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.2.29Exercise

Let (L, I 'lI) be a normed space. Prove that
}isclosed 1= {x € L: llxl < A 1)The set)
}isopen 1= {x € L:lxl <y A(ii)The set

}isclosedl C= {x € L:llxll = (iii)The set

:Solution

~  (0(}= Bl={x€L:lxl £i) A)
(2.251s a closed set (by Definition | So, A
(0}= Bl={x€eL:lxl <,ii) A)
(2.251s an open set (by Definition | So, A
{lii) C= {x€ L:lxl =)
J1JU{x€eL:lxl >1L\C={x€L:lxl <
}isopensetl= {x € L:lxll <|Let C
{I={x€eL:lxll >,Let C

is an 7 } which is closed set. Hence, Cl= {x € L:lixI <7 S0, L\ C

.open set

.((2(2.271s an open set (by Remark 2 U Gy Thus, L\ C= C
.2.30Definition |
et L be a normed space and A € L. A point x € L is called limit point

| —

.gof A if for each open set G containing x, we have (GN A) \ {x}
The set of all limit points of A is denoted by A and is called derived

.'set. The closure of A4 is denoted by A and is defined as A= AUA
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.2.31Proposition

Let L be a normed linear space and A € L. Then x € A if and only if

LAVEA Nx =yl <Ar>Vv

- ‘Proof. () Let x€EA= AUA
.gIf x € A" then for each open set G, x € G,(GN A) \ {x} 7
,@. Thus, we have B(x) NA\{x} 50Since BA x) is an open set then Vr >
MDyeB(x)NA, y/=x == lly—xl <3
(ID< 10 If x € A then Iy = x such that lly —xll =
From (I) and (IT), we get the required result
3 ,350,3y € A such that ly —xIl < r; that is Vr > QIf for each r > (&)
(A,y€ Bx
.9 == x€A. Thus, x € A,(B{x) NA)\ (x}=0r>V =g

Convergence in Normed Space2.5

.2.32Definition
et (x,) be a sequence in a normed space (L, Il l). Then {xx) is said to

,3k € Z, such thatObe convergent in L if 3x € L such that Ve >
Vo> klx,—xl <g
We write x, = x as 1> o or limm-w(Xs) = X; that is

2 xpo x0 lx,—xll -

.Xp) 1s divergent if it is not convergent)




: .2.33Threm

If (xn) is a convergent sequence in (L, Il II), then its limit is unique. i.e.,

If (xa) = xand (x,) > ythen x=y

€ Z. such 5 , k). Since (x») = x and (x,) = y, then 340Proof. Let € >
that

—Q€Vn > k,zand lx, =yl < én >k llx, —xIl <

2
}, so Vo > ko, kiLet k = max{k

Ix =yl = lxp—y—xp+ xll = (x5 —y) —(x0—=x)ll

€ €
=6+, Ilxs =yl + lxp—xll < > - -

80 x = J0. Thus, lx =yl = Ve > lx —yll <¢ ==

2.34Theorem
Let A € L where L is a normed space, let x € L, Then

X €A &= 3(x,) a sequence in A such that (x,) = x

'Proof. (=) Let xEA= AU A

(DIf x € A then the sequence (X, X, X, ....) & X
o. If x &/A, i.e., x € A then for each open set G, x € G,(GN A)\ {x}

@. Set, we have B{x) N A\ {x} 50Since B(x) is an open set then Vr>

.{(x%n A)\{x€Z . ThenVn€ Z ,(Br=>0p/

B BLet X 4, hence = X)np A! S.t X);]-‘ ,VIIE Z, 111“1\’ —xll < (*)

¢ >Thus, 3(x,) € A such that lx,—dl ..ne2v
0Ve> To show (x,) = x; that is lx, —xll <¢
so by Archmedian theorem 3k € Z; such that P <d) Le%- €>

Hence, Vn > k,—l <l <e€
iy .k




From (*), Vo > k,lx, — xll <EI < y’ <¢ Thus, x> x (1))
.From (I) and (II), we get the required result

'Tf 3(x2) a sequence in A such that (x,) > x. Toprove x € A= AUA (&)
a If x€Athen x€ A

0 If x &A. Let Gbe an open set in L such that x € G Then 3Ir >
and x, » x, 3k € Z, such that 0 such that B(x) & G. Since r >
Mx,—xl <r, Vn>k

Vn> kand since x, € A Vn€ Z,. Then This implies, x» € Br(x)
(BAx) n A)\{x} /= ¢. Since B{x) € G, then (GN A) \{x} /=

o 0. $x € A', and therefore x € 4

.2.35Theorem

Let {xa), {¥a) be two sequences in normed space (L, Il ) such that x, = x

and y» > y. Then
Xty - xty 1)
for any scalar AA(x,) = Ax (2)

