Chapter One: Reviewing

Matrices:

A matrix (plural matrices) is a rectangular array of numbers, symbols, or
expressions, arranged in rows and columns. For example, the dimension
of the matrix below is 2 x 3 (read "two by three"), because there are two
rows and three columns:

A matrix with m rows and n columns is called an m x n matrix or m-by-
n matrix, while m and n are called its dimensions.

11 o T 1n 11 L e A1n
aaq oo e Qan a oz e dan g
A= L N . .| = (ay;) e B
L Tml 2 v Oy | Tl w2z 7 Cmn

Square matrix main types of matrices:

1- Square matrix:

A square matrix is a matrix with the same number of rows and columns.
An n-by-n matrix is known as a square matrix of order n. aji .

A {12]
B 3 4

2- Diagonal matrix: ap 0 0

All entries outside the main diagonal are zero. A= | (| ayn 0
0 0 ay
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- r triangular matrix:
3- Upper triangular mat Gy Gy o

If all entries of A below the main diagonal are zero. A= | | ay ay
0 0 ag

4- Lower triangular matrix:

All entries of A above the main diagonal are zero.

ay 0 0
an ap 0

ag)  dgp  diy

A =

5- ldentity matrix:

The identity matrix I, of size n is the n-by-n matrix in which all the
elements on the main diagonal are equal to 1 and all other elements are
equal to 0.

1 0 0
01 0
1 0
I1:[1]! I?_|:G 1i|1 '?I’n:
0 0 1

Basic operations of matrices:

There are a number of basic operations that can be applied to modify
matrices.

1- Addition

The sum A+B of two m-by-n matrices A and B is calculated entrywise:
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[1 3 1]|| [u 0 5]_[1+ﬂ 340 1+5]_[1 3 ﬁ]
10 0] |75 0] [147 045 040 [8 50
2- Subtracting

To subtract two matrices: subtract the numbers in the matching
positions:

3 8 B 4 O _ | -1 s

4 6 i -9 o 3 15
Note: subtracting is actually defined as the addition of a negative matrix:
A+ (—B)

3- Multiplication of a matrix by a scalar

Definition Let 4 be a K x L matrix and « be a scalar. The product of 4
by « is another X x L matrix, denoted by «4, such that its (k&.0)-th entry is
equal to the product of « by the (£.1)-th entry of 4, that is

{a"{],ﬂ =ady
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Example Let « =2 and define the 2 x3 maftrix

02 3
A:
1 10

The product «4 is

I
[ |
- O
b2 b2
S
[ B W
L 1

Properties

a(fd) = (ap )4

for any matrix 4 and any scalars « and §.

i4+0)=ud+db

4- Matrix multiplication

Matrix multiplication is a binary operation that produces a matrix from
two matrices. For matrix multiplication, the number of columns in the first
matrix must be equal to the number of rows in the second matrix. The
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result matrix, known as the matrix product, has the number of rows of the
first and the number of columns of the second matrix.

If Ais an m x n matrix and B is an n x p matrix, the matrix product C =
AB defined to be the m x p matrix.

¢ b\fe f ae+bg af -bh

¢ d)\g h) \eedtdy cf+dh

Matrices and Systems of Simultaneous Linear Equations

We now see how to write a system of linear equations using matrix
multiplication.

Example 4

The system of equations
Gxr — 3y = —4

can be written as:

(& %)) = (5)

Properties

AB #BA. are square matrices of the same size. Even in this case, one
has in general.
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For example
(ﬂ 1)(0 ﬂ)_(l ﬂ)
o0 o/\1 0/ \o o/
but
(ﬂ D)(U 1)_([! ﬂ)
1 0/\0o o/ \o 1/
AB+C)=AB+AC,
nd (right distributivity)
(B4 C)D =BD +CD.

¢(AB) = (cA)Band (AB)c = A(Be).

