3
Dy
1 [le
—|=
DZ |2

then, the required general solution is

z2=21+2; =0:(y) + 0,y + ax) + O3 (y — ax)+§

When f(x,y) = e***?YV where V is a function of x

and y
The P.1. in this case is z = —— e@X+by
F(Dy,Dy)
— pdX+tby 1

|4
F(Dy+a, Dy + b)
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and solving this equation depending on the type of V can get the
particular integral (P.1.), as follows:

Ex.10: Find P.I. of the equation D, D,z = e***3Yx%y

1
SOI. P.l. = ﬁezx-l_gyxzya = Z,b =3andV = xzy
xDy

2x+3y 1 xzy
(Dx+2)(Dy+3)

=e

2x+3y 1 2

3(D, + 2)(1 + &)x g

=e

282x+3y 1___|___ .]xzy

3(D, +2)[ 9

— p2x+3y

2
3(Dy +2)[ y_?]

2
— 2xt3y 1 = [xZ _x_]
6(1 +7"

2182x+3y[1_&+D_x_D_x+ szy_x_z] (D—;z())
6 2 4 31’ 8

1 x? x y 1
— _ p2x+3y 24, — -
6e [xy 3 xy+3+2 6]

1 x? 1 x y 1
— p2X+3Y | 24, - 4 — 4 = — —
¢ [6x YT187 67 T18 12 36

Ex.11: Find P.1. of the equation (D% — D,D,)z = e**Y xy?
Sol.

1

Pl ==

e*tY xy?a =1,b = 1landV = xy?

—,X+Y 1 2 2 _ _ _
e D 0.0y) xy*since DZ — D,D,, = D,(D, — D)
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1
= Xty xyz

(Dx + DDA =~ )

= e**t¥y 1+ Dy Y+ Dy 2+ 2
—¢ (D, + Db, D, D? g
1 [ 2xy  2x]
— pXty 2 4 + —
© ", +0o, " T, T b2
1 [ x3]
— Xty 2 2 ~
e (Dx+1)Dx_xy +x y+3_
_prty T x2y2+x3y+—
(D, + 1) 3 12

— ,X+Y[1 2 N3 4 N5 xzz ﬂ X
=e [1 D,+ Dy —D; + Dy Dx-l----] + +

where D2 =0
=¥ty x2y2+_y+__xy —x? y—£+y +2xy +x* -2y —2x +2
2 3 12 3

Ex.12: Find P.I. of the equation (D, — Dy)zz = "V sin(x + 2y)

1

Sol.P.l. = ( 7 e**Y sin(x + 2y) ,a, =1,b; =1
D,—D,
1
=eXty sin(x + 2
(Dy+1- Dy—/r)z ( 2
= Xty . sin(x + 2y)
2
x Yy
(0. - D))
= e*tY ! sin(x + 2y) a,=1,b, =2
DZ-2D,D,+D% Y ECEE R

F(_a% ,_azbz ,_b%) = _a% + Zazbz — b%
F(=1,-2,-4)=—14+4—4=—-1%#0

55



Chapter One: Methods of solving partial differential equations

1
S Z = ex+y._—151n(x + y) = z=—e*"V Sin(x + y)

Case 5 When f(x,y) = g(ax + by) where F(a,b) + 0

The particular integral of H.L.P.D.E. of order n is

f g(ax + by)d(ax + by) ...d(ax + by)

" F(a,b)) n— times n — times

Ex.13: Find P.I. of (D% + 2D,D, — 8D%)z = \/2x + 3y
Sol.

a=2,b=3 ,92x+3y) =,/2x+ 3y
F(a,b) = a® + 2ab — 8b*
F(2,3) =4+4+12—-72 = —-56 # 0, integrating g twice

PA=z = — [ J2x + 3y d(2x + 3y)d(2x + 3y)

—aaf (2x + 3y)/2d(2x + 3y)

__ 4 s/
= 56 (1) XTI

=L v 13
210( x + 3y)

When f(x,y) = g(ax + by) where F(a,b) = 0
If F(a,b) = 0, then F(D,, D, can be written as

F(Dy,Dy) = (bD, — aDy)"
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Chapter One: Methods of solving partial differential equations

__ x™ g(ax+by)
— n! hn

and the particular solution is Z

Ex.14: Find P.I. of (D% —6D,D,+9D3)z=3x+y
Sol.a=3,b=1 ,9g(Bx+y)=3x+y
F(a,b) = a? — 6ab + 9b?
F(31)=9-18+9=0
Then F(D,,D,) = Df — 6D,D, + 9D = (D, —3D,)* ,son =2

_ x%3x+y 1
~'-P.|.—Z=; 12 =5x2(3x+y)