I{xa)ll = Nxll (3)

) Since x, = x, then1Proof. (

€
1\Vn > k, € Z, such that llx, —xIl <, 340fer each ¢ >

2
Also since ¥ = y, then

vn > k,ze Z, such that Iy, —yll <3 ,EIkOfe«cr each €>
}. Then, for each n > ko, k1Let k= max{k

€
() ~and Iy = < =y =xll <




““““““““ ‘
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Now, for each n > k

I(xn+ yn) =(x+ W= W(xa=x)+ (Yo =) < lixp—=xl+ Ny, =yl
€ €
- De= >
) (5from( Ye= +
Thus, xa+ yn = x+ y as required

s.tlx,3k € Z . Since xOLet € > (2)>x —xl ﬁ n> kv« (ID
€

But IAx, —Axll = [A]|lx, —xl <m Al = €
x A}

Thus, A(xs) = Ax

L« J
wn g (D

Vn> k. Since x, = x,3k€ Z, s.t lx, —xll <e0Llet €¢> (3) (III)

.n> k., Hence, ||X,,|Ix—> IxvBut | Ixll —lxll | < lx, =xl <€ O
(wing (I

S PR SI RS SIS SIHY,

.2.36Definition
Let {xn) be a sequence in a normed space (L, I II). Then {x,) is said to be

L3k € Z, st lx, —x4ll <€ Vn,m > k0Cauchy sequence if Ve >

.2.37Theorem

.Every convergent sequence in a normed space (L, I ) is a Cauchy sequence

Proof. Let (x5) be a convergent sequence in L. Then 3x € L such that

@ a kVZ’ 3k € Z, such that lx, —xll < 0xn— x and 5o Ve >

JNow, for n,m > k
)+ o Wxa=xall = 100 =x) + (x =xm)l < g =xl s Lty —lI <

=€
x ‘v
wn g @
.Thus, (x») 1s a Cauchy sequentce

.2.38Definition

Let (xn) be a sequence in a normed space (L, I ). Then (x») 1s said to be

.+Vn € Zsuch that lx,ll < £,0 bounded sequence if 3k € R, £ >

A N O O O O O WO R WO
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2.39Theorem

.Every Cauchy sequence (xa) in a normed space (L, Il l) is bounded

. Since (xa) is a Cauchy sequence, 3k € Z. such that 1Proof. Let € =
,Vn> k (by 1l <, Vo, m > k. Hence, lx, — xx:1llxp — xpll <

(O (Ilconsidering m = k +

n> kVIL< I | < llxp =Xk41), we have | Ix,ll —xllxk,,4(2.3By Theorem
@n'g @
Il < Thus, lxall =llxze 0> kY
I+ lxg:1 Then, lxpll < n> kY
I+ Wxge 10, o gl ol Lx Let M = max{llx

Hence, lxal <M Vne Z.. So, {xn) is bounded

2.40Corollary

.Every convergent sequence in a normed space (L, Il ll) is bounded

, Every convergent sequence in a normed space 2.37 Proof. From Theorem
, every Cauchy sequence in 2.39 (L, Il ) is Cauchy, and from Theorem

.a normed space (L, Il Il is boundeé

Convexity in Normed Linear Space2.6

.2.41Definition
,0A subset A of a linear space L is said to be convex if Vx,y € A, 4 € |

(1
—A)y € Al then Ax + (

"
5
Z
g
Z
g
Z
g
Z
7
Z
g
g




2,42 ; pe

7)€ R. Is A convex set3, ILet 4 = (

[1,0Solution: Let x, y € A, A € [

(I) A34 <Ax <1== 3 <x <1 Since
(A1 3=y <1-4) <(1(1=> 3 <y<1Since (II)

(By summing up (I) and (II
(mA1(BA+3-Ay<1=A) <Ax+ (14+(
3-A)y <<1idx+ (>1
.—A)y € A. Hence, A is convex setl Thus, Ax + (
.2.43Proposition
Let L linear space. Then
Every subspace of L is convex (1)

(.If A, B c L are convex sets then A N B is convex (HLW ()
If A, B c L are convex sets then A + B is convex (V)

) Let L be a linear space over a field F= R or C, let A be a 1Proof. (
, Vx, y€ A and Va, p € F we 1.13subspace of L. Hence, by Theorem
Jhave ax+ fy € A

—-A)y €Al —-A Hence, ax+ By=Ax+ (1]and f= 1,0Take a= 2 €[
. Thus, A is a convex set

€B.),h€Aand b ,a€ A+ B,then & + b, a+ b Let a(3)