5- Dividing
And what about division? Well we don't actually divide matrices, we
do it this way:

A/B=Ax(1/B) =A x B L

where B™1 means the "inverse" of B.

6- Transpose of a matrix:

In linear algebra, the transpose of a matrix is an operator which flips a
matrix over its diagonal, that is it switches the row and column indices
of the matrix by producing another matrix denoted as A",

[AT]i=[A];i If Aisanm x n matrix, then AT is an n x m matrix. For
example
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T [1
[1 2] _[2}
1 2]t 1 o3
3 4 2 4
L 27" 1 3 5
';’; =[24ﬁ]
Properties

For matrices A, B and scalar ¢ we have the following properties of
transpose:

1 (AT)" = A,

The operation of taking the transpose is an involution (seli-
inverse).

2 (A+B)" = AT - BT, ;
The transpose respects addition. ((1 2 3 )T) } (
3.(AB)T = BTA”,

1 (cA)" = AT,

7- Trace of a matrix

In linear algebra, the trace (often abbreviated to {A}) of a square matrix
A is defined to be the sum of elements on the main diagonal (from the

upper left to the lower right) of A. The trace is only defined for a square
matrix (n x n).

fi
tr(A) = Eﬂﬁ =0T 0T T O

=l
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Let A be a matrix, with

a1 012 013 -1 0 3
J!L= gy Om dyg 1 = 11 5 2
3 O3 O 6 12 -5

Then
3
tr(A) = zﬂﬁ =ay +ap tag=-1+5+(-5)=-1
i=]

Properties

tr(A +B) = tr(A) + tr(B)
tr(cA) = ctr(A)

A matrix and its transpose have the same trace:
a(A) = n(A).

Trace of a product

tr(A'B) = tr(AB") =tr(B'A) = tx(BA)

tr(AB) = tr(BA)

tr((ABCD) = tr(BCDA) = tr(CDAB) = tz(DABC).

tr(ABC) # tr(ACB).



Chapter One: Reviewing

tr(AB) # tr(A) tr(B)

8- Determinant of a matrix

In linear algebra, the determinant is a scalar value that can be computed
from the elements of a square matrix and encodes certain properties of the
linear transformation described by the matrix. The determinant of a matrix
A is denoted |A|.

la+c.b+d)

Inthe case of a 2 « 2 matrix the determinant may be defined as

@ b

4=
¢ d

‘zu.d i,

The Leibniz formula for the determinant of a 2 x 2 matrix for finding area
of plane.

Similarly, for a 3 x 3 matrix A, its determinant is the Laplace formula for
the determinant of a 3 x 3 matrix is:

o b ¢
d e fl=a
g h i

d e
g h

e f

i

d f

,+c‘
g 1

L

FI+fr242

this can be expanded out to give

la b e
d e f|=alei— fh)—b(di— fg) +c(dh - eg)
g h i

= gei + bfg+ cdh — ceg — bdi — afh.
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Properties of the determinant
1. det (I,,} = 1, where I, is the n x n identity matrix.
2. det (A") = det(A), where A" denotes the transpose of A.

3 det (A1) = detl( 3 = et

4. For square matrices 4 and B of equal size,
det{AB) = det(A4) x det(B).

9- Inverse of a matrix

For a square matrix A, the inverse is written A™t. Non-square matrices do
not have inverses.

Note: Not all square matrices have inverses. A square matrix which has
an inverse is called invertible or nonsingular, and a square matrix without
an inverse is called noninvertible or singular. Why we need the inverse
??7? because there is not divided in matrix.

How many methods to find inverse square matrix with ex.??

Properties

Furthermore, the following properties hold for an invertible matrix A:
. AH1=A
. AAT=ATA=

(kA)t = kA for nonzero scalar k

(A=A

For any invertible n-by-n matrices A and B, (AB) ! =B A

det A"l = (det A) ..