Ex.15: Find P.1. of (D% —4D,D, + 4D§,)z = tan(2x + y)
Sol.a=2b=1 ,gQ2x+7vy)=tan(2x +7)
F(a,b) = a® — 4ab + 4b?
F21)=4—8+4=0
Then F(D,,D,) = D} —4D,D, + 4D = (D, — 2D)*> ,son =2

x?tan(x+y) 1 5
= —_———— _x
2! 12

Ex.16: Find P.1. of (D% — D2)z = sec*(x + y)

~Pl.=2z tan(2x + y)

Sol.a=1,b=1 ,g(x+y)=sec?(x+y)
F(a,b) = a® — b?
F(L1)=1-1=0
Then F(Dy,D,) = D? — D2 = (D, — D,,)(Dy + D)
1

* T (Dx —D,)(Dx + D,) sec’(x +)

sec’(x + y) by case (5) we have

Let u1 -

1
(Dx+Dy)
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Ui = 1
1= F(a,b)

[ g(ax + by)d(ax + by) CFQ1)=14+1=2

_ 1 2
—Efsec (x+y)d(x+y)

1
=§tan(x+y)
1 1t x + )
= 7 = ——0an(x
(Dx_Dy)Z g
F(Dy,D,) =Dy — D,
F(1,1)=1-1=0 wheren =1
- x'ltan(x +y)
T2 1

= gtan(x + y) which its’ the particular integral

...General Exercises ...
1-(Df—Dy)z=0
2- (D3 —7D,D3 — 6D3)z = cos(x — y) + x* + xy* + y*
3-(Dy —2Dy)z = e¥*(y + 1)
4- (DZ 4+ 3D, Dy, +2D2)z=x+y
5- (D2 — 5D,D,, + 4D2)z = sin(4x + y)
6- (2D — DD, — 3D2)z = Se—i
7- (D,% — 3Dny + ZDJZ,)Z = e?*7Y 4 cos(x + 2y)
8- (D,% — Dny)z =Iny
9- (Dx + Dy)z = sec(x +y)

10- x(y? — z%)p + y(z% — x?)q = z(x? — y?)
11- (y2 + z? — x®)p — 2xyq = —2xz
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Chapter One: Methods of solving partial differential equations

12- pg+2y(x+1g+x(x+2)q—2x+1)=0
13- (x24+2x)p+ (x+1)gy =0

1

14- (Di —3D,Dj +2D5)z = —
15- (D3 +2D2D, — D, D2 —2D3)z = (y + 2)e*

16- (4DZ — 4D,D, + D2)z = (x + 2y) /2

17- DyDyz = e* Vxy?

18- (Dx - Dy)z = tan(x + 2y)

19- 2(D3 —9D2D, + 27D,D% — 27D3)z = tan"* (3x + y)

3. _ 9.4)9Z 4 _ .3.092 _ 3.3
20- (y°x 2x)6x+(2y xy)ay—x y
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Chapter Two: Non-homogeneous Linear Partial Differential Equations

Section(2.1):Non-homogeneous linear partial differential
equations with constant coefficients

Definition:A linear partial differential equation with constant
coefficients is known as non-homogeneous Il.p.d.e. with
constant coefficients if the order of all the partial

derivatives involved in the equation are not all equal.

For example:
0%z 0z
1) Fy) + 5 +z=x+y
2) 93z | 0%z 9z o Xty

0x3  0x0y 5; -

Definition: A linear differential operator F(Dy,D,) is known as
(reducible), if it can be written as the product of linear
factors of the form aD, + bD, + ¢ with a,b and c as
constants. F (D, D,) is known as (irreducible), if it is
not reducible.

For example:

The operator D7 — D which can be written in the form

(D, — Dy)(D, + D,) isreducible, whereas the operator D7 — D;

which cannot be decomposed into linear factors is irreducible.

Note:A I.p.d.e with constant coefficient F (D, D, )z = f(x,y) is
known as reducible, if F(D,,D,) reducible, and is known as

irreducible, if F(D,, D,) is irreducible.
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Chapter Two: Non-homogeneous Linear Partial Differential Equations

(" (2.1.1)Determination of Complementary function N

(C.F.)(the general solution) of a reducible non-

\ homo.l.p.d.e. with constant coefficients )

Iet F(Dy,D,) = (aDy + bDy, + c)*,where  a,b,c  are

constants and k is anatural number

then the equation F(Dy, Dy )z = 0 will by
(aDy, + bD,, + ¢)*z = 0 and the solution is
zze%x(b(ay—bx) ca#0 k=1
Or
zze%y(Z)(ay—bx) i b#0 k=1
Forany k > 1, the solution is
zZ = e_Tcy[Q)l(ay — bx) + x0,(ay — bx) + -+ x*" 1@, (ay — bx); b =0
Or

z = e_?cx[(bl(ay — bx) + x@,(ay — bx) + -+ x*7 1@, (ay — bx); a # 0

Where @, ..., @,, are arbitrary functions.

