.2.29Exercise

Let $(L, \| \|)$ be a normed space. Prove that

} is closed
$$1 = \{x \in L : ||x|| \le 1 A \text{ i}\}$$
 The set)

} is open
$$1 = \{x \in L : ||x|| <_2 A(ii)$$
The set

} is closed
$$C = \{x \in L : ||x|| = (iii)$$
 The set

:Solution

$$(0(1) = B1 = \{x \in L : ||x|| \le 1 \text{ i) } A)$$

(2.25is a closed set (by Definition 1 So, A

$$.(0(1) = B1 = \{x \in L : ||x|| <_2 \text{ ii}) A)$$

(2.25 is an open set (by Definition 1 So, A

$$\{1iii\}\ C = \{x \in L : ||x|| = \}$$

$$\} 1\} \cup \{x \in L : ||x|| > 1L \setminus C = \{x \in L : ||x|| < 1\}\}$$

} is open set1=
$$\{x \in L : ||x|| <_1 \text{ Let } C$$

$$\{1 = \{x \in L : ||x|| > 2 \text{ Let } C\}$$

is an 2 } which is closed set. Hence, $C1 = \{x \in L : ||x|| \le 2 \text{ So, } L \setminus C$

.open set

.((2(2.27is an open set (by Remark 2 \cup C_1 Thus, $L \setminus C = C$

.2.30Definition

Let L be a normed space and $A \subseteq L$. A point $x \in L$ is called **limit point**

 φ of A if for each open set G containing x, we have $(G \cap A) \setminus \{x\} \neq \emptyset$

The set of all limit points of A is denoted by A' and is called **derived**

. set. The closure of A is denoted by A and is defined as $A = A \cup A$

.2.31Proposition

Let L be a normed linear space and $A \subseteq L$. Then $x \in \overline{A}$ if and only if $\exists y \in A, \|x - y\| < r0r > \forall$

$$'Proof. (\Rightarrow)$$
 Let $x \in A = A \cup A$

 $.\varphi$ If $x \in A'$ then for each open set $G, x \in G, (G \cap A) \setminus \{x\} \neq A'$

, φ . Thus, we have $B_r(x) \cap A \setminus \{x\} = 0$ Since $B_r(x)$ is an open set then $\forall r > 1$

(I)
$$y \in B_r(x) \cap A$$
, $y /= x \implies ||y - x|| < r \exists$

(II)
$$< t0$$
 If $x \in A$ then $\exists y = x$ such that $||y - x|| =$

.From (I) and (II), we get the required result

 \exists , \exists y0, \exists y \in A such that ||y-x|| < r, that is \forall r > 0If for each r > (\Leftarrow) $(A, y \in B_r(x))$

$$.\varphi \implies x \in A'$$
. Thus, $x \in A$, $(B_r(x) \cap A) \setminus \{x\} \neq 0$ $r > \forall \Rightarrow \exists 0$

Convergence in Normed Space2.5

.2.32Definition

Let $\langle x_n \rangle$ be a sequence in a normed space $(L, \| \| \|)$. Then $\langle x_n \rangle$ is said to

 $\exists k \in Z_+$ such that 0 be **convergent** in L if $\exists x \in L$ such that $\forall \epsilon > 1$

$$\forall n > k \|x_n - x\| < \epsilon,$$

We write $x_n \to x$ as $n \to \infty$ or $\lim_{n \to \infty} (x_n) = x$; that is

$$\iff x_n \to x 0 \|x_n - x\| \to$$

 $\langle x_n \rangle$ is **divergent** if it is not convergent

.2.33Theorem

If $\langle x_n \rangle$ is a convergent sequence in $(L, \| \|)$, then its limit is unique. i.e., . If $\langle x_n \rangle \to x$ and $\langle x_n \rangle \to y$ then x = y

 $\in Z_+$ such 2, k_1 . Since $\langle x_n \rangle \to x$ and $\langle x_n \rangle \to y$, then $\exists k 0 \text{ Proof.}$ Let $\epsilon > that$

$$-\frac{\epsilon}{2} \forall n > k,_{2} \text{ and } \|x_{n} - y\| <_{1} \quad \stackrel{\epsilon}{\forall} n > k,_{2} \|x_{n} - x\| <_{1}$$
 }, so $\forall n > k_{2}, k_{1} \text{Let } k = \max\{k$
$$\|x - y\| = \|x_{n} - y - x_{n} + x\| = \|(x_{n} - y) - (x_{n} - x)\|$$

$$= \epsilon_{2} +_{2} \|x_{n} - y\| + \|x_{n} - x\| <_{2}$$

$$-\frac{\epsilon}{2} +_{2} \|x_{n} - y\| + \|x_{n} - x\| <_{2}$$
 ., so $x = y_{0}$. Thus, $\|x - y\| = 0 \forall \epsilon > \|x - y\| < \epsilon, \Rightarrow =$

.2.34Theorem

Let $A \subseteq L$ where L is a normed space, let $x \in L$. Then $x \in A \iff \exists \langle x_n \rangle$ a sequence in A such that $\langle x_n \rangle \to x$

Proof.
$$(\Rightarrow)$$
 Let $x \in A = A \cup A$

(I) If $x \in A$ then the sequence $\langle x, x, x, \rangle \to x$ φ . If $x \in A$, i.e., $x \in A'$ then for each open set G, $x \in G$, $(G \cap A) \setminus \{x\} \neq \emptyset$. Set, we have $B_r(x) \cap A \setminus \{x\} \neq \emptyset$. Since $B_r(x)$ is an open set then $\forall r > \emptyset$.

From (*),
$$\forall n > k, ||x_n - x|| < \frac{1}{n} < \frac{1}{k} < \epsilon$$
. Thus, $x_n \to x$ (II)

.From (I) and (II), we get the required result

'If $\exists \langle x_n \rangle$ a sequence in A such that $\langle x_n \rangle \to x$. To prove $x \in A = \overline{A} \cup A \ (\Leftarrow)$ If $x \in A$ then $x \in A$

0 If $x \in A$. Let G be an open set in L such that $x \in G$. Then $\exists r >$ and $x_n \to x$, $\exists k \in Z_+$ such that 0 such that $B_r(x) \subseteq G$. Since r > . $||x_n - x|| < r$, $\forall n > k$

 $\forall n > k \text{ and since } x_n \in A \quad \forall n \in Z_+. \text{ Then This implies, } x_n \in B_r(x)$ $(B_r(x) \cap A) \setminus \{x\} /= \varphi. \text{ Since } B_r(x) \subseteq G, \text{ then } (G \cap A) \setminus \{x\} /=$ $- \varphi. \text{ So } x \in A', \text{ and therefore } x \in A$

.2.35Theorem

Let $\langle x_n \rangle$, $\langle y_n \rangle$ be two sequences in normed space $(L, \| \|)$ such that $x_n \to x$ and $y_n \to y$. Then

$$x_n \rangle \pm \langle y_n \rangle \rightarrow x \pm y \rangle$$
 (1)

for any scalar
$$\lambda\lambda(x_n) \to \lambda x$$
 (2)

$$\|\langle x_n\rangle\| \to \|x\| \ \textbf{(3)}$$

) Since $x_n \to x$, then **1***Proof.* (

 $_{1}\forall n > k,_{2} \in Z_{+} \text{ such that } \|x_{n} - x\| <_{1}, \exists k \text{ Of } \text{ or each } \epsilon >$