[l,OVA€[) € A+ B+ h—A)(al )+ (1+ b To prove A(a

((I  ]1,0d€ Ve Ay —Aal+(1€ A == Aay,aSince A convex and a




€ B, —2.)1+ (JEB == ibh, Since B convex and b[l,Oﬂ» elv (D
By summing up (I) and (II) we get
EA+ By—-A)bl+ 1+ Ay—A)al + (| Aa

.)€ A+ B, Thus, A+ B is a convex sety+ —A)(al )+ (1+ hie., A(@

.2.44Remark

The union of two convex sets is not necessary convex. For example, let

,¥ 6). Then A is not convex. To show this, take x = 12,7) U(7,34 = (
_ AUBA 7;= (.8)+;(6(—/1)y =1then }.}(=+2(,% =]

2.45Proposition
) and o€ L. Then BA(xq Let (L, Il ) be a normed linear space;let x

.) are convex setsoBr(x

,0), and let 4 € [o) is a convex set. Let x, ¥ € B xoProof. To prove B x
,J. Thenl

(D I <nll <rand ly—xollx —x

); that is we must proveg—4)y € B{x]1 We must prove Ax + (

I <m—A)y—x114x+ (
I (adding and o0=A)y —x1 + (o Aol = lAx + AXo=A)y —x] IAx + (

(osubtracting Ax
Wo—=A)(y—x1)+ (olA(x —x =

—Ar= 11 <ir+ (o=Aly —x1 )l + [pA|I(x —x| >

(=Al =A| = 1then |4]| = 4,10 by (I) and since 4 >)
) is convex. Similarly, ¢) and hence B(xo— A)y € B{x1Thus, Ax+(

.) 18 a convex setoBr(é




.2.46Proposition

Let (L, I ) be a normed linear space and A € L and convex then A is

.a convex set

—A)y €A1). To prove Ax + (1,0Proof. Let x,y €A and 4 € [

, 3a,b€ A such thatZ31. Since x, y € A then by Proposition OLet r >
(I) lx=al <rand lx =5l <r

—A)b€ Al Since A is convex then Aa + (

(=Bl —=A)b = NA(x—a)+ (1 —A)y— Aa+ (1 Now, Ax+ (
A lly=841Alx=al+ (2
((from (I)=A)rl Ar+ (>

=

Zldat (- -Aylax+ (Ths, r2Ab
A —

—A)y € Al, Ax+ (2.31Thus, from Proposition O

.2.47Remark

The converse of the above proposition is not true. For example, let A =

,] is a convex set. But A is mot convexS, 1] € (R, | [) then 4 = [5,2)U(2,1[

2= B Ay =%1 then Ax + (,A=3,y =}sidce if x =4 /
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Continuity in Normed Linear Space2.7

\

2.48Definition
A mapping f : L » L' is calledLet L, L' be normed linear spaces.

) such thato(depend on x0,38 > 0€ L if for each € > ¢ continuous at x

M < ellf(x)—f(xll <o thenollx —xifx € L,V

((o) then f(x) € B{f(xox € By xifie., VX €L,

2.49Theorem
Let L, L' be normed linear spaces. A mapping f : L - L is continuous at

.(oimplies that f(x,) = f(xo € L iff V(x,) € L with x, = xp x

and let (x,) be a ¢ Proof. (=) Let £ be a contiunuous mapping at x

.(0. To prove f(xn) = f(xgsequence in L such that x, = x

such that Vx € X0, then 36 > OLet €>

). oFrom continuity of £ at x))Il < gll < Sthen I F(x) —F(xgif lx —x
Vo> kll < 8,3k € Z, such that lx, —x0and 6> ¢ Since x» = x

(oVn > k; that is f(xa) = f(x)Il < eoHence, 1 f(x5) —f(x

To prove f is).oimplies that f(x,) = f(xo Suppose that x, = x (&)

.ocontinuous at x

,3x € X0such that V&> 0, so 3¢ > gAssume that £ is not continuous at x

and
M= gl <dbut 1£(x) —F(xollx —x

1
, then 3x, € L such thatONow, Vn € Z,, & >

ARARERAARAA AR ARAA AR AR AN
\\\\\\\\\\\\\\\\

~ (but f(x,,tlr)ll > €. This means x», = xoll < n but 1 £(xa) —f(xoll xp —x

.0) in L' which is a contradiction. Thus, £ is continuous at xof @




“2.50Theorem
Let (L, Il II) be a normed space and let £ : (L, ) = (R,]||) such that