Ex.1: Solve (2D, -3D,, —5)z=0
Sol. The given equation is linear in F(D,, Dy)
Then a=2,b=-3,c=-5k=1
The general solution is
zZ = eng)(Zy + 3x)

Where @ is an arbitrary function.
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Chapter Two: Non-homogeneous Linear Partial Differential Equations

Ex.2: Solve (D, — 5)z = e**Y

Sol. To find the general solution of (D, —5)z =0

Wehave a=1,b=0,c=-5k=1

~z1 = e**@(y) , Where @ is an arbitrary function.

TofindtheP.l. z, ,wehave a=1,b=1
F(a,b)=a—-5 - F(1,1)=1-5=-4%#0

1
N Ty = Xty

—4
Then the required general solution of the given equation is

z=2,+2, - z=e>@(y)— Ze’”y

Ex.3: Solve (2D, + 5)*z =0
Sol. The given equation is reducible, then
a=0,b=2,c=5,k=2.

The general solution is

-5

z=e2” [0y (—2x) + x0,(—2x)]
Where @, and @, are arbitrary functions

Ex.4: Solve (D, — 2D, + 1)*z =0
Sol. Wehave a=1,b=-2,c=1k=4
then

1
z=e2[0,(y + 2x) + xB,(y + 2x) + x205(y + 2x) + x30,(y + 2x)]
Where @, , ..., @, are arbitrary functions
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hen F(D,, Dy )can be written as the product of linear factors

of the form (aD, + bD, +¢) , i.e. F(Dy, D) is reducible ,

then the general solution is the sum of the solutions

corresponding to each factor.

Ex.5: solve (2D, — 3D, +1) (D, +2D,—2)z=10

linear linear
Sol. The given equation is reducible, then we have
a1=2,b1=_3 ,C1=1 ,k1=1
-1
z;=ez 0,2y + 3x)
a2=1,b2=2 ,C2=_2 ,k2=1
z; = e**Q,(y — 2x)
The general solution is
-1
z=27,+12, - z=¢ez2 0,;y+3x)+e*p,(y — 2x)

Where @, , @, are two arbitrary functions.

Ex.6: solveD,(D, + D, +1)(D, + 3D, —2)z =0
Sol. We have
a,=1,b=0 ,¢4=0 k=1
a,=1,b,=1 ,c,=1 ,k,=1
az=1,b3=3 ,c3=-2 ,k;=1
Then the general solution is

z=0,y) +e*0,(y — x) + e*0;(y — 3x)

q
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Where @, ..., @5 are arbitrary functions.
Ex.7: solve (D3 — D,D3 — D%+ D,D,)z =0
Sol. We have , (D — D,D2 — DZ + D,D,)z = 0
D,(DZ—D2—Dy,+D,)z=0
Dx[(Dx - Dy)(Dx + Dy) - (Dx - Dy)] =0
Dy(Dy —Dy)(Dy+ Dy, —1)z=0
Then,a; =1 ,b;=0 ,c;,=0 ,k;=1
a,=1,b,=—1 ,c,=0 k,=1
a;=1,b3=1 ,c3=-1 ,k;=1
Then the general solution is
z=0,)+0,(y +x) +eD3(y — x)

Where @4, ..., @5 are arbitrary functions.

@VhenF(Dx,Dy) Is irreducible then the general solution is
7 = EAL_ edixtbiy
i=1

Where F(a;, b;) = 0 ,4;,a;, b;are all constants.
Ex.8: Solve (D, — D3)z =0
Sol. The given equation is irreducible, then
F(a,b)=0 - F(a;b;))=0
a—b3=0 - aq,—-b>=0 - aq =b’

The general solution is

o oo
7 = E A; e®iXthiy — ZAL' ebi3x+biy
i=1 i=1
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Where A; , b;are constants.
Ex.9: Solve (D2 + D, + D,)z=10
Sol. The given equation is irreducible, then
Fa,b)=a*+a+b=0 - a*+a;+b;=0
- bi=-a;"— q

The general solution is

(00 (0]
z = Z A; e@X by — ZAi p@ix+(—ai®— a)y
i=1 i=1

Where A; , a;are constants.