Also since $y_n \rightarrow y$, then

 $_{2}\forall n > k,_{2} \in \mathbb{Z}_{+} \text{ such that } \|y_{n} - y\| <_{2}, \exists k \text{ Of er each } \epsilon >$

}. Then, for each $n > k_2$, k_1 Let $k = \max\{k\}$

(I)
$$-\frac{\epsilon}{2} \text{and } \|y_n - y\| < \frac{\epsilon}{2} \|x_n - x\| <$$

Now, for each n > k

$$\|(x_n + y_n) - (x + y)\| = \|(x_n - x) + (y_n - y)\| \le \|x_n - x\| + \|y_n - y\|$$

$$\epsilon \quad \epsilon \qquad \qquad -2 \text{ (from (I) } \epsilon = + >$$

. Thus, $x_n + y_n \rightarrow x + y$ as required

s.t
$$\|x, \exists k \in Z \rightarrow$$
. Since $x0$ Let $\epsilon > (2)>_n x -x \|\frac{\epsilon}{|\lambda|}$ $n > k \forall \epsilon$

But $\|\lambda x_n - \lambda x\| = |\lambda| \|x_n - x\| < \frac{\epsilon}{|\lambda|} |\lambda| = \epsilon$

X

Thus, $\lambda \langle x_n \rangle \rightarrow \lambda x$

$$\forall n > k$$
. Since $x_n \to x$, $\exists k \in Z_+$ s.t $||x_n - x|| < \epsilon$, 0 Let $\epsilon > (3)$ (III)
 $||x_n|| \to ||x|| ||x_n|| - ||x||| \le ||x_n - x|| \le \epsilon$

$$n > k$$
. Hence, $\|x_n\| \to \|x\| \forall \text{But } \|\|x_n\| - \|x\|\| \le \|\underline{x_n} - x\| \le \epsilon$ (using 'I'M

.2.36Definition

Let $\langle x_n \rangle$ be a sequence in a normed space $(L, \| \|)$. Then $\langle x_n \rangle$ is said to be

.,
$$\exists k \in Z_+$$
 s.t $||x_n - x_m|| < \epsilon$, $\forall n, m > k$ 0 Cauchy sequence if $\forall \epsilon > k$

.2.37Theorem

. Every convergent sequence in a normed space $(L, \| \|)$ is a Cauchy sequence

Proof. Let $\langle x_n \rangle$ be a convergent sequence in L. Then $\exists x \in L$ such that

(I)
$$n > k \forall_2, \exists k \in \mathbb{Z}_+$$
 such that $||x_n - x|| < 0 x_n \xrightarrow{\epsilon} x$ and so $\forall \epsilon > 1$. Now, for $n, m > k$

$$= \epsilon_{2_{\mathbf{X}}} + 2 \|x_{n} - x_{m}\| = \|(x_{n} - x) + (x - x_{m})\| \le \|\underline{x_{n}} - x\| + \|\underline{x_{m}} - x\| < \underline{ }$$

. Thus, $\langle x_n \rangle$ is a Cauchy sequence

.2.38Definition

Let $\langle x_n \rangle$ be a sequence in a normed space $(L, \| \|)$. Then $\langle x_n \rangle$ is said to be

 $x_n + \forall n \in Z$ such that $||x_n|| \le k$, 0 bounded sequence if $\exists k \in \mathbb{R}, k > k$

.2.39Theorem

. Every Cauchy sequence $\langle x_n \rangle$ in a normed space $(L, \| \|)$ is bounded

. Since $\langle x_n \rangle$ is a Cauchy sequence, $\exists k \in \mathbb{Z}_+$ such that 1*Proof.* Let $\epsilon =$

,
$$\forall n > k$$
 (by 111 < 1, $\forall n, m > k$. Hence, $\|x_n - x_{k+1}\| \|x_n - x_m\|$ <

() (Ilconsidering m = k +

$$n > k \forall 1 \parallel \leq 1 \parallel \mid \leq \parallel \underline{x_n} = \underline{x_{k+1}}$$
, we have $\mid \parallel x_n \parallel - \parallel x_{k+4} = 4(2.3 \text{By Theorem})$

1|| < 1 Thus,
$$||x_n|| - ||x_{k+}|| n > k \forall$$

$$\{\|_{1} + \|x_{k+1}\|, ..., \|x_{k}\|, _{2}\|, \|x_{1}\text{Let } M = \max\{\|x_{k+1}\|, ..., \|x_{k}\|\}\}$$

.Hence, $||x_n|| \le M \quad \forall n \in \mathbb{Z}_+$. So, $\langle x_n \rangle$ is bounded

.2.40Corollary

. Every convergent sequence in a normed space $(L, \| \|)$ is bounded

, Every convergent sequence in a normed space 2.37 Proof. From Theorem

, every Cauchy sequence in 2.39 (L, | | |) is Cauchy, and from Theorem

.a normed space $(L, \| \|)$ is bounded

Convexity in Normed Linear Space2.6

.2.41Definition

,0A subset A of a linear space L is said to be **convex** if $\forall x, y \in A, \lambda \in [1]$

 $(-\lambda)y \in A1$ then $\lambda x + (-\lambda)y \in A1$

.2.42Example

?) \subset R. Is A convex set3, 1Let A = (

[1,0**Solution:** Let $x, y \in A, \lambda \in [$

(I)
$$\lambda 3\lambda < \lambda x < 1 \Rightarrow 3 < x < 1$$
 Since

$$(-\lambda 1 (3-\lambda)y < 1-\lambda) < (1 (1=\Rightarrow 3 < y < 1 \text{ Since})$$
 (II)

(By summing up (I) and (II

$$(-\lambda 1 (3\lambda + 3 - \lambda)y < 1 - \lambda) < \lambda x + (1 \lambda + (3 - \lambda)y < 1 \lambda x + (> 1)$$

 $(-\lambda)y \in A$. Hence, A is convex set 1 Thus, $\lambda x + (-\lambda)y \in A$.

.2.43Proposition

Let L linear space. Then

- Every subspace of L is convex (1)
- (If $A, B \subset L$ are convex sets then $A \cap B$ is convex (**H.W** (Y)
 - If $A, B \subset L$ are convex sets then A + B is convex (Υ)
-) Let L be a linear space over a field F = R or C, let A be a **1**Proof. (
 , $\forall x, y \in A$ and $\forall \alpha, \beta \in F$ we 1.13subspace of L. Hence, by Theorem
 .have $\alpha x + \beta y \in A$
- $-\lambda$) $y \in A$. 1λ . Hence, $\alpha x + \beta y = \lambda x + (1)$ and $\beta = 1$, 0 Take $\alpha = \lambda \in [$. Thus, A is a convex set
 - $\in B$, $a_1, b_1 \in A$ and $b_2, a_1 \in A + B$, then $a_2 + b_2, a_1 + b_1$ Let $a_1 = a_1 + b_2 = a_1 + b_2 = a_1 + b_2 = a_1 + b_2 = a_2 + b_2 = a_1 + b_2 = a_1 + b_2 = a_2 + b_2 = a_1 + b_2 = a_1 + b_2 = a_1 + b_2 = a_2 + b_2 = a_2$
 - ((I]1,0 $\lambda \in [\forall \in A_2 \lambda)a1 + (1 \in A \implies \lambda a_2, a_1 \text{Since } A \text{ convex and } a$