.0xX € L. Then f is continuous at xV£(x) = lxll

,3k € Z. such thatOin L. Then Ve > ¢ Proof. Let x, - x
(D) n> kvl <gllx,—x

n> k¥l | < llx, —xgBut | Ixall —llx

((Using (Mn > &Il | < gllxall =llx| ==

((Using (since £(x) = lxl)n > kV)| < @f(x,) —f(x| ==

.0); that is £ is continuous at xof(xz) = f(@

.2.51Remark
be a3 = Ly XL be normed spaces and let £ : Lz and Ly, LiLet L

iff whenever ((xn, ¥n))2 X L1) € Ly, yomapping. Then £ is continuous at (x

(0, yo) then £(xa, ya) = f(x0, Yo (x

.2.52Theorem

Let L be a normed space over a field F. Then

The mapping £ : LX L -» L such that f(x,) = x+ (1) x,y€LV
y s

. .(0, yocontinuous at (x
x € L,VA € FyThe mapping g: FX L= L such that g(4, x) = Ax (2)

.(ois continuous at (4, x

such thato and y» = y ). Then, x, = x0,50) Let (xa, ¥a) = (x1Proof. (
00 = a5 10 I > gand ly, —y0 Il > ollx, —x

)“0+ _yo )“ = "(X” + yn) -(XO,}’ONOW, " f(Xn, yn) —f(x

o) + (¥ —yoll(xa—x =




lol + Iya —yollxn —x 2

as n = oo; that is £ is continuous at 0 Yl = o, yoThus, 1 £(xn, ¥a) —f(x
.(0, yo) 1s arbitrary, f is continuous at (xo, yo). Since (xo, yo(x
). Then, A, = A and x, = oLet (An, x5) = (4, x (2)

o0 = as n0, lx, —xlIl - 0. Hence, |An —4| = ox

o)l = 1 Anxa —Axoll @An, Xn) — g4, X
lg=AXo+ AnXo N AnX g—AuX =
o) + (A —A)Xol An(Xn —x =

ol + |An —A| W xgha| llxn —x|
so thatQ and |4, —=4| = 0 I > ¢But llx, —x
,). Thuspas 7 > oo; that is g(As, Xa) = &(A, X0 )l = ollg(As, x2) —8(4 x

.(0g is continuous at (4,0

.2.53Theorem

Let L, L' be normed spaces and let £ : L = L be a linear

.the f is continuous at any point0 transformation. If £ is continuous at

€ X be an arbitrary point and let x, = ¢ Proof. Let x

.(2.49) (using Theorem ¢. To prove f(xz) = f(xox

0- ¢, then x, —x(Since x, = x

(0) » f(py, thus £(x, —x0But £ is continuous at

) 0) = f(pSince £ is a linear transformation, then f(x,) —f(x

(oIt follows that f(xa) = £




2.54Remark
The condition f is a linear transformation in the above theorem is necessary
condition. For example: consider the normed space (R, | |). Let £ is defined

as

1ile<
fx)=
oL Ix >ifl x4

.land discontinuous at 0 It is clear that £ is continuous at
Also f 1s not linear transformation because

12= 1+ 11) = 11) = f(6+ 5 1(

13)=1+6)+ (I1+ 5) = (6) + f(Sand £(

(6) + £(5) /= f(6+ 5 Hence £(

.2.55Theorem
Let L and L' be normed spaces and let £ : L » L be a linear

transforma-  tion. Then either f is continuous at each point or

.discontinuous at each point

€ L be 5. Let x1€ L and assume that £ is continuous at x; Proof. Let x
in L. Then,2. Let x5 = xzany point. To prove that £ is continuous at x
1. Since f is continuous at x;— x; + xyand hence x,—x0 = 2 xp—x
(1) = f(x1+ xpthen f(x,—x

) = f1) + £ (xSince f is a linear transformation, then £ (xa) — f (x
(2, and thus, f(xa) = £(x0) = 7). Hence, f(xa) —f(x(x

. Thus, f can not be continuous at »Therefore, £ is continuous at x

.some points and discontinuos at some pointEs]
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2,56 Example
Let £:R X R = R defined by

,0if (x,p) /=
(Flry M7 l(xy)/é)

= " .(0,0x ) = Off 0

.(0,0Show that £ is not continuous at (

1= 1
.n€ NV=, E}In'd y:,&l%iqn: Let x
). But0,0. Thus, (xa,¥a) = (O0and y» = 0 Then, x, -

per, BB -
=7l (X ,}é”);g—zl_;— 3

( Hence, £Gx ,y & ,0). Thus, f(xa,y1) ~ £(0,0) = (0,0but £

. =2 0
.(0,0Thus, £ is not continuous at (

Boundedness in Normed Linear Space2.8

Ly
5
5
!
d

. Bounded Set2.57Definition
Let L be a normed space and let A € L. A is called a bounded set if

.X € AVsuch that llxll < k0 there exists & >

2.58Example
., then A 1s bounded1). Since |x|] < 1,1Consider (R,||) and let A= [~