Ex.10: Solve (D, — D%)z = e***3¥
Sol. (1) we find the general solution of the irreducible eqution
(Dxy—DZ)z=0
Fa,b)=a—-b% =0 - F(a,b) = a;—b;>=0- q;
= b,*

(00] (0]
. . 2 .
Z; = ZAi ealx+bly — ZAi ebl X+b;y
i=1 i=1

Where A; , b;are constants.
(2) The P.1.is

Then

F(a,b) = a — b?
“F(23)=2-9=-7%0

f 7, = —— @2X+3Y

-7
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And the required general solution is

Ziby L
zZ=2z;+2z, = ZAi ebi"x+biy _;62x+3y
i=1

When F(D,, D,) can be written as the product of linear and

non-linear factors the general solution is the sum of the

solutions corresponding to each factor.

Ex.11: Solve (D, + 2D,)(D, — 2D, + 1)(D, — D%)z =0
Sol:
Factorl, a;,=1,by=2 ,c;=0 ,k;=1
Factor2, a, =1 ,b,=-2 ,c, =1 ,k,=1
Factor 3, F(a,b) =a—b*=0 - a=b%? - a;=b

~zZ=0,(y—2x)+ e%y(bz (v + 2x) + zAi ebi"x+biy

i=1

Where @, @, are arbitrary functions and 4, , b;are constants.

Ex.12: Solve (D% — D3 + D,)z = x* + 2y
Sol: (1) The general solution of (D2 — DZ + Dy )z = 0 is

F(a,b) =a*—-b*+a=0 »b=+Va?+a-b; =+ /ai2+al-

Then

(0]
z : alx+ a?+a;y
i=1

(2) The P.1.is
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Z; = (x% + 2y)
' DZ-DZ+D,
1 2
= s (x° +2y)
Dy (1 + Dy — %)
1 2
Dy[1 - (52~ Dy))
1 D2 D2 ’
=D—[1+D——DX+<D——DX) +"'](X2+2y)
X X X
=0
1, x3 ,
=D—[x +2y—2x+2]=?+2xy—x + 2x
X

The required general solution is

N aixt |a?+agy x3
z=zl+zz=ZAiel_ L +?+2xy—x2+2x

=1
Ex.13:Solve(2D, + 3D,)(3D, — 4D, + 5)(3D, — D3)z=0
Sol:

FaCtorl, a1=2 ,b1=3 ,C1=0 ,k1=1
FaCtOI'Z, a2=3 ,b2=_4‘ ,C2=5 ,k2=1

b2 b}
Factor 3, F(a,b) =3a —b* =0 »a=>= - a=-

The general solution is

5 > blZ
~z=0,2y—-3x) +e¥0,(3y + 4x) + z A; g3 Xtby
i=1
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Where @,, @, are arbitrary functions and 4; , b;are constants.

determine the P.1. of non-homo.p.d.e. when

f(x,y) =sin(ax + by) or cos(ax + by) we put D? = —a?,

D; = —b* , D,D, = —ab , which provided the denominator is
non-zero, as follows.

Ex.14: Solve (D% — D, )z = sin(x — 2y)

Sol: (1)The general solution z, of (D2 — D)z = 0 is

Flab)=d*-b=Q0 - a?=b;

(0.0)

E ; 2
z, = A; edix+aiy

i=1

(2) To find the P.1. of the given equation

1
P.l.=z= —Dsin(x — 2y)

a=1, b=-2 —-D?=-qa?>=-1

1
= _1—_DySil’l(x - Zy)
Multiplying by 1-1+D
- y
-1+D, (e — 29)
= 1—D§ sin(x — 2y
D§ = —b?=—-4
-1+D, 5
=Ty on— )
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— é[_ sin(x — 2y) — 2 cos(x — 2y)]

...EXxercises...
Solve the following equations:
1.(D +DyDy+ D, —1)z=0
2.(Dy +1)(Dy—Dy+1)z=0
3.(Df + DD, + D)z =0
4.(DZ+ Dy +4)z = e**7Y
5.(DZ + DDy + D, — 1)z = sin(x + 2y)
6.(Dy—Dy, —1)(Dy—D, —2)z=x
7.(DF =D+ D, + 3D, —2)z =x%y
8.(Dy + 3Dy, — 2)*z = 2e**sin(y + 3x)

10
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Section(2.2): Partial differential equations of order two
with variable coefficients

In the present section, we propose to discuss partial differential
equations of order two with variable coefficients. An equation is

said to be of order two, if it involves at least one of the differential

0%z 0%z 0%z
— S = ,t = —, but none of higher order
0x2 0x0y oy?’ g !

coefficients r =

the quantities p and g may also inter into the equation. Thus the

general from of a second order partial differential equation is

2 2 2

0°z 0°z 0%z ad
R(x,y)ﬁ+ S(x,y) 6x0y+ T(x,y)7—+P(x,y)

ay

T+ Q) oo+ V(8 )Z = f(3)
(1)

Or Rr+Ss+Tt+Pp+Qq+Vz=f..(02)

Where R,S,T,P,Q,V, f are functions of x and y only and not all

R,S, T are zero.