 $\in B_2 - \lambda b_1 + (1 \in B \implies \lambda b_2, b_1 \text{ Since } B \text{ convex and } b \text{ [1,0} \lambda \in [\forall \text{ (II)}]$ By summing up (I) and (II) we get

$$\in A + B_2 - \lambda bl + (1 + \lambda b_2 - \lambda)al + (1 \lambda a)$$

.) $\in A + B$. Thus, A + B is a convex set₂+ $b_2 - \lambda$)(al) + (1+ b_1 i.e., λ (2)

.2.44Remark

The union of two convex sets is not necessary convex. For example, let , y 6). Then A is not convex. To show this, take x = 12,7) $U(7,3A = (A \cup B \not) 1 = (B) + (A \cup B \not) 1 = (B) + (A \cup B \not) 1 = (B) + (B \cup B \not) 1 = (B) + (B \cup B) 1 = (B) + (B)$

.2.45Proposition

) and $_0 \in L$. Then $B_r(x_0 \text{ Let } (L, \| \|)$ be a normed linear space, let x.) are convex sets₀ $B_r(x)$

,0), and let $\lambda \in [0]$ is a convex set. Let $x, y \in B_r(x_0 Proof.$ To prove $B_r(x_0)$,]. Then 1

(I)
$$\| \langle r_0 \| \langle r \text{ and } \| y - x_0 \| x - x \|$$

); that is we must prove $(-\lambda)y \in B_r(x)$ We must prove $\lambda x + (-\lambda)y \in B_r(x)$

$$\parallel < r_0 - \lambda) y - x 1 \parallel \lambda x + ($$

 $\| (adding and _0 - \lambda)y - x1 + (_{\mathbf{o}} - \lambda \mathbf{x}_{\mathbf{o}}) \| = \| \lambda x + \lambda \mathbf{x}_{0} - \lambda)y - x1 \| \lambda x + (_{0} \text{subtracting } \lambda x) \| + (_{0} \text{subtracting } \lambda$

$$\| \|_0 - \lambda \| (y - x_1) + \|_0 \| \lambda (x - x) =$$

$$-\lambda)r=\,r!\,\,\|\,<\lambda r+\,(_0-\lambda|\,\|y-x1\,)\|+\,|_0\lambda|\,\|(x-x|\geq$$

 $(-\lambda 1 - \lambda) = 1$ then $|\lambda| = \lambda$, |0| by (I) and since $|\lambda| > 1$

) is convex. Similarly, 0) and hence $B_r(x_0 - \lambda)y \in B_r(x_1 \text{ Thus}, \lambda x + (x_1 \text{ Thus}, \lambda x))$

.) is a convex $set_0 B_r(x)$

.2.46Proposition

Let $(L, \| \|)$ be a normed linear space and $A \subseteq L$ and convex then A is .a convex set

$$-\lambda$$
) $y \in A1$]. To prove $\lambda x + (1,0 Proof$. Let $x,y \in A$ and $\lambda \in [$, $\exists a,b \in A$ such that 2.31. Since $x,y \in A$ then by Proposition 0Let $r > (I)$ $\|x-a\| < r$ and $\|x-b\| < r -\lambda$) $b \in A1$ Since A is convex then $\lambda a + (1-\lambda)(y-b)\|1-\lambda$ $b = \|\lambda(x-a) + (1-\lambda)y - \lambda a + (1 \text{ Now}, \lambda x + (1-\lambda)\|y-b\|1\|\lambda\|x-a\|+(1 \text{ Now}, \lambda x + (1 \text{ Now$

r =

$$= 1 \frac{\lambda a + (- -\lambda)y}{\lambda} \lambda x + (\text{Thus}, r \ge \lambda)b$$

 $(-\lambda)y \in A1$, $\lambda x + (2.31$ Thus, from Proposition \square

.2.47Remark

The converse of the above proposition is not true. For example, let A =,] is a convex set. But A is not convex5,1] \subset (R,||) then $A = [5,2) \cup (2,1[$

$$\exists 2 = (3(+ -\lambda)y = \frac{1}{2}) \text{ then } \lambda x + (\lambda = 3, y = \frac{1}{2}) \text{ single if } x = A /$$

Continuity in Normed Linear Space2.7

.2.48Definition

A mapping $f:L\to L'$ is called Let L,L' be normed linear spaces.) such that 0 (depend on x0, $\exists \delta > 0 \in L$ if for each $\epsilon > 0$ continuous at x

.)
$$\| < \epsilon_0 \| f(x) - f(x) \| < \delta$$
 then $\| x - x \| f(x) \in L, \forall$

((0) then $f(x) \in B_{\epsilon}(f(x_0x \in B_{\delta}(x)))$ if i.e., $\forall x \in L$,

.2.49Theorem

Let L, L' be normed linear spaces. A mapping $f: L \to L'$ is continuous at .(oimplies that $f(x_n) \to f(x_0 \in L \text{ iff } \forall \langle x_n \rangle \in L \text{ with } x_n \to x_0 x$

and let $\langle x_n \rangle$ be a 0 *Proof.* (\Rightarrow) Let f be a continuous mapping at x

.(0. To prove $f(x_n) \to f(x_0)$ sequence in L such that $x_n \to x$

such that $\forall x \in X0$, then $\exists \delta > 0$ Let $\epsilon >$

). ₀From continuity of f at x) $\| < \epsilon_0 \| < \delta$ then $\| f(x) - f(x_0) \| \| x - x$

 $\forall n > k \| < \delta_{0}, \exists k \in \mathbb{Z}_{+} \text{ such that } \|x_{n} - x0 \text{ and } \delta > 0 \text{ Since } x_{n} \to x$

 $f(0) \forall n \geq k$; that is $f(x_n) \to f(x) \| \leq \epsilon_0$. Hence, $\| f(x_n) - f(x_n) \| \leq \epsilon_0$.

To prove f is).0 implies that $f(x_n) \to f(x_0)$ Suppose that $x_n \to x \ (\Leftarrow)$

.0continuous at x

 $\exists x \in X$ 0such that $\forall \delta > 0$, so $\exists \epsilon > 0$ Assume that f is not continuous at x and

$$\| \| \ge \epsilon_0 \| < \delta \text{ but } \| f(x) - f(x_0 \| x - x) \|$$

, then $\exists x_n \in L \xrightarrow{1}$ such that 0 Now, $\forall n \in Z_+$, $n > \infty$ (but $f(x_n) \parallel \ge \epsilon$. This means $x_n \to x_0 \parallel < \epsilon$ but $\|f(x_n) - f(x_0 \parallel x_n - x_n)\| \le \epsilon$. $0 \text{ in } L' \text{ which is a contradiction. Thus, } f \text{ is continuous at } x_0 f(x_n)$

.2.50Theorem

Let $(L, \| \|)$ be a normed space and let $f: (L, \| \|) \to (R, \| \|)$ such that $0 \le L$. Then f is continuous at $x \forall f(x) = \| x \|$

$$\exists k \in \mathbb{Z}_+$$
 such that 0 in L. Then $\forall \epsilon \geq 0$ Proof. Let $x_n \to x$