.2.59Example
, ') be a normed space such that2Consider (R
= I1.XI 2 Hﬁ‘f 3’1 be the Eucledian norm, for each X = (x ,x ) € R

.}. Then, A is unbounded0y >,IS x<1:-2) € Ry, xiLet A= {(x

T2 577

5
!
!
!
!
5
!

o



TP RS ST IS SIS SIS

.2.60Theorem

Let L be a normed space and let A € L. Then the following statements

N

.are equivalent

.A is bounded (')

If (xa) is a sequence in A and (aa) is a sequence in F such that @, = (V)

Othen anxp = 0

Xn € A. Vsuch that llx,ll < k0 ) Since 4 is bounded, 3& > 2)=(1Proof. (

,. HenceOas 7 = oo, then |as = 0 Since @ =

(since Ixall < BN = Napxall = |an| Ixall < |@n| kKON @px, —

and henceQ I > OTherefore, Nanxa—.0, thus |a. & - OBut |aa| -
X0anXp >
Suppose A is not bounded. Then, Yk € Z,, 3xx € A such that (1)=(2)

Uxell > k

. ButOPut-leur= P Hence, ax =

le = xlig x nk%u I >lk.k=

.(2which contradicts (0, thus axxx ~ 1Then, lagxll 3

. Bounded Mapping2.61Definition
Let L, L' be two normed space and £ : L = L' be a linear transformation

f is called bounded mapping if for each A € L bounded then f(A) is
.A € LVbounded set in Y

2.62Example
. Show that £ is a’x, y) € R)V- R such that f(x,y) = x+ ¥ Let f: R

““““‘“““\

and A is bounded. Show that? linear transformation (H.W.). Let A € R

ded

SARRAARALARAA AEAAARR A ARAA AR AN
RN\

.f(A) is boun

\
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0 and A 1s bounded, then 34 > ! Solution: et A € R

such that II(x,
>

<k==>x +y <k, yk Al=> (x l+y)§Wc2
= [x| <K<K ,then ¥< K+ ¥ < x2Since x (1)

=2 [} <2 <K, then < K2+ y2 < 22 Similarly, y  (AD)
k

(Note that V(x,¥) €A == f(x,¥)= x+ y€ f(A
k2!((x,y)l = |x+ y](S |xL+ |yl < k+ k= |
by (D) and (ID)
k. Thus, f(A) is bounded, and hence, £ is bounded2i.e., | f(x, y)| <

2.63Theorem

.Let L, L' be normed spaces and £ : L = L' be a linear transformation

such that I £(x)Il < kIl xI0) Then f is bounded iff 3% > XEVY
X

Proof. (=) If f isbounded and let A= {x € L:llxll <

}. Tt is clear A is bounded, and hence, £(4) is bounded 1 by definition)

(®¥bhd function
4y x € AVsuch that I F(x)Il € kO Thus, 3k >

Oxll = 0< k10 x)Il = Oy, and thus, 1£(0x) = Ox then F(OIf x = (1)

1 - -
) 7% = such, that ";TL put y=0 df xf= Q= =

xll x
Hence, y € A. Thus, If ()l < (ID)
k
= (OMFOPE “F G ol =

By (ID), If(pl ﬁ £l < de, IF(x)I < £ lxl

< k,
thus k as

Jequired
x € AV such that lxll < k0 > | Let A be a bounded set. Then, 3k (&)

Since I £ (x)I < kllxll Vx€ X, hence l f(x)Il < kllxll Vx€ A, Then we

;1= kkyVx € A where iy Vx € A. Thus, IIf (x)Il < ky get I £ (x)Il < kk

.that is, £(A) is a bounded sgty

\
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.2.64Theorem

Let L, L' be normed spaces and f : L = L'be a linear transformation.

.Then f is bounded if and only if £ is continuous

Proof. (&) Suppose that £ is continuous and not bounded,

““
|

.hence Vn € Z,,3x, € L such that 1£(xa)ll > nlix,l

=Lety ol o "()Then, If(y)l 5 5 . Gk 1=

allxyll

0, i.e., F(yn) ~ F()I = WF(ya)l > O0Thus, 1£(ya) —=FC (D)

*, i _ bl ox
=2 = bl;}t iyl nllx,.lnll%xill o :

. x0, and hence, y, = Oas 7> oo, we get ly,ll -

(Since £ is a linear transformatim)l) yOx) = Of(It follows that f(ys) -

((i1.1By Theorem
.This contradicts (I), thus, f is bounded

Assume that £ is bounded to prove £ is continuous for all x € L. Let (=)
such thatQ , to find > 0€ L and € >¢ x