We will discuss three cases of the equation (2):

hen one of R, S, T not equal to zero and P, Q,V are equal

to zero ,then the solution can be obtained by integrating both

sides of the equation directly.

2
Ex.15:Solve y% +5y—x%y* =0

Sol: Given equation can be written

11




Chapter Two: Non-homogeneous Linear Partial Differential Equations

2 _ yx? _5..(3)

9x2
Integrating (3) w.r.t. x

9z _ yx3
dx 3

—5x+ 0,(y)...(4)

Integrating (4) w.r.t. x

yx* 5
z = E_Exz +x0:(y) + 0,(y)

Where @, and @, are two arbitrary functions.

%z

2
—y°x=0
dxady y

Ex.16: Solve xy

Sol: Given equation can be written

0%z

ox 0y =7y ..(5)

Integrating (5) w.r.t. x

0z

3y =~ XVt ?1(y).-..(6)

Integrating (6) w.r.t. y

xy?
2=+ j 0, (y)3y + 0,(x)

2

=2+ 00) + 8,

Where @pand @, are two arbitrary functions.

When all the derivatives in the equation for one

independent variable i.e the equation is of the form

12




Chapter Two: Non-homogeneous Linear Partial Differential Equations
Rr+Pp+Vz=f(x,y) orTt+Qq+Vz=f(xy)
Some of these coefficients may be Zeros.

These equations will be treated as a ordinary linear differential

equations, a follows:

2
Ex.17: Solve yZ—y; + 32—; =2x+3

0z 0%z  0q
Sol: let 3y q 9y 3y

Substituting in the given equation, we get

_ 2x+3

q= ..(7)

3
y y

dq _ daq
ya+3q—2x+3 - 6y+

Which it's linear diff. eq. in variables g and y , regarding x as a
constant.

3
Integrating factor (I.F.)of (7) = ef;ay = 3y = 43

And solution of (7) is

3 2x + 3 3
yq=] 5 y>dy + 04(x)

3
y3q = (2% +3)°0 + 0, (1)

2x + 3 3
q=—73—tY 01(x)
Z_; = 2x3+3 + y73@,(x) , integrating w.r.t.y

2x + 3
3

7 =

1
Y = 5579100 + 0200

13



Chapter Two: Non-homogeneous Linear Partial Differential Equations

Where @, and @, are two arbitrary functions.
Ex.18: Solve a—zz —2y%Z 4 y27 = (y — 3)e?*+3Y
dx ax
Sol: The given equation can be written as
Di = 2yDy +y*z = (y — 3)e** ™+

- (Dx —y)?z = (y — 3)e***37..(8)
The A.E. of the equation (D, — y)?z = 0 is

(m-y)?=0->my=m,=y
~zp = 01(y)e’™ + xB,(y)e’*...(9)
Where @, and @, are two arbitrary functions.

The P.l. (z,) is

1
(y _ 3)62x+3y — (y _ 3)—62x+3y
(2 —y)?

1
Z, = ———
? (Dx_Y)Z

NZ=2Z1+ 2y

= 01()e +x0;(1)e”* + (y = 3) 57 >+

under this type, we consider equations of the form

[Rr+Ss+Pp=f(x,y) _f(x)’)J

6

And£s+Tt+Qq=f(x,y) afazy T3z Q——f(xy)]

These can be transform to a linear, p.d.es of order one with p or
q as dependent variable and x,y as independent variables. In
such situations we shall apply well known Lagrange's method.

14
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9%z 9%z 0z
dx2 y axdy dx

Ex.19: Solve x

2 2
Sol: let p =2 92 _0p 9z _0p
dx  0x? 0x 0xdy 0y

Substituting in the given equation , we get

o _ 9 _
x— 3y p = 0...(10)
Which it is in Lagrange's form, the Lagrange's auxiliary equations

ax _dy _dp 1)
BB

are:

Taking the first and second fractions of (11)

: % = 6_1—3; - Inx = —Iny + lna - |xy = al.(12)

Taking the first and the third fractions of (11)

%:%p—)lnlenp+lnb—>13)

From (12) &(13), the general solution is

@(a,b) =0 - ®(xy,f) 0o = g(xy)
p %

_ X
—gCey)

-p

daz X
Pl g(xy)...(14)

Integrating (14) w.r.t. x , we get
X

Where g and ¢ are two arbitrary functions.