(I)
$$n > k \forall \| < \epsilon_0 \| x_n - x$$

$$n > k \forall \|_0 \|_1 \le \|x_n - x_0 \text{But } \| \|x_n \|_2 - \|x$$

((Using (I)
$$n > k \forall || < \epsilon_0 || x_n || - || x || \Rightarrow =$$

((Using (since
$$f(x) = ||x||)n > k\forall$$
)| $< \epsilon_0 f(x_n) - f(x| \Rightarrow =$

.0); that is f is continuous at $x_0 f(x_n) \to f(x_n)$

.2.51Remark

be a 3 \rightarrow $L_2 \times L_1$ be normed spaces and let $f: L_3$ and L_2 , L_1 Let L iff whenever $\langle (x_n, y_n) \rangle_2 \times L_1 \rangle \in L_0$, y_0 mapping. Then f is continuous at (x_0, y_0) then $f(x_n, y_n) \rightarrow f(x_0, y_0) \rightarrow f(x_0, y_0)$

.2.52Theorem

Let L be a normed space over a field F. Then

The mapping $f: L \times L \to L$ such that f(x, y) = x + (1) $x, y \in L \forall y$ is

 $x \in L, \forall \lambda \in F$ The mapping $g: F \times L \to L$ such that $g(\lambda, x) = \lambda x$ (2) $(0) \text{ (ois continuous at } (\lambda, x) = \lambda x \text{ (2)}$

such that₀ and $y_n \to y_0$). Then, $x_n \to x_0, y_0$) Let $(x_n, y_n) \to (x \mathbf{1} Proof.$ ($.\infty \to \text{as } n0 \parallel \to 0 \text{and } \parallel y_n - y_0 \parallel \to 0 \parallel x_n - x$ $)\parallel_{0} + y_0)\parallel = \parallel (x_n + y_n) - (x_0, y_0 \text{Now}, \parallel f(x_n, y_n) - f(x_n, y_n)) - f(x_n, y_n) - f(x_n,$

$$\|y_0\| + (y_n - y_0)\|(x_n - x = x_0)\|$$

$$||_0|| + ||y_n - y_0|| x_n - x \ge$$

as $n \to \infty$; that is f is continuous at $0 \parallel \to 0$, y_0 Thus, $\parallel f(x_n, y_n) - f(x_n, y_0) = 0$. (0, y_0) is arbitrary, f is continuous at (x_0, y_0) . Since (x_0, y_0)

). Then,
$$\lambda_n \to \lambda$$
 and $x_n \to 0$ Let $(\lambda_n, x_n) \to (\lambda, x$ (2)

$$\infty \to \text{as } n0$$
, $\|x_n - x\| \to 0$. Hence, $|\lambda_n - \lambda| \to 0$

$$\| \mathbf{u}_0 \| = \| \lambda_n \mathbf{x}_n - \lambda \mathbf{x}_0 \| g(\lambda_n, \mathbf{x}_n) - g(\lambda, \mathbf{x}_n) \|$$

$$\|_0 - \lambda x_0 + \lambda_{\mathbf{n}} \mathbf{x}_0 \| \lambda_n x_n - \lambda_{\mathbf{n}} \mathbf{x} =$$

$$\| \mathbf{u}_0 \| + (\lambda_n - \lambda) x_0 \| \lambda_n (x_n - x = 0)$$

so that 0 and $|\lambda_n - \lambda| \to 0 \parallel \to 0$ But $\|x_n - x\|$

.2.53Theorem

Let L, L' be normed spaces and let $f: L \to L'$ be a linear .the f is continuous at any point0 transformation. If f is continuous at

 $\in X$ be an arbitrary point and let $x_n \to 0$ *Proof.* Let x

.(2.49) (using Theorem 0. To prove $f(x_n) \to f(x_0 x)$

$$0 \rightarrow 0$$
, then $x_n - x_0 \text{Since } x_n \rightarrow x$

 $(0) \rightarrow f(0)$, thus $f(x_n - x0$ But f is continuous at

) 0) $\rightarrow f(_0$ Since f is a linear transformation, then $f(x_n) - f(x_n)$

.(oIt follows that $f(x_n) \to f(x_n)$

.2.54Remark

The condition f is a linear transformation in the above theorem is necessary condition. For example: consider the normed space (R, | |). Let f is defined

as

$$\begin{array}{l}
\text{lif } x \leq \\
f(x) = \\
& \text{lif } x \neq \\$$

.1 and discontinuous at 0 It is clear that f is continuous at

Also f is not linear transformation because

$$12=1+11)=11)=f(6+5f($$

$$13) = 1+6) + (1+5) = (6) + f(5and f($$

$$(6) + f(5) /= f(6 + 5 \text{ Hence } f($$

.2.55Theorem

Let L and L' be normed spaces and let $f:L\to L'$ be a linear transformation. Then either f is continuous at each point or .discontinuous at each point

in L. Then, 2. Let $x_1 \in L$ and assume that f is continuous at x_1 Proof. Let $x_1 \in L$. Then, 2. Let $x_n \to x_2$ any point. To prove that f is continuous at $x_1 \in L$. Since f is continuous at $x_1 \to x_1 + x_2$ and hence $x_n \to x_1 \to x_2$. (1) $\to f(x_1 + x_2)$ then $f(x_n \to x_1)$

) \rightarrow f_1) + $f(x_2 \text{Since } f \text{ is a linear transformation, then } f(x_n) - f(x_n)$.(2, and thus, $f(x_n) \rightarrow f(x_n) \rightarrow f(x_n)$). Hence, $f(x_n) - f(x_n)$

. Thus, f can not be continuous at $_2$ Therefore, f is continuous at x . some points and discontinuous at some points

.2.56Example

Let $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by

$$(f(x, y) \xrightarrow{2+ y/2} x) = (0, 0x, y) = (0)$$
= . (0, 0x, y) = () if 0

.(0,0Show that f is not continuous at (

$$n \in \overline{NV} = n$$
 and $y = n$ Let x

). But0, 0. Thus, $(x_n, y_n) \rightarrow (0 \text{ and } y_n \rightarrow 0 \text{ Then, } x_n \rightarrow$

$$= \frac{n}{n} f(x, y) = \frac{1}{2n} \frac{1}{2n} = \frac{1}{2n}$$

(Hence, f(x, y) = 0). Thus, $f(x_n, y_n) \sim f(0, 0) = (0, 0)$ but f(0, 0) = 0. (0, 0) Thus, f is not continuous at (

Boundedness in Normed Linear Space2.8

. Bounded Set2.57Definition

Let L be a normed space and let $A \subseteq L$. A is called a **bounded set** if

 $x \in A \forall \text{such that } ||x|| \le k0 \text{ there exists } k > k$

.2.58Example

., then A is bounded 1). Since $|x| \le 1$, 1Consider $(R, |\cdot|)$ and let A = [-1]

.2.59Example

, $\|\ \|)$ be a normed space such that $^2Consider\ (R$

=
$$\|X\|$$
 $|X|^2$ | $|X|^2$ be the Eucledian norm, for each $X = (x, x) \in \mathbb{R}$

.). Then, A is unbounded $0y \ge 1 \le x \le 1$: -2) $\in \mathbb{R}_2$, $x_1 \text{Let } A = \{(x \in \mathbb{R}_2, x_1 \text{Let } A = (x \in \mathbb{R}_2, x_1 \text{Let$