I <gll <& == If(x)—=Ff(xox € L, IIx —xV

(f is linear transformation) )lg)ll = N f(x —xol £(x) —f(x

(I) xeLvs.t. If(x)I < klxI0 Since £ is bounded, then 3k >
||Q)JI. < kllx —xo)ll = I £{x —xoHence, If(x) —f(x
w‘ Jm
(I < &Since lx —x)ké>
(Il}y choosing 0= €= 6‘)11{{.5 =

M <gll <& == If(x) —f(x¢Thus, lx —x

is an arbitrary, then f is¢ Since x€ L.g Hence, f is continuous at x

.cont. Vx€ é

T2 a2 7
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2.6 eorem

Let L, L' be normed spaces and £ : L = L be a linear transformation. If

(L is a finite dimensional space then f is bounded (hence, continuous

2.,66Example
. 2x,y) ER)V- R defined as £(x,y) = x+ y? Let £: R

('f 18 a linear transformation function (check

.(. Hence, £ is bounded (hence, continuous?) = 2and dim(R

Bounded Linear Transformation2.9

.2.67Definition
ILet L, L' be normed spaces over a field F. The set of all bounded linear

transformation mappings from L to L' is defined as

{.B(L,L)={T:T:L~ L isa linear bounded (hence, cont.) trans
.2.68Theorem

Prove that B(L, L') is a linear subspace (over a field F) of the space of
linear transformation mappings with respect to usual addition and usual

.scalar multiplication

€ B(L,y+ BTy € B(L, L"). Toprove aTy, T{Proof. Let @, BE€ F and T
(i), 1.20are linear transformations, then by Theorem 2, TiL') Since T

.are linear transy , fThal

1s linear 7+ A7T7 (1),e71.20are linear trans., by Theorem ;, 7\ Now, aT

““““‘“““\

Atransformation

.1s bounded, + A7) Next, we show aT

““““““““ ‘
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such that Vx € X we haveQ > 7, kjare bounded, then 3k, T1Since T

(M lxly () < klixll and 1T () < I T
(X)) (x)y + (BT (x)ll = I(aTr+ BT} Then, l(aT

(Definition of scalar multiplication)(x)ll2(x) + . T\lla. T'=

)N+ 18 Tlla. T >
ol + [ANT o 1 T] =

xlly Wxll + | A ki of | 2

YIxll = kot |Bl ki ol k) = (2t |Blkik = |a| k)
Ihxll

) .18 bounded, + A7) Hence, aT .
3 2+ BT is bounded and linear transformation, then a7, + BT Since aT

(B(L,D
.2.69Theorem

Let L, L' be normed space. Prove that B(L, L) is a normed space such
that VT € B(L, L) we have

(1T = sup{0 T(x)l - x € L, lxl

('Proof. To prove Il Il is a norm on B(L, L
0, then 170 > 1vx € L, Ixll y <0 since 1 T(x)Ily = (1)

0} = 1= sup{I Tl s x € LlIxll; <0 17N = (2)
IVxeLlxl, <0 IT(x)ll, = =«

IVxe Lxll, <0 T(x)= =2«

0T= »=¢«

(‘€ B(L, Ly, TiLet T(3)




(Yl x€ L, Ixl, <2+ Ty Il = sup{l(To+ T, IT

(10 x € Lxl, < (0l + I Tysup{I(T >

(10N 2 Uxl, < 5} + supre{ IO, lxll, < ysupye{I(T>

Il + I T =
{aTl = sup{l(a.T(x)Il;-: x € L, IIxl, < (4)

{Talsup{I ()l : x € L, lIxll, < | =

2| I Tl =




.3.1Definition
Let L be a normed space. Then, L is complete if every Cauchy sequence
in L is convergent to a point in L. The complete normed space is called
Banach space

Examples of Banach Space3.1

.3.2Example
= or C') %ith th€ norfn I XI)R =The space FZ “:M{?;‘ - XV
.»...s Xp) 18 @ Banach space)x)
Solution: Let X, be a Cauchy sequence in F*

e by ...,sz, Xle = X

oo My veey Xmn2s Xm1n)s eoos (Xm2y eoes X22, X210)s (X1, ey X120, X11X) =
m,j > kV,3k € Z, such that I.X» —X;ll <Then Ve> m
Since Xm, X; € F" then
v 0lI= Xmi €F, ., Xmn) 2, X\ Xm = (Xm

yeali= X; € F, ., Xin)0, X X = (X




(s +ees X =Xjm— X2 , Xm|— X/ Xm —Xj = (xm
From (), 1 Xn =Xl <€ m,j> kv

2
WXn—Xjl <€ mj> kY
3

, 2
e mj > kK xmi—xji| <d

2
yon DIVI= m, j > kX mi —Xji] < d
v MIVi= m, j > kNXmi—Xji] < ¢

.- Alis a Cauchy sequence in F, Vi= x Hence,
— . N1Then, Xmi 1S convergent to x; Vi=
>|,3ki € Z, such that | Xm —xQThus, for any €> ¥ m; > k¥
, s kn}. TheniPut /= max{«