Then (15) is the required solution of the given equation.

15
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...EXercises...

Solve the following equations:

. 622_ 6_2_ 2

1)) In (W)—x+y ) E X =x
0’z 9%z _ x 2 0%z 9z _
3))axay_a_yZ_y 4)) y _ay2+2yay_1

Section2.3: Partial differential equations reducible
to equations with constant coefficients

In this section, we propose to discuss the method of solving the
partial differential equation, which is also called Euler-Cauchy type

partial differential equations of the form :

n aTl

n 0
apx™ P n+a1x ya n1a, + - +any = f(x,y)...(1)

i.e. all the terms of the equation of the formula a,x"y™

To solve this equation ,define two new variables u and v by

x=e%andy =eYsothat u = lnx and v = Iny...(2)

Let D,, = %and D, =

v

0z 0z 0du 1 0z .
Now,a—a Pyt a,usmg(Z)
0z 0z
Wo—=x'— - |D,,z=xD.,zl..

16
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0%z 0 ,0z
Again x?% - — = x%? — (=
8 0x? 0x ax)

_,20 1 oz
= X" (x au) from (3)

1 0%z 0z
— 2. . w2 . 2
x x 0xou x Ju x
0%z 0z
— x - _
dxdu OJu
d (62) 0z
=x—|—]| ——
Ju \0x Ju
B d (1 62) 0z
__xau x 0u Ju
1 0%z 0z
=y m
x 0u? oOJu
B 0%z 0z
~ Ju?  du

~x*DZz =D,(D, — 1)z
And so on similarly, we have
yDyz = D,z ,y*D;z = D,(D, — 1)z,,...

Hence

" ZZ, = p (D, — 1)(Dy —2) ... (D, — 1 + 1)z...(4)

axm

am
ym ayniz =D,(D, — (D, —2) ...(D, —m + 1)z...(5)

R
17




Chapter Two: Non-homogeneous Linear Partial Differential Equations

n+mZ

d
xnysz =D,(D,—-1)..(Dy,—n+1)D,(D,— 1) ...(D, —m+ 1)z ...(6)

Substituting (4),(5),(6) in (1) to get an equation having constant
coefficients can easily be solved by the methods of solving homo.
And non-homo. Partial differential equations with constant
coefficients, Finally , with help of (2), the solution is obtained in

terms of old variables x and y.

0%z 9%z 0z 0z
Ex.20: Solve x?> — — y?2 — — y— — =
0: Solve x*—— —y o2 Yoy T¥Xox 0

Sol:letx =e%,y =eVthen u =Inx andv = lny

2
Z=Dyz , x*-2=D,D,— 1z
d ..(7)
an 0z 2 0%z
}75 - DvZ ) yo ay? - Dv(Dv - 1)2

Substituting (7) in the given equation,
(D2 —-D,—D2+D,—D,+D,)z=0
(Di - Dg)Z =0-> Dy —Dy)(Dy +Dy)z=0

TheAEis (m—1)(m+1)=0

m1'=1 mz;—l

Then the general solution is
z=0,(v+u)+0,(v—u)

= @,(Iny + Inx) + @,(Iny — Inx)

18



Chapter Two: Non-homogeneous Linear Partial Differential Equations

= @, (Inxy) + @, (ln %)

= hy(xy) + h; (%)

Where h;andh, are two arbitrary functions.

...Exercises...
Solve the following equations:
1)) (x*Di —y*Dj — yDy, + xD,)z = xy
2)) (x*Df—2xyD,Dy, + y*Dy +yD, +xD,)z =0

0%z 0%z 0z 0z
2 2 |
ay ox y

3)) x 0x? 0y?

19



Chapter Two: Non-homogeneous Linear Partial Differential Equations

Classification of partial differential equations of second order:

Consider a general partial differential equation of second order
for a function of two independent variables x and y in the form

Auy, + Buyy, + Cuyy, + Duy + Euy, + Fu = G ..(¥)
Where A4,B,C,D, E, F, G are function of x, y or constants.
The equation (*) is said to be

(i) Hyperbolic at a point (x,y)in domain Dif B2 — 4AC > 0.
(i) Parabolic at a point (x, y)in domain Dif B> — 4AC = 0.
(iii)Elliptic at a point (x, y)in domain Dif B2 — 4AC < 0.

Ex.21: Classify the following partial differential equation
2uyy + 33Uy, =0

Sol:
Comparing the given equation with (*),wegetA =2,B=3,C =0
B?—4AC =9-4(2)(0)=9>0

Showing that the given equation is hyperbolic at all points.