10
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aat=aAla=1

4 3 e - -1 _ | —2 3 .
},nsmnersms A —[ 3 _4:|s1nce

S it =
Example: For matrix A { 2 9

wiof3 213 2]-[3 2]
aatas[ 5[5 2]-[0 1)
In relation to its adjugate

The adjugate of a matrix A can be used to find the inverse of A as follows:

If A is an n X n invertible matrix, then
a1
det(A)

adj(A).

Inversion of 2 x 2 matrices:

RH L
Cle d]  detA|-c o) ad-bel-c o

11
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Example
. . , 31
Find the inverse of the matrix A = 19 )

Solution

Using the formula

1 1
i ‘wmrmm(
This could be written as

Inversion of 3 x 3 matrices:

Then the inverse matrix is:

o b el | (ek— fh)
A ] QR
A PR B A

Where det(B) is equal to:

det(B) = afek — fh) — b(dk — fg) + c(dh - eg)

Special Matrices

In this section we introduce some important special matrices can be used

in necessary application:

1- Diagonally Dominant Matrix:

In mathematics, a square matrix is said to be diagonally dominant if, for
every row of the matrix, the magnitude of the diagonal entry in a row is
larger than or equal to the sum of the magnitudes of all the other (non-

12

(bl — ch)

(ak-cg)
~(ah—bg)

—(af —cd)
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diagonal) entries in that row. More precisely, the matrix A is diagonally
dominant if:

;| > Z|ui-j| for all i,
jFi

If a strict inequality (>) is used, this is called strict diagonal dominance.

Examples:
The matrix
3 —2 1
A={1 -3 2
-1 2 4

is diag:}nally dominant because
|@11| = |a1z] + |ais| since [+3|=|—2|+[+ 1]
lazz| = |a21| + |azs| since | —3| =+ 1]+ |+ 2|
lazs| = |aa1| + |azz| since [+4|=|—1]+]+ 2]

The matrix
-2 2 1
B = 1 3 2
1 -2 0

is not dimgonally dominant because
|b11] < |biz| + |B1z| since | —2| < |+ 2|+ |+ 1]
|bos| = |b21| + |b2z| since |+ 3| = |+ 1] 4|+ 2|
|bag| < |bar| + |Baz| since |+0] < |+1|4+|— 2|

That is, the first and third rows fail to satisfy the diagonal dominance
caondition.

13
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The matrix
-4 2 1
C=11 6 2
1 =25

s sirictly diagonally dominant because
len| = |eiz| + |eis| since | —4] = |+2[+ ]+ 1
|eaa| = |ear| + |eog| since |+6| = |+1]+]+2|

|ess| = |egt| + |esa| since |45 = |+1]+]—2|

Exercises
Classify the following matrices as diagonally dominant, strictly diagonally
dominant or unknown;

2 =11 5 4 2 -6 2 1
A=|1 -4 2(,B=|4 5 2[,C=|1 4 2|
-1 2 4 2 2 2 1 =27

2- Band matrix

Band matrix is a sparse matrix whose non-zero entries are confined to a
diagonal band, comprising the main diagonal and zero or more diagonals
on either side.

p is the lower bandwidth if a;=0 for i > j+p.

q is upper band width if  j <i+q.

14
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o T e T e T D 4
Lo R A A A S S e R e
oM OoOXK XK X O O O
HoOoX O OX X O O O O

L I e B A G S A S

oo oo MOOX oM XX

0

= =

— The % denotes an arbitrary nonzero entry

— This 8 x 6 matrix has lower bandwidth 3 and upper band-
width 1

Examples:

— Ezample 1. A 5 x T upper triangular matixp =0,¢ =16

Fxx::cxxrx:rx:q
0 ¥ X X X X X
00 %X x X X X
000 x x x X
0000 x x X

15
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some Band Matrices

Matrix P q
Diagonal 0 0
Upper Triangular 0 n—1
Lower Triangular |m — 1 0
Tridiagonal 1 1
Upper bidiagcnal 0 1
Lower bidiagonal 1 0
Upper Hessenberg 1 n—1
Lower Hessenberg |m — 1 1

e Fzample 2. A 5 x 6 tridiagonal matrix p =g = 1

— —

* x 0 0 0 0
®» x x 0 0 0
A=|0 x x x 0 0
0 0 =x x x 0
0 0 0 x x x

o Example 5 A 4 x 6 Lower Hessenberg matrix p=13, ¢ =1

p—

0000
x 0 00
x x 00
X X %X 0

e A o
e A o

16
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3- Monotonic Matrix

A monotonic matrix of order n is an nxn matrix in which every element
is either O or contains a number from the set {1,...,n} subject to the
conditions.

matrix is monotone if all elements of A™* are nonnegative). For example, the
following (2 X 2) matrices are monotone:

[(1) SE 3“1 %Hi H.The monotone is non-singular matrix.

4-

17
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Pseundo Inverse of a Matrix

The matrix (ATA)Y AT is called pseudo inverse of a matrix A and denoted
by pinv{Ad). The pseudo inverse can be expressed of a rectangular matrix, or
not invertible square matrix.

Example ; Find 4~ 'for the following matrix
1 1
a=|= ]
2 3

Solution: we see that 4 is rectangular matrix thatwe cannot be compute A~1

director. So, we find pseudo inverse as follows:

Firstly find A" 4,

1 1
T, _[1 —1 271|° _[e 6
S Pl | =N B Y
T
T,.~ 1 adi(dA’"4) 1r11 —6
(A°4) = |HTA| _313[—5 E-]
. _ 1711 —6&y[1 —1 2 1,5 —17 a
— T 14T . _— = ——
pinv(d) = (ATA) AT = | 7 .5”1 1 3] 3:][4:} 12 &
1 17 2
That is pinw(A): ; 3; 115
5 5

18
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Exercises:
Find pseudo inverse for the following matrices:

2 -1
A=]1 2{,
1 1

Fa

=
et
j

)
Il
e e
(%

19
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Chapter Two
Eigenvalues, Eigenvectors and its Applications

In this chapter we introduce definition of eigenvalues, eigenvectors, how can it's
calculating and illustrate the importance of the topic by demonstrating some of
its applications.

Eigenvalues and Eigenvectors

Suppose that 4 is a square (n X n) matrix. We say that a nonzero
vector v is an eigenvector (ev) and a scalar A is its eigenvalue (ew) if

Av = v (2.1)

Geometrically this means that Av is in the same or appositive
direction as v, depending on the sign of A.

Notice that Equation (2.1) can be rewritten as follows:
Av—Av =0

since Iv = v, we can do the following:

Av—Aw=Av—-Alv=A-ADv =0

If v is nonzero, then the matrix (4 — AI) must be singular and

|A — Al|= 0.

This is called the characteristic equation (or characteristic polynomial

p(4)).

Calculating Eigenvalues and Eigenvectors
If A is (2 x2) or (3 x 3) matrix then we can find its eigenvalues and
eigenvectors by hand.
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Note

Let A is a square (n x n) matrix and A is an eigenvalue of A. The set of
all eigenvectors corresponding to A, together with zero vector is a subspace of
R™ and this space is called eigenspace of A.

Example 1: Find eigenvalues and eigenvectors for the following
matrix 4 = [; g :

Solution A—M:B g]—a[(l) 2]:[;31, ‘5*]_[3 g=

[1 - A 4 ]

3 5—AF

A=Al =1 =2)(5—A)—34) =A%>—6\—7 (This called characteristic
polynomial),

M—6A—7=0->-A-7)A+1)=0->A1=7,A=-1.
A =7 and A = —1 are the eigenvalues of A.