€ .
x,,,,-—x,-|<J?; m>N ,.,nli=V

2e
+ wm>N ,.,nli=V

Xmi —Xi|2 < 7

=n xidx?® P ,-x|,,,§%1—x|-i m>N

=

Vm> N X, -XI <g

and,X be a Cauchy sequence in FXThus,, X. Thus, F" isa -
.Banach space
.3.3Example
= Show that (7, Il Il} is a Banach space where F” = R” (or C” and I X1l

g Hﬁ;’ P (o (HMWlor €), p2)X < (x,.ox ) ERY
3.4Example
VX = |,..,|xd}.1The space R” (or C”) with the norm I1.XIl = max{|x

s Xn) € R? (or C™) is a Banach space)(x




s
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Solution: Let X, be a Cauchy sequence in F”
L by ...,sz,X[Xm = X

vis Ky soog Xmtde Xmlar)s voes (X 005y X235 X210), (X5 wo5s X12, X11 X)) =

m,j > k¥,3k € Z, such that I.X, —X;ll <eThen Ve> ()
Since X, X; € F7, then

,...,nli= Xmi E E, .-.,an),2,Xm|Xm = (Xm

yusgld X 0= Xji € F, ...,Xjn),z, leXj = (Xj
(’ weos Xmn _Xjﬂ2—xj2 ,Xm]—le —Xj - (Xm
4, | Xmn —Xjn|} < €—xj) Then, 1.Xp =X, = max{|xm .m,j > kY

wewnand Vm, j > k1i= VIt follows that |xmi —x;i| <€

is a Gauchy sequence in R (or €). So it 1s convergent to xx Hence,;

weanli=Vin F
,3ki € Z. such that | xmi —xi] < éOHence, for any € > m; > k¥
0,..., ka}. Then, for each € > Put /= max{k

s DIVi= m > INXpmi—xi| < €

|yows | Xma —Xa|} < @=x1, 1 X =X = max{|xz0for each €> m> N
.Thus, Xn be a Cauchy sequence in R” (or C") and Xp = X

.Thus, R” (or C") is a Banach space

.3.5Example

3 VfThe space ([a, b with the norm Il = max{|f(x)| : x € [a b]}

.Cla, B 1s a Banach space
[Solution: Let f, be a Cauchy sequence in C[a, b
(1)) n,m > kY,3k € Z, such that I f, —fpll < eThen Ve>

>{[,3k € Z. such that max{|fa(x) —fu(x)| : x € (Ja HHence, Ve >

AP AL SIS SIS ST
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Vn,m >k
It follows that | f(x) — fm(X)| <€ Vxe€ (la bl Vmm>k
Hence, fa(x) isa Cauchy sequence in R
,Since R 1s a Banach space, then f,(x) is convergent to £(x) in R. Thus
n> kV,3k € N such that |fa(x) —f(x)| <de>V
n> k¥Thus, 1 £, —fIl = max{|fa(x) =f(x)| : x € [a,b]} <€

Hence, f» = f as n - o, Thus, ([a, b ia a Banach space

.3.6Example

|f(x)|dx is not a Banach space] wit{olthe norm I £l =1,0The space ([

(291,011 is a normed space (see, Example 1,0Seolution: The space ((

Let

o |

DI
= (falx In+ hx+— if
u]

i 0, dxs >+

Now, for all].1,0Then, f, is continuous function on [.2where n >

we have2 n, Iﬁ. b
]

= “fn _fmrn(X) _fm(X)I Xm

| i

Of FaX) = fa(0)| dxl= £o(x) = Fn(x)] dA
ol L

2

+ dx Il _ll fn(X) —fm(X)I dXI
0‘[ 3

= fu(x) —Fm(x)| dx|




1
fa(x)| dx|2 1 (I) fa(x)| dx|

2

[
=lf,,(x)| dx|But ' 2 +dx§l+ nx+-)

[
]
Similarly = fin(x)| dx| _2 (III)
% n
Substitute (IT) and (IIL) in (I) to get | 0 + AsF 1<
0 - as m, n

Thus, {f3) is a Cauchy sequence. From the definition of £, we note that

fn > gwhere

> <li0if 1
= (g(x

0" ifj.1x< 2
]. Thenl,0But gis not continuous. Thus, (fz) does not converge in ({

J, I 1s not a Banach spacel, 0C[)
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Some Properties of Banach Space3.2