.2.60Theorem

Let L be a normed space and let $A \subseteq L$. Then the following statements .are equivalent

- .A is bounded (1)
- If $\langle x_n \rangle$ is a sequence in A and $\langle \alpha_n \rangle$ is a sequence in F such that $\alpha_n \to (\Upsilon)$.0then $\alpha_n x_n \to 0$
- $x_n \in A$. \forall such that $||x_n|| \le k0$) Since A is bounded, $\exists k \ge 2$) \Rightarrow (1Proof. (

 ,. Hence0as $n \to \infty$, then $|\alpha_n| \to 0$ Since $\alpha_n \to \infty$

(since
$$||x_n|| \le k$$
) $|| = ||\alpha_n x_n|| = ||\alpha_n|| ||x_n|| \le ||\alpha_n|| k$) $||\alpha_n x_n||$

and hence $\| \to 0$ Therefore, $\| \alpha_n x_n - .0$, thus $|\alpha_n| k \to 0$ But $|\alpha_n| \to .x \mathbf{0} \alpha_n x_n \to .x \mathbf{0} \alpha_n x_n \to 0$

Suppose A is not bounded. Then, $\forall k \in Z_+, \exists x_k \in A \text{ such that } (1) \Rightarrow (2)$ $||x_k|| > k$

. But
$$0$$
 Put $-\alpha_k = k$. Hence, $\alpha_k \to k$.

.(2which contradicts (0, thus $\alpha_k x_k \sim 1$ Then, $\|\alpha_k x_k\| \boxtimes$

. Bounded Mapping2.61Definition

Let L, L' be two normed space and $f: L \to L'$ be a linear transformation f is called **bounded mapping** if for each $A \subseteq L$ bounded then f(A) is $A \subseteq L \forall bounded$ set in Y

.2.62Example

. Show that f is $a^2x, y \in \mathbb{R} \forall A$ such that $f(x, y) = x + y^2$ Let $f : \mathbb{R}$ and A is bounded. Show that $f(x, y) = x + y^2$ Let $f(x, y) = x + y^2$ Let f(x, y) =

such that $\|(x, y)\| 0$ and A is bounded, then $\exists k \ge 2$ Solution: Let $A \subseteq \mathbb{R}$ $\le k = \Rightarrow x + y \le k x, y)^2 \in A^2 = \Rightarrow (x + y)^3 \forall k^2$ $= \Rightarrow |x| \le k^2 \le k^2 \text{ , then } x^2 \le k^2 + y^2 \le x^2 \text{ Since } x \text{ (I)}$ $= \Rightarrow |y| \le 2 \le k^2 \text{ , then } y^2 \le k^2 + y^2 \le x^2 \text{ Similarly, } y \text{ (II)}$

(Note that
$$\forall (x, y) \in A \implies f(x, y) = x + y \in f(A)$$

$$|k2f(x, y)| = |x + y| \le |x| + |y| \le k + k = |k|$$
by (1) and (11)

.k. Thus, f(A) is bounded, and hence, f is bounded 2i.e., $|f(x, y)| \le$

.2.63Theorem

Let L, L' be normed spaces and $f: L \to L'$ be a linear transformation such that $||f(x)|| \le k ||x|| 0$ Then f is bounded iff $\exists k > x \in \forall X$. $X \in \mathcal{F}$ $X \in \mathcal{$

}. It is clear A is bounded, and hence, f(A) is bounded 1 by definition) $.(\partial F b h d)$

(I)
$$x \in A \forall \text{such that } || f(x) || \le k0 \text{ Thus, } \exists k > k$$

$$|0_{\mathbf{X}}|| = \mathbf{O} \leq k \|0_{\mathbf{X}}\| = \mathbf{O}_{\mathbf{Y}}$$
, and thus, $\|f(\mathbf{O}_{\mathbf{X}}) = \mathbf{O}_{\mathbf{X}}$ then $f(\mathbf{O} \text{If } x = (1))$

$$\frac{1}{\mathbf{X}} = \text{such that } \|\frac{x}{y}\|, \text{ put } y = \mathbf{O} \text{ if } x = (2) \|x\| = .=$$

Hence, $y \in A$. Thus, $||f(y)|| \le$ (II)

$$= () \| f(y_{||X||}^{X||} = "f" \frac{1}{\|x\|} \| f(x)\|_{X}^{k} f(x)" =$$

By (II), $\|f(y)\| \le k$, $\frac{1}{\|x\|}$ $\|f(x)\| \le$ i.e., $\|f(x)\| \le k \cdot \|x\|$ as

required $x \in A \forall_1 \text{ such that } \|x\| \le k0 >_1 \text{ Let } A \text{ be a bounded set. Then, } \exists k (\Leftarrow)$ Since $\|f(x)\| \le k \|x\| \ \forall x \in X$, hence $\|f(x)\| \le k \|x\| \ \forall x \in A$. Then we ; $_1 = kk_2 \ \forall x \in A$ where $k_2 \ \forall x \in A$. Thus, $\|f(x)\| \le k_1 \text{ get } \|f(x)\| \le kk$. that is, f(A) is a bounded set

.2.64Theorem

Let L, L' be normed spaces and $f: L \to L'$ be a linear transformation.

Proof. (\Leftarrow) Suppose that f is continuous and not bounded,

.hence $\forall n \in \mathbb{Z}_+$, $\exists x_n \in L$ such that $||f(x_n)|| > n ||x_n||$

Then f is bounded if and only if f is continuous

= Let
$$y = \frac{n}{n \|\tilde{x}_n\|} \frac{\|f(x)\|}{\|x_n\|} = \frac{x}{n \|x_n\|} ()$$
 Then, $\|f(y_n)\| \frac{x}{n \|x_n\|} f \cdot \frac{n \|x_n\|}{\|x_n\|} 1 =$

.x**0**, and hence, $y_n \to 0$ as $n \to \infty$, we get $||y_n|| \to$

(Since f is a linear transformation) $f(y_n) = f(I)$ follows that $f(y_n) \to f(I)$ (i.1.19By Theorem

. This contradicts (I), thus, f is bounded

Assume that f is bounded to prove f is continuous for all $x \in L$. Let (\Rightarrow)

such that 0, to find $\delta > 0 \in L$ and $\epsilon > 0$ x

 $(f \text{ is linear transformation}) \| \|_0 \| \| = \| f(x - x_0) \| f(x) - f(x) \| \|_0 \| \|_$

(I) $x \in L \forall s.t. \| f(x) \| \le k \| x \| 0$ Since f is bounded, then $\exists k > 1$

$$\| \underline{0} \| \le \underline{k} \| \underline{x} - \underline{x} \underline{0} \| = \| \underline{f} (\underline{x} - \underline{x} \underline{0} \text{Hence}, \| f(\underline{x}) - f(\underline{x}) \|$$

$$(\| < \delta_0 \text{Since } \| x - x) k \delta >$$

(By choosing
$$\delta = \xi = \epsilon k$$
.