To find eigenvectors, if A = 7, we solve the equation

a-mo=o- (41 DEI-0)
= 400

[_36xx—+ 2433] ] - [8]'

—6x+4y =0,3x—2y =0,

Hence, (x, y) = (2, 3) is a solution of 3x — 2y =0 (or—6x + 4y = 0).
Thus the eigenvectors of Awhen A =7 are non-zero vectors of form

2
£ [3] ,71 € R{0}.
2 : 2
The S; = {n; [3] ,71 € R} is a subspace of R*.

To find eigenvectors, if A = —1, we solve the equation
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sl-[o SDBI=[of

ol b = Lol

2x +4y] [0
3x + 6y] N [0]’

A-(C—DDhv=0- (

WN Q=

2x +4y =0,3x + 6y =0,

Hence, (x, y) = (-2, 1) is a solution of 2x + 4y = 0(or 3x + 6y = 0).
Thus the eigenvectors of A when A = —1 are non-zero vectors of form

"2 [_12] , T2 € R{0}. The S, = {r; [_12],7‘2 € R} is a subspace of RZ.

Example2: Find eigenvalues and eigenvectors for the following

1 -3 3
matrix A=|3 -5 3}|.
6 —6 4
1 -3 3 1 0 O
Solution: A—AI=|3 -5 3|—4|/0 1 0
6 -6 4 0 0 1
1 -3 3] A 0 O
=13 -5 3(—10 4 O
6 —6 4] 0 0 2
1—-2 -3 3
=| 3 —-5-—-2 3 |
6 -6 4—2

|A—AIl= (1 =D{[(-5-D“&—-D]—3(-6)}+3{3(4 — 1) — 3(6)}
+3{3(=6) — 6(=5 — 1)}

=(1-M)A*+A1—20+ 18} +3{12 — 31 — 18} + 3{—18 + 30 + 61}
=—23431—-2—-9A—-18+18A+36= -3+ 121+ 16

To find the solutionto |A — AI| = 0,i.e.tosolve A3 —12A—16=0,
MB—120-16=A—-4)( A2 +41+4) =0,
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-4+ /4Z-4(1)(4) _ —440
2 T2

A=4,A= = —2 (repeated root).

To find eigenvectors, if A = 4, we solve the equation

1 -3 3 4 0 O\rx 0
A-4Dv=0- ( 3 =5 3‘ [0 4 OD H = [0‘,
6 —6 4 0 0 41/'z 0

[—3 =3 3]x7 [O]
3 -9 3 [y = 10|,

L6 —6 01tz! 10
—3x—=3y+3z] [0]

[ 3x—9y+3z |=|0],
6x — 6y n

—3x—3y+3z=0,3x—9y+3z=0,6x—6y =0,

1
X—EZ=0,}/—§Z=O

Hence, (x, y, z) = (— -,1) is a solution ofx——z— 0, y——z = 0.

Thus the eigenvectors of A when A =4 is non-zero vectors of the form
1/2 1/2
n 1/2 ,11 € R{0}. The S; = {ry 1/2 ,11 € R} is a subspace of R3.

To find eigenvectors, if A = —2, we solve the equation

(A—(—Z)I)v=0_’<[; EE ;J ° -ZDH H

0
L 0
3 -3 3 0
3—33[ 0

-6 6
0
=0,
0

3x — 3y + 3z
3x—3y+3z=0,3x—-3y+3z=06x—6y+6z=0,

3x—3y+3z
|6x — 6y + 62

4
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x—y+z=0

Hence, (x, v, z)=(0,1,1) is a solution of x —y +z = 0.

Thus the eigenvectors of A when A = —2 are non-zero vectors of the form
0 0

T [1] , 7, € R{0}. The S, = {r, [1],1‘2 € R} is a subspace of R3.
1 1

Complex Eigenvalues

It turns out that the eigenvalues of some matrices are complex
numbers, even when the matrix only contains real numbers. When
this happens the complex ew's must occur in conjugate pairs, i.e.,

}\1’2 = i ﬁl
The corresponding ev's must also come in conjugate pairs:
w=u=vi

Example3: Find eigenvalues and eigenvectors for the matrix 4 = [(1) _1].