.3.7Theorem
Let L be a Banach space and let H be a subspace of L. Then, H is a

.Banach space 1f and only if H 1s a closed set in L

Proof. =) If H is a Banach space T.P. = H. We know that 7€ H

— 3(xs) € H such that x, = x2.34Let x € H, then by Theorem
Hence, (xa) 1s a Cauchy sequence in H. Then, 3y € H such that x, = y

Thus, x € H (i.e., H € H). Thus, x, = x and x5 = ), se-x = J.
— (Therefore, H = H (i.e., H is closed
If His a closed set. Let {x4) be a Cauchy sequence in H, so that (x,) (&
is a Cauchy sequence in L. Hence, it converges; that is 3x € L such that
, X € H= H 234x,- x. But (x,) is a sequence in H. By Theorem

.1.e., X € H Thus, H is a Banach spaﬁ

.3.8Theorem

.Every finite dimensional normed space is a Banach space

.3.9Corollary

.Every finite dimensional subspace of a Banach space is closed set

Proof. Let L be a Banach space and let H be a finite dimensional subspace
, H3., Hisa Banach space. From Theorem 3.80f L. Then, by Theorem

.18 a closed set
O
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. Quotient Space3.10Definition
.Let L be a linear space over F. Let H be a subspace of L

{Let L/H={x+ H:x€L

Define addition and scalar multiplication by

+ He L/Hy+ H,x; xV)+ Hyt x1+ H)= (x2+ H) + (x] x)
+ He L/H and Va€ Fy x¥v+ H + H) = a.x] a.(x
.3.11Proposition

(«Prove that (L/H, +, .) is a linear space over F, (H.W




.3.12 eorem
Let (L, and H € L be a closed set Then (L/H,+,.) is a
. normed
where; space with Il l

A= inf{llx+ ¥l : y€ H lx+ Hl

0>,)T.P. lx+ HllProof (
Forany x+ He€ L/H

Vye H) llx+ yll >

Olx+ ¥l :ye H} 2}

0= inf{llx+ ¥l : ye H} =2, lx+ HI
wiE=> x+ H=H=0 = T.P. lx+ HI (2)
0== inf{llx+ ¥l :y€e H} = 0 = | If lx+ HlI (=)
as0 . Hence, x+ y» = Oas 2 - 0 Hence, 3(ya) € H such that lx + y,ll -

.00 =1
Thus, y»—= —x. Thus, 3(ya) € H such that y»— —x. Thus, by Theorem
- o — X Hl34
.Since H is closed, then —x€ H= H, ie.,—x€ H

1/e0Since H is a subspace then x € Hand x+ H= H, thatis, x+ H=

yEHY mthen x€H. ie,x+ HEH). (&) Ifx+ H= H=

{= inf{llx+ yl : y € H} = inf{lizl : z€ H| Hence, lx+ HI
0=, . Thus, lx + A0, so inf{llzll : z€ H} = Oll = 0€ H and 0 Since

1= lalllx+ Al T.P. la(x+ H)lI (3)
) holds 3then (0 If @ =

then0 If 2 /=

= inf{lla(x+ I :y € H) la(x + H)l




{inf{le]lx+ yll : yE H=

{adinf{llx+ ¥l :y€ H| =
((If A 1s bounded below, then inf(aA) = ainf(A4)

1a|||x+ Hll| =
+ He L/Hy+ H,x) Let x (4)

D+ Hlot xy = I(x; + By + H) + (x I(x
{+ yl:y€ Hy+ xyinf{llx=
{e Hy,zill : 2+ z;+ zp+ xyinf{llx =
{e Hy,z)ll: 20+ 2l + X1+ zyinf{llx >
{e b I : o+ zn€ H} + inf{llx; I : z1+ z; inf{llx =

1t Hlly + “Xl ++Hl llx=

.Thus, L/H is a normed spacel

.3.13Proposition
Jf (L, 1) is a Banach space and H is a closed subspace of L Then
.) 1s a Banach space L/H, Il Il)

Proof. L/H = {x+ H:x €L}, Let X, be a Cauchy sequence in L/H
Vn€ NThen, X, = x,+ H, where x, € L,

<€ Vn,m>ky,3k € Z, such that 1 X, —~Xnll0e>V

<eVnm> k| ,3k€ Z, such that llx, —xm + Hll0so, Ve>

,3k € Z, such thatOThen, Ve >
inf{lxp—xm+ Yl : yEH} <cVn,m>k

This implies, VY€ H, x,+ y isa Cauchy in L




Since L is a Banach space,then 3z € L such that x,+ y = z= (z—y)+ y

w+y Vye H=

.Thus, xo+ H - w+ H, Thus, L/H is a Banach spadd