.)
$$\| < \epsilon_0 \| < \delta \implies \| f(x) - f(x_0 \text{Thus}, \| x - x \|) \| < \epsilon_0 \| < \delta \implies \| f(x) - f(x_0 \text{Thus}, \| x - x \|) \| < \delta \| < \delta \| < \delta \| < \delta \|$$

is an arbitrary, then f is 0 Since $x \in L_{0}$ Hence, f is continuous at x

.cont. $\forall x \in \mathcal{A}$

.2.65Theorem

Let L, L' be normed spaces and $f: L \to L'$ be a linear transformation. If (L') is a finite dimensional space then f is bounded (hence, continuous

.2.66Example

. ${}^2x, y) \in \mathbb{R}) \forall \rightarrow \mathbb{R}$ defined as $f(x, y) = x + y^2 \operatorname{Let} f : \mathbb{R}$

(!f is a linear transformation function (check

.(. Hence, f is bounded (hence, continuous2) = 2 and dim(R)

Bounded Linear Transformation2.9

.2.67Definition

Let L, L' be normed spaces over a field F. The set of all bounded linear transformation mappings from L to L' is defined as

 $\{B(L, L') = \{T : T : L \to L' \text{ is a linear bounded (hence, cont.) trans}\}$

.2.68Theorem

Prove that B(L, L') is a linear subspace (over a field F) of the space of linear transformation mappings with respect to usual addition and usual scalar multiplication

 $\in B(L, 2 + \beta T_1 \in B(L, L'))$. To prove αT_2 , $T_1 Proof$. Let $\alpha, \beta \in F$ and T (ii), 1.20are linear transformations, then by Theorem 2, T_1L') Since T are linear trans2, $\beta T_1 \alpha T$

is linear $_2+\beta T_1$ (i), $\alpha T1.20$ are linear trans., by Theorem $_2$, βT_1 Now, αT ...

transformation

.is bounded₂ + βT_1 Next, we show αT

such that $\forall x \in X$ we have 0 > 2, k_1 are bounded, then $\exists k_2$, T_1 Since T

(I)
$$||x||_2(x)|| \le k_2||x||$$
 and $||T_1(x)|| \le k_1||T|$

$$|(x)|_2(x) + (\beta T_1)(x)| = ||(\alpha T_2 + \beta T_1)|$$
 Then, $||(\alpha T_1)|_2(x) + (\beta T_1)|_2(x) = ||(\alpha T_2 + \beta T_1)|_2(x)$

(Definition of scalar multiplication) $(x)\|_2(x) + \beta \cdot T_1\|\alpha \cdot T =$

$$(x)\|_{2}(x)\| + \|\beta T_{1}\|\alpha T \ge$$

$$(x)\|_{2}(x)\| + |\beta| \|T_{1}\alpha\| \|T\| =$$

$$||x||_2 ||x|| + |\beta| k_1 \alpha |k| \ge$$

is bounded₂ + βT_1 Hence, αT βT_1 is bounded and linear transformation, then $\alpha T_2 + \beta T_1$ Since αT ('B(L, \mathbb{L})

.2.69Theorem

Let L, L' be normed space. Prove that B(L, L') is a normed space such that $\forall T \in B(L, L')$ we have

$$\{1 \| T \| = \sup \{ \| T(x) \|_{L'} : x \in L, \| x \|_{\le}$$

('Proof. To prove $\| \|$ is a norm on B(L, L)

.0, then
$$||T|| \ge 1 \forall x \in L$$
, $||x||_X \le 0$ since $||T(x)||_Y \ge (1)$

$$0\} = 1 \iff \sup\{\|T(x)\|_{L^{'}} : x \in L, \|x\|_{L} \le 0 \|T\| = (2)$$

$$1 \forall x \in L, \left\| x \right\|_{L} \leq 0 \ \left\| T(x) \right\|_{L'} = \ \Rightarrow \Leftarrow$$

$$1 \forall x \in L, \|x\|_L \le 0 \quad T(x) = \Rightarrow \Leftarrow$$

 $(' \in B(L, L_2, T_1 \text{Let } T(3)))$

$$\{1)(x)\|_{L'} \colon x \in L', \|x\|_{L} \le 2 + T_1 \| = \sup\{\|(T_2 + T_1 \| T_1) + \|T_1 \|_{L'} \}$$

$$\{1(x)\|_{L'} \colon x \in L, \|x\|_{L} \le 2 + \|T_1 \|_{L'} + \|T_1 \|_{L'} \}$$

$$\{1(x)\|_{L'} \colon \|x\|_{L} \le 2 + \sup_{x \in L} \{\|(T_1(x)\|_{L'} \colon \|x\|_{L} \le 1 \|_{L'} \} + \|T_1 \|_{L'} \}$$

$$\|\|x\|_{L'} \colon \|x\|_{L} \le 2 + \sup_{x \in L} \{\|(T_1(x)\|_{L'} \colon \|x\|_{L} \le 1 \|_{L'} \} + \|T_1 \|_{L'} \}$$

$$\|\|x\|_{L'} \colon \|x\|_{L} \le 1 + \|T_1 \|_{L'} \}$$

$$\{1\|\alpha T\| = \sup\{\|(\alpha . T(x)\|_{L'} \colon x \in L, \|x\|_{L} \le 1 \} \}$$

$$\{1\alpha \| \sup\{\|T(x)\|_{L'} \colon x \in L, \|x\|_{L} \le 1 \} \}$$

$$\|\|T\|\|_{L'} = \|T\|_{L'}$$

Chapter 3

Banach Space

.3.1Definition

Let L be a normed space. Then, L is **complete** if every Cauchy sequence in L is convergent to a point in L. The complete normed space is called .Banach space

Examples of Banach Space3.1

.3.2Example

= or
$$C$$
) with the norm $\|X\|$ $=$ The space $F^{\sum_{i=1}^{n} |x_i|^{2^{\frac{1}{2}}}} = X \forall$, x_n is a Banach space x

Solution: Let X_m be a Cauchy sequence in F^n

...
$$, ..., X_{m2}, X_1X_m = X$$

...
$$(, ..., x_{mn2}, x_{m1n}), ..., (x_{m2}, ..., x_{22}, x_{21n}), (x_1, ..., x_{12}, x_{11}x) =$$

$$m, j > k \forall, \exists k \in \mathbb{Z}_+ \text{ such that } \|X_m - X_j\| < \epsilon 0 \text{ Then } \forall \epsilon >$$

$$\text{Since } X_m, X_j \in F^n, \text{ then}$$

$$, ..., n1i = x_{mi} \in F, ..., x_{mn}, 2, x_{m1}X_m = (x_m)$$

$$,...,n1i = x_{ji} \in F,...,x_{jn}),_2,x_{j1}X_j = (x_j)$$

$$(,...,x_{mn}-x_{jn2}-x_{j2},x_{m1}-x_{j1}X_m-X_j=(x_m)$$

From (I),
$$||X_m - X_j|| < \epsilon$$
 $m, j > k \forall$

$$2\|X_{m} - X_{j}\| < \epsilon \qquad \qquad 2 \qquad m, j > k \forall$$

$$\sum_{\substack{n \\ 1 i =}}^{n} m, j > k \forall^{2} x_{mi} - x_{ji}| < \epsilon |$$

$$, ..., n 1 \forall i = m, j > k, \forall^{2} x_{mi} - x_{ji}| < \epsilon |$$

$$, ..., n 1 \forall i = m, j > k, \forall x_{mi} - x_{ji}| < \epsilon |$$

.,..., π_i is a Cauchy sequence in F, $\forall i = x$ Hence,

.,..., n1Then, x_{mi} is convergent to $x_i \forall i =$

 $> |, \exists k_i \in \mathbb{Z}_+ \text{ such that } | x_{mi} - x_i \text{OThus, for any } \epsilon > f_n \quad m_i > k_i \forall i \neq j \text{ and } k_i \neq j \text{ and }$

$$x_{mi} - x_i| < \sqrt{\frac{\epsilon}{n!}} \quad \langle m > N \quad , ..., n | i = \forall$$

$$|x_{mi} - x_i|^2 < \frac{2\epsilon}{n!} \quad |m > N \quad , ..., n | i = V$$

$$=_m X \| -\hat{1} X^{\sum_{\substack{i=1 \ i = n}}^{n} |x| |m^2 |n - x| \frac{\epsilon^2}{n}} \quad m > N$$

$$\forall m > 1 \|X_m - X\| < \epsilon,$$

and $_mX$ be a Cauchy sequence in FXThus, $_mX$. Thus, F^n is a \rightarrow .Banach space