20
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Ex.22: Classify the following p.d.eqs.

d 2 02
D 2

’u _ 2 *u
(2) atZ xZ
(3) ﬁ + — =0

Sol. (1)Re-writing the given equation, we get
AUy — U = 0
Comparing with (*), weget A =a?,B=0,C =0
B2 —4AC =0—-4(a®)(0)=0
Showing that the given equation is Parabolic at all points.
Sol. (2) Re-writing the given equation, we get
CUyy — U = 0
Comparing with (*), weget A =c? B =10,C = -1
B? —4AC =0—-4(c*)(-1) =4c*>0
Showing that the given equation is hyperbolic at all points.
Sol. (3)Comparing with (*), weget A=1,B=0,C =1
B?—4AC=0—-4(1)(1)=-4<0

Then the equation is an Elliptic at all points.

...EXercises...
Classify the following equations:

1)) Uy — Uyy — Uy, =0
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2)) Uy — TUg + T2Ugg = 0 ;u(r, 9)
3)) Zux + Zxy + 2z, = 2x

4))XYZyr — (xz _ yZ)ny — XYZyy T Yzx — XZy = Z(XZ _ yz)

0%z
d0xdy

0%z 0z 0z
+4(y—1)ﬁ+xya—£—0

5) x2(y — 1) 22— x(y? - 1)

6))u, —ugg =5

0%u 0%u 0%u
7))2ﬁ+4axay+4ay2 =2

Section 2.4: Method of Lagrange multipliers

This method applies to minimize (or maximize) a function
f(x,y,z) subject to the constraint g(x,y,z) = 0, construct the
auxiliary function

Discussion of the method

Suppose we want to find the minimum (maximum) value of the
function f(x,y,z) which represents the distance between the
required plane g(x,y,z) = 0 and the origin and suppose that f
and g having continuous first partial derivatives and ending of f is
at the point (xg, yo, Zg) Which it's on the surface S that defined by

gx,y,z)=0
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Chapter Two: Non-homogeneous Linear Partial Differential Equations

5 gx,vy,z) =0

b -

We said that f has minimum (maximum)value at the point
(%0, Yo, Zp) if it satisfies the following condition

[Vf(x, y,z) = AVg(x,y, Z)] (1)

Where A is Lagrange's multiplier , V denote to the partial

derivatives of f and g w.r.t. x, y and z.

Ex.23: by using Vf(x,y,z) = AVg(x,y, z), find the point on the
straight y = 3 — 2x that is nearest the origin.

Sol. Let f(x,y) =x2+y2 > Vf(x,y) =< 2x,2y >..(2)
gx,y)=y+2x—-3=0-Vg(x,y) =<2,1>..(3)
Substituting (2) & (3)in Vf(x,y,z) = AVg(x,y, z),we get
<2x,2y >=1<21>
n2x=2A& 2y =1 > x=A=2y..(4)

Substituting (4) in g(x,y), we have

3
y=3-4y - Sy=3 - y=g¢
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Then form (4),we have x = S

6 3
s (xy) = (g;g

Which it's the point on y = 3 — 2x that is nearest the origin.

The distance between the point (x, y)on a straight and

the origin is

w=(x—x0)%2+ ¥ —¥0)% ,(x0,¥0)=(0,0)

N

Squaring both sides, we get

w?=x%+y% = f(x,y)

Ex.24: Find the point on the plane 2x — 3y + 5z = 19 that is
nearest the origin, using the method of Lagrange multiplier.

Sol. As before, let

Let f(x,y,2z) =x2+y2+2z? > Vf(x,y,z) =< 2x,2y,2z >...(5)
g, y,z)=2x—-3y+5z2—-19=0-Vg(x,y) =< 2,—-3,5 >...(6)

From the relation Vf(x,y,z) = AVg(x,y, 2) .(7)
- < 2x,2y,22>=1<2,-35>

22x=21, 2y=-31, 2z=051

-3 _ 5
2

..(8)
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Substituting this values in g , we get

9 25
2/1+§/1+7/1=19 —-381=38 - A1=1

Substituting (A = 1) in (8) , we have

- )_1—35
“p x;}I;Z _( ) 2 12)

Ex.25: Suppose that the temperature of metal plate is given by
T(x,y) = x* + 2x + y?. For the points (x,y) on a plate ellipse
defined by x% +4y* <24. Find minimum and maximum
temperature on the plate.