Solution

_ [0 -1 1 01_10 =17 14 01_[—-4 -1
a-a=[ l-alg =0 1= A= D
A=A = (=)= —1(-1) =A% + 1,
A=A =22+1=0->A=-1> A= +i.
A =1 and A = —i are the eigenvalues of A.

To find eigenvectors, if A = i, we solve the equation

a-imw=o0- (0 1[5 ODEI=[3)
=10

-1
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—ix—y=0,x—iy=0->y=—ix,

Hence, the eigenvectors of Awhen A =1i are non-zero vectors of form

Z
L& [_11] ,71 € R{0}. The eigenspace = {[—ilzz] ,21,Z5 € R}

To find eigenvectors, if A = —i, we solve the equation

a-conv=0- (% -17 2DEI=10)

SB[l
[ix —'y _ '0]
X + 1y L0)

ix—y=0x+iy=0->y=ix,

Hence, the eigenvectors of A when A = —i are non-zero vectors of form

z
Ty [ﬂ ,75 € R{0}. The eigenspace = {[i;z] ,Z1, Zy € R}

Notes

1.

An eigenvalue of A, ., is a root of the characteristic polynomial. Indeed A is
an eigenvalue of A iff det(A — Al) = 0. So there are at most n distinct
eigenvalues of A.

Similar matrices have the same eigenvalues (HW).

. If A be a diagonal matrix then its eigenvalues are the diagonal elements

(HW).

. If A be an upper (lower) triangular matrix then its eigenvalues are the

diagonal elements (HW).

. If A be a square matrix then A and AT have the same eigenvalues (HW).
. If A be a square matrix then |A| is equal to the product of all eigenvalues of

A (HW).

. A is a singular matrix & A = 0 be an eigenvalue of A (HW).
. If A be an invertible matrix with eigenvalue A of eigenvector v then A~1 is

an eigenvalue of A~1 with eigenvector v (HW).

. The set of all the eigenvalues of A is referred to as the spectrum of A and

denoted by A(A).
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10. The maximum modulus of the eigenvalues is called spectral radius and
denoted by p(A), that is:

p(A) = nax |A].

;AN Yy A EESma__ 1

“tur Cayley (16 August 1821 — 26 January . ~< a British mathematician

Let A be a square (n X n) maw.. “*h characteristic polynomial

po. ~ A+ A+t A+ cpand A+ a0 e ey A+, =0
then A" R g1 + .-, +Cn_1A + Cnln = 0.

Example4: Apply Cayley ~ilton Theorem on the matrix A = [_01 g]

Solutivs,. ™ —= 22 — 31 + 2, by Cayley-ha. = Theorem

2 —34+2I, =0,

0 2717 0 2 1 01 _[-2 0 —6] ,[2 0]_[0 O
-1 3] _3[—1 3]+2[0 1]_[—3 71 s - +[‘ ]_[n ol
Exercises
1. Find eigenvalues and eigenvectors for the following matrices

I B e R e )

e=[y ilr=lo ale=[5 Fla=[} Jlx=[; 7l

L= M=%

2. Find eigenvalues and eigenvectors for the following matrices:

5 4 2 1 0 O 5 -2 2
A=\|4 5 2|,.B=|-2 1 2],C=[4 -3 4]and
2 2 2 -2 0 3 4 -6 7

-1 0 O
D=[2 1 O].
7 =2 3

T T TrrTJ T TJTTJ T
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6 -8 [t 2 3‘
A<l Ze-lpz o2

Eigenvalues and Eigenvectors of symmetric matrix
A matrix is symmetric if it is equal to its own transpose, in symmetric
matrix the upper right left and the lower left half of the matrix are mirror

images of each other about the diagonal. A(n X n) symmetric matrix
not only has a nice structure, but it also satisfied the following:

It has exactly n eigenvalues (not necessary distinct).