.3.3Example

= Show that $(F^n, \| \|)$ is a Banach space where $F^n = \mathbb{R}^n$ (or C^n and $\| X \|$ $p \mid \sum_{i=1}^{n} \frac{1}{p}$ (. $(\mathbf{H.W} \text{lor } C), p \geq X = (x, ..., x) \in \mathbb{R}$

.3.4Example

 $\forall X = |,...,|x_n|\}$, The space \mathbb{R}^n (or \mathbb{C}^n) with the norm $||X|| = \max\{|x|\}$, ..., |x| $\in \mathbb{R}^n$ (or \mathbb{C}^n) is a Banach space |x|

Solution: Let X_m be a Cauchy sequence in F^n

...
$$, ..., X_{m2}, X_1 X_m = X$$

... $(, ..., x_{mn2}, x_{m1n}), ..., (x_{m2}, ..., x_{22}, x_{21n}), (x_1, ..., x_{12}, x_{11}x) =$ $m, j > k \forall, \exists k \in \mathbb{Z}_+ \text{ such that } ||X_m - X_j|| < \epsilon 0 \text{Then } \forall \epsilon >$ (I)

Since $X_m, X_j \in F^n$, then

 $,...,n | i = x_{mi} \in F,...,x_{mn}, 2, x_{m1}X_m = (x_m),...,n | X_m | i = x_{ji} \in F,...,x_{jn}, 2, x_{j1}X_j = (x_j),...,x_{mn}-x_{jn2}-x_{j2},x_{m1}-x_{j1}-X_j = (x_m),...,x_{mn}-x_{jn2}-x_{j2},x_{m1}-x_{j1}-X_j = (x_m),...,x_{mn}-x_{jn2}-x_{j2},x_{m1}-x_{j1}-x_{j2}-x_{j3},x_{m1}-x_{j1}-x_{j2}-x_{j3},x_{m1}-x_{j1}-x_{j2}-x_{j3},x_{m1}-x_{j1}-x_{j2}-x_{j3},x_{m1}-x_{j1}-x_{j2}-x_{j3},x_{m1}-x_{j1}-x_{j2}-x_{j3},x_{m1}-x_{j1}-x_{j2}-x_{j3},x_{m1}-x_{j1}-x_{j2}-x_{j3},x_{m1}-x_{j1}-x_{j2}-x_{j3}-x_{$

 $\{1,...,|x_{mn}-x_{jn}|\}$ $\{1-x_{j1} \text{ Then, } ||X_m-X_j|| = \max\{|x_m.m,j>k\}\}$.,..., n and $\forall m,j>k$ 1 $i=\forall$ It follows that $|x_{mi}-x_{ji}|$ $\{1-x_{ji}\}$

is a Gauchy sequence in R (or C). So it is convergent to xx Hence,

.,...,n1 $i = \forall in F$

 $\exists k_i \in Z_+$ such that $|x_{mi} - x_i| < \epsilon 0$ Hence, for any $\epsilon > m_i > k_i \forall$ $0, ..., k_n \}$. Then, for each $\epsilon > 1$ Put $I = \max\{k$, ..., $n1 \forall i = m > 1, \forall x_{mi} - x_i | < \epsilon |$

 $|,...,|x_{mn}-x_n|\}$ $<\epsilon_1-x_1$, $||X_m-X||=\max\{|x_m0\text{ for each }\epsilon>m>N$. Thus, X_m be a Cauchy sequence in R^n (or C^n) and $X_m\to X$. Thus, R^n (or C^n) is a Banach space

.3.5Example

 $\exists \forall f$ The space C[a, b] with the norm $||f|| = \max\{|f(x)| : x \in [a, b]\}$. C[a, b] is a Banach space

[Solution: Let f_n be a Cauchy sequence in C[a, b]

(I) $n, m > k \forall, \exists k \in Z_+ \text{ such that } ||f_n - f_m|| < \epsilon \text{OThen } \forall \epsilon >$ > $\{[, \exists k \in Z_+ \text{ such that } \max\{|f_n(x) - f_m(x)| : x \in C[a, b \text{OHence}, \forall \epsilon >$ It follows that $|f_n(x) - f_m(x)| \le \epsilon$ $\forall x \in C[a, b] \forall n, m > k$

.Hence, $f_n(x)$ is a Cauchy sequence in R

, Since R is a Banach space, then $f_n(x)$ is convergent to f(x) in R. Thus

$$n \ge k \forall$$
, $\exists k \in N$ such that $|f_n(x) - f(x)| \le \epsilon 0 \epsilon > \forall$

$$n \ge k \forall \text{Thus}, \|f_n - f\| = \max\{|f_n(x) - f(x)| : x \in [a, b]\} \le \epsilon$$

.Hence, $f_n \to f$ as $n \to \infty$. Thus, C[a, b] ia a Banach space

.3.6Example

|f(x)| dx is not a Banach space] with the norm ||f|| = 1, other space C[.(2.9], || || ||) is a normed space (see, Example 1, 0 Solution: The space (C[Let

if
$$\geq x \geq 0 \frac{1}{2}$$

$$= (f_n(x) \quad 1n + \frac{1}{2}x + - \text{ if } \quad \frac{1}{2} + \geq \frac{1}{2} > \frac{1}{n}$$
if $0 \quad n \quad \frac{1}{2}x \leq > +$

Now, for all].1,0Then, f_n is continuous function on [.2where $n \ge$

we have
$$2n, m \ge 1$$

$$= \|f_n - f_m\|f_n(x) - f_m(x)\| dx \|$$

$$+ f_n(x) - f_m(x)\| dx \| = \int_{\frac{1}{2}}^{1} f_n(x) - f_m(x)\| dx \|$$

$$= \int_{\frac{1}{2}}^{1} \int_{1}^{1} f_n(x) - f_m(x)\| dx \|$$

$$= \int_{\frac{1}{2}}^{1} f_n(x) - f_m(x)\| dx \|$$

$$= \int_{\frac{1}{2}}^{1} f_n(x) - f_m(x)\| dx \|$$

$$\int_{1}^{1} f_{n}(x) | dx | \ge \int_{\frac{1}{2}}^{1} (\mathbf{I}) f_{m}(x) | dx |$$

$$\int_{1}^{1} \int_{1+\frac{1}{n}}^{1} \int_{2}^{1} \int_{1+\frac{1}{n}}^{1} \int_{2}^{1} dx = \int_{\frac{1}{n}}^{1} \int_{1+\frac{1}{n}}^{1} dx = \int_{\frac{1}{n}}^{1} dx = \int_{\frac{1}{n}}$$

$$= \frac{nx}{2}^{2} x_{2}^{2} + \frac{1}{2} x_{1}^{2}$$

$$\frac{1}{n} - \frac{1}{2} = \frac{2}{2} + \frac{2}{n} - \frac{1}{n} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{n} = \mathbf{II}$$