A
Sol. For the plate in the figure 9 "h \
: ¢ e WA
Firstly, we will find the critical e \{; S

Pointsof T(x,y) in R
T(x,y) =x*>+2x +y> - VT(x,y) =< 2x + 2,2y >=< 0,0 >
W2x+2=0 &2y=0 - x=-1&y=0
~(x,y) =(-10)isinR
Now, using the relation Vf(x,y) = AVg(x,y)
fO,y) =T, y)=x*>+2x+y? ->VT(x,y) =<2x+ 2,2y >
glx,y) = x%? +4y? —24 - Vg(x,y) =< 2x,8y >
VT (x,y) = AVg(x,y)
<2x+ 22y >=1<2x,8y >
~2x+ 2 =2Ax..09) &2y = 81y..(10)
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y(2—-82) =0

From (10)] y=0lor 2—84=0 —>

*ify=0 - x2+4(0)=24 - x=4V24

~ (x,y) = (V24,0) or (—V24,0)

*if)t=i - 2x+2=%x from (9)
—4
- = —
¥

Substituting in g , we have

Liayr=24 » y=42

-G8 -~ @)

Now , to find the minimum and maximum temperature T

substituting all pointsin T
T(-1,0) =-1
T(V24,0) = 24 + 2v/24 = 33.8
T(—V24,0) = 24 — 2v/24 = 14.2

—4 /50 _4 .
3'3 ) 37

—4 —/50\ 14

— | =— =47
3’ 3 3

Note that the minimum temperature is (—1) at the point (—1,0)
and the maximum temperature is (33.8)at the point (v24,0).

26



Chapter Two: Non-homogeneous Linear Partial Differential Equations

if there are two constraints intersecting ,say

g(x,y,z) =0 and h(x,y,z) = 0, we introduce two Lagrange's

multipliers Aand u and the relation will be

Vf(x,y,z) — Avg(x»y» Z) + .UVh(xry»Z)

Ex.26: the plane x+y+2z =12 intersects with the cone

z = x? + y*by an ellipse. Find the point on the intersection that

is nearest to the origin. i} :

‘ } f --{’.
Sol. f(x,,2) = x% + y? + 22 |/ /
g(x)yrz)=x+y+z_12=0 K —_.).I

h(x,y,z) =x*+y2—2z=0
Vf(x,y,z) = AVg(x,y,z) + uVh(x,y, z)
<2x,2y.2z2>=A<111>+4+u<2x2y,—-1>
s 2x = A+ 2ux ...(11)

2y = A+ 2uy...(12)

2z =1 —u..(13)
From (11) and (12)

A=2x(1—pw

1=2y(1 —u)}_) 2x(1-p@) =2yA-w) > Cx-2y)A-pw) =0
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Thenl—u=0->u=1-41=0 from(11) & (12)
Substituting in (13) we have z = _71...(14)

Substituting (14) in g and h , we have

1
x+y—§—12=0

x? +y? = —% (Contradiction)

Or| 2x—2y =0 - x =y, in this case (Substitutingin h and g)

we get
Inhx?>+y? —z=0-z = 2x?
Ing2x +2x>—12=0->x>+x—-6=0
x+3)(x—2)=0->x=-30rx=2

x=y &z=2x* - (x,y,z) =(2,28) or (-3,-3,18)
When (x,y,z) = (2,2,8) - f(2,2,8) =72
When (x,y,z) = (—3,—3,18) — f(—3,—3,18) = 342
Then (2,2,8) is the nearest to the origin.

... Exercises ...

1)) Find the point on the curve y = x? + 3 that is nearest the
origin, using the method of Lagrange multipliers.

2)) Find the minimum distance from the surfacex? + y2 —z% =1
to the origin.

3)) Find the point on the surface z = xy + 1 nearest the origin.
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4)) Find the maximum and minimum values of f(x,y,z) = x —
2y + 5zon the sphere  x? + y? + z2 = 30.

5)) Find the maximum value of f(x,y) = 49 — x%? — y2 on the line
x+3y=10.

6)) The temperature at a point (x,y) on a metal plate is
T(x,y) = 4x? — 4xy + y? . An ant on the plate walks around the
circle of radius 5 centered at the origin what are the highest and
lowest temperatures encountered by the ant?

7)) Factory produces three types of product x,y,z , the factory's
profit (calculated in thousands of dollars) can be formulated in
equation p(x,y,z) = 4x + 8y + 2z,where the account s
bounded by x? + 4y? + 2z2 < 800, find highest profit for the
factory.

8)) find the greatest and smallest values that the function
2

2
f(x,y) = xy takes on the eIIipse% + y? =1.

9)) Find the point on the sphere x2 + y? + z2 = 25 where
f(x,vy,z) = x + 2y + 3z has its maximum and minimum values .

10)) Find three real numbers whose sum is 9 and the sum of
whose squares is as small as possible.
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