There exists a set of n eigenvectors, one for each eigenvalue, that
are mutually orthogonal.

A symmetric matrix has n eigenvalues and there exist n linearly
independent eigenvectors (because of orthogonal) even if the
eigenvalues are not distinct.

Example5: Find eigenvalues and eigenvectors for the matrix

A=[§ g

— a5 31 4, O
Solution: A — AI = 3 5] /1[0 1

5 31 (A 0
=[3 5]_[0 A

5—1 3
=[ 3 5—/1]’

A=A =G-0DG-1)-33)=A2—-10A+25—-9=22—-10A+ 16

=A-8)A—-2)=0->A=8,2

To find eigenvectors, if A = 8, we solve the equation

a-ono=0 (5 22 DEI-[2

5 SI61 =l
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[—Bx + 3y] _ [0],
3x — 3y 0
—3x+3y=0,3x—3y =0,
x =1,y = 1. Thus the eigenvectors of A when A = 8 is nonzero vectors of
form [ﬂ .

To find eigenvectors, if A = 2, we solve the equation:

a-2nv=0~ (3 =[5 DEI=o)
3 3] [x- _ [0
13 31LY] or
[3x + 3Y] 07
13x + 3y] 0.

-

3x+3y=0,3x+3y =0,

x = 1,y = —1. Thus the eigenvectors of A when A = 2 are non-zero vectors

of form [_11] .

Thus we have two orthogonal eigenvectors [ﬂ and [_11] (linearly independent).
ull”lllul\f -~ - - - -

- 0] A7

~ Al
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3 2 4 1 0 O
Solution: A—AI=[2 0 2]—/1[0 1 0]

4 2 3 0 0 1
3 2 4 A 0 0
FiEL
4 2 31 lo o 4

A=A =GB =D{(-VB -] -2(2)} -2{2B -1 - 2(4)}
+4{2(2) - 4(=1)}

=B=-MD)A2=31—4}—2{6 — 21— 8} + 4{4 + 47}
= 234602 —5A—124+4rA+4+ 164+ 161 = —23+6A% + 151+ 8

To find the solutionto |[A—AI| = 0, i.e. to solve (—A3 + 6A2 + 15A +8 =0 —
(3 —6)2 —15A—8 = 0),
A6\ —150—8=(A—8)A+1)2=0—>2A=8—1,—1

To find eigenvectors, if A = 8, we solve the equation

3 2 4 8 0 O7\rx 0
A-8NHv=0- < 2 0 2] [0 8 0] H = [0],
4 2 3 0 0 81/1z 0

-X 'O'

L4 2 =5liz 0.
—5x + 2y + 477 0]
2x—8y+2z | =10],
| 4x + 2y — 5z | 0.

—5x+2y+4z=0,2x—-—8y+2z=04x+2y—-5z=0,

x=2,y=1,z= 2. Thus the eigenvectors of Awhen A =8 are non-zero

vectors of form [1] .

10
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To find eigenvectors, if A = —1, we solve the equation :
3 2 4 1 0 O7\ X 0
(A+I)v=0—><202+010>y=0,
4 2 3 0 0 11/1tz 0
4 2 41x 0]
2 1 2 H= 0|,
4 2 41z 0]
4x + 2y + 4z 0
2x+y+2z|= 0],
4x + 2y + 4z 0

4x+2y+4z=0,2x+y+2z=04x+2y +4z=0,

This system reduces to single equation (2x + y + 2z = 0) since the other two
equations are twice this one. There are two parameters here (x and z), thus
eigenvectors for A = —1 must have the form (y = —2x — 2z) which

s
corresponds to the vectors of form [—23 - Zt]. We must choose values of s
t

2
and t that yield two orthogonal vectors (the third one is [1]). First, choose
2