Similarly
$$\int_{\frac{1}{2}}^{1} = f_m(x) | dx | \frac{1}{n2}$$
 (III)

Substitute (II) and (III) in (I) to get
$$\| m0 \rightarrow_n + f \frac{1}{m_2} - \frac{1}{h_2} \| \le \infty \rightarrow \text{as } m, n$$

Thus, $\langle f_n \rangle$ is a Cauchy sequence. From the definition of f_n , we note that $f_n \to g$ where

$$= (g(x) \ge \le 1x^{\frac{1}{2}} 0 \text{ if } \frac{1}{2}$$

$$0 \text{ if } \frac{1}{2} \cdot 1x \le \ge$$

]. Then 1,0 But g is not continuous. Thus, $\langle f_n \rangle$ does not converge in C[.], $\| \cdot \|$) is not a Banach space 1,0 C[)

Some Properties of Banach Space3.2

.3.7Theorem

Let L be a Banach space and let H be a subspace of L. Then, H is a .Banach space if and only if H is a closed set in L

Proof. ⇒) If H is a Banach space T.P. H = H. We know that H = H $\exists \langle x_n \rangle \in H$ such that $x_n \to x2.34$ Let $x \in H$, then by Theorem

Hence, $\langle x_n \rangle$ is a Cauchy sequence in H. Then, $\exists y \in H$ such that $x_n \to y$ Thus, $x \in H$ (i.e., $H \subseteq H$). Thus, $x_n \to x$ and $x_n \to y$, so x = y.

(Therefore, $x \in H$ (i.e., $x \in H$ is closed of $x \in H$). Hence, it converges; that is $x \in H$ such that $x \in H$. Hence, it converges; that is $x \in H$ such that $x \in H$. By Theorem

i.e., $x \in H$. Thus, H is a Banach space

.3.8Theorem

.Every finite dimensional normed space is a Banach space

.3.9Corollary

.Every finite dimensional subspace of a Banach space is closed set Proof. Let L be a Banach space and let H be a finite dimensional subspace , H 3.7, H is a Banach space. From Theorem 3.8 of L. Then, by Theorem .is a closed set

. Quotient Space3.10 Definition

.Let L be a linear space over F. Let H be a subspace of L

$$\{ \text{Let } L/H = \{ x + H : x \in L$$

Define addition and scalar multiplication by

$$+\ H\in L/H_2+\ H, x_1\ x\forall)+\ H_2+\ x_1+\ H)=(x_2+\ H)+(x_1\ x)$$

.+
$$H \in L/H$$
 and $\forall \alpha \in F_1 \ x \forall + \ H_1 + \ H) = \alpha.x_1 \ \alpha.(x$

.3.11Proposition

(.Prove that (L/H, +, .) is a linear space over F. $(\mathbf{H.W})$

.Let $(L, \| \|)$ and $H \subseteq L$ be a closed set Then (L/H, +, .) is a normed where space with | | $\{ = \inf\{ \|x + y\| : y \in H_1 \| x + H \| \}$ $0 \ge 1$) T.P. ||x + H|| 1 Proof. (For any $x + H \in L/H$ $\forall y \in H0 ||x + y|| \ge$ $\{ \|x + y\| : y \in H \} \ge \}$ $0 = \inf\{\|x + y\| : y \in H\} \ge 1 \|x + H\|$ $_{L/H}0 \Leftrightarrow x + H = H = 0 = {}_{1} \text{ T.P. } \|x + H\| (2)$ $0 \Rightarrow \inf\{\|x + y\| : y \in H\} = 0 = \inf\{\|x + H\| (\Rightarrow)\}$ as 0. Hence, $x + y_n \to 0$ as $n \to 0$ Hence, $\exists \langle y_n \rangle \in H$ such that $||x + y_n|| \to 0$ $\infty \rightarrow n$ Thus, $y_n \to -x$. Thus, $\exists \langle y_n \rangle \in H$ such that $y_n \to -x$. Thus, by Theorem $.. -x \in H2.34$. Since \overline{H} is closed, then $-x \in H = H$, i.e., $-x \in H$ L/H OSince H is a subspace then $x \in H$ and x + H = H, that is, x + H = H $y \in H \forall_{L/H}$ then $x \in H$. i.e., $x + H \in H$ 0. (\Leftarrow) If x + H = H = $\{ = \inf\{ \|x + y\| : y \in H\} = \inf\{ \|z\| : z \in H_1 \text{ Hence, } \|x + H\| \}$.0 = 1. Thus, $||x + H||_0$, so $\inf\{||z|| : z \in H\} = 0$ | $= 0 \in H$ and ||0| Since $_{1} = |\alpha| \|x + H\|_{1} \text{ T.P. } \|\alpha(x + H)\|$ (3)) holds 3then (0 If $\alpha =$ then 0 If $\alpha / =$

 $\{ = \inf \{ \| \alpha(x+y) \| : y \in H_1 \| \alpha(x+H) \|$

$$\{\inf\{\|\alpha\| \|x + y\| : y \in H = \\ \{\alpha\|\inf\{\|x + y\| : y \in H\} = \\ ((\text{If } A \text{ is bounded below, then } \inf(\alpha A) = \alpha\inf(A) \\ \|\alpha\| \|x + H\| \| = \\ + H \in L/H_2 + H, x_1 \text{ Let } x \text{ (4)}$$

$$\|1 + H\|_2 + x_1 = \|(x_1 + H)\|_2 + H) + (x_1 \|(x_1 +$$

.Thus, L/H is a normed space \square

.3.13Proposition

. If $(L, \| \|)$ is a Banach space and H is a closed subspace of L Then .) is a Banach space $_1L/H$, $\| \| \|$

. Proof. $L/H = \{x + H : x \in L\}$. Let X_n be a Cauchy sequence in L/H $\forall n \in N \text{Then}, \ X_n = x_n + H, \text{ where } x_n \in L,$ $\langle \epsilon \ \forall n, m > k_1 \ , \exists k \in Z_+ \text{ such that } \|X_n - X_m\| 0 \epsilon > \forall$ $\langle \epsilon \ \forall n, m > k_1 \ , \exists k \in Z_+ \text{ such that } \|x_n - x_m + H\| 0 \text{so}, \ \forall \epsilon >$ $\exists k \in Z_+ \text{ such that } 0 \text{Then}, \ \forall \epsilon >$

This implies, $\forall y \in H$, $x_n + y$ is a Cauchy in L

 $\inf\{\|x_n-x_m+y\|:y\in H\}<\epsilon\ \forall n,m>k$

Since L is a Banach space, then $\exists z \in L$ such that $x_n + y \rightarrow z = (z - y) + y$

$$w + y \ \forall y \in H =$$

.Thus, $x_n + H \rightarrow w + H$. Thus, L/H is a Banach space