1
anything, let s = 1and t = 0, the eigenvector is [—2]. Now find a vector
0
T X 1 X
—2x — 22] such that: 0= l—zl : l—Zx - 22] =x+4x+4z+0=5x+
z 0 z
4z, we can choose x = 4 and z = —5. Thus we have two orthogonal vectors

! 4
—2] and [ 2 ]that corresponds to the two eigenvalue A = —1.
L0 -5

Note that: since this matrix is symmetric we do indeed have three eigenvalues
and a set of three orthogonal (and thus linearly independent) eigenvectors (one
for each eigenvalue).

v VHOWILE 1HALLICCD.

11
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r 21 r—A —6'| _ [5 4-| n_ r_z 01

L1 Ul L—3 —o- . - - —L2

ro N1 N - B _ i 11

w0l Lo ol " l-1 2P~ 11 2™ 11 1r

rs e r5 4’ 11 r1 n " r._rv e} [a% |

ol v epv =12 1 2l.o=1-4 -3 —4l.
- 4 V) 31 L—4 —0 —/1

Diagonalization of a Matrix with Distinct Eigenvalues
A square matrix A is said to be diagonalizable if there exists an invertible
matrix C such that D = C~1AC is a diagonal matrix.

-10

Example9: Prove that the matrix A = [; _4

1s diagonalizable.

Solution: 1, = 2 and eigenvectors Vq = 17 [ﬂ,

A, = 1 and eigenvectors v, =1, [g]

There exists C = [i g] such that C™1AC = [i 21—1 [; _10] [i g =

—4

[_31 _25] [g __140] [i g] = [(2) (1) is a diagonal matrix.

Notes

> The product D = C~'AC is a diagonal matrix whose diagonal elements are
the eigenvalues of A.

» A is a diagonalizable < it has linearly independent the eigenvectors.

> Matrix Powers: A4 is similar to a diagonal matrix D = C~1AC then A* =
cD*c™.

» If a matrix A with distinct eigenvalues then A4 is diagonalizable.

» The eigenvalues of A4 lies on the main diagonal of similar matrix

D =c'Ac.

> If A is a symmetric matrix then eigenvectors that associated to distinct

eigenvalues of A are orthogonal.

15
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_4 —6 0 0 =2
Examplel0: Let A= [ ],{B =0 -2 HW} ,
3 > -2 0 3

1. Prove that A is diagonalizable,

2. Find the diagonal matrix D similar to A, and

3. Find A°.

Solution: A; = 2 and eigenvectors V4 = 14 [_11]
A, = —1 and eigenvectors v, =1, [_12]
Since A has two distinct eigenvalues then A is diagonalizable.
= Select two linearly independent eigenvectors
[ = 7]
U = Uy =
p=[q o &
_[~1 =2 pe1pp —2'1—4—6—1 -21 _
c=[7 Tlerae=[7 T ST 7=
1 214 -61[—-1 —-21_12 4[-1 -21_12 07_
B | P | s ol P | P o PR A
The main diagonal of D has the distinct eigenvalues of A.
[32

“

7

DS_[O (- 1)]

#° = coset = [ ‘ZH” A

—32 _1”1 _1] [—30 —66

-1

_51)] is not diagonalizable.

Examplel1: Prove that the matrix 4 = [g

Solution: A = 2 (A repeated root) and eigenvector ¥ =71 [ﬂ,

a matrix A4 it does not have two distinct eigenvalues then 4 is not diagonalizable.

16
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["‘. [ao + bo — N l')-nb()]
b, | 1/2™ b,

Since +by=1,w. 2ve

.. =1=1/2 b, =1/2"p, =12,....
asn—->ow ~hav. -1,b,-¢

The population .. “he lim.. ~ntains only A A.

Exercises

I- Prove that the following matrices are diagonalizable, Find the diagonal
matrix D similar to A and A%3:
_[2 3 _[-1 4

A_[B 2]'A_[O 3]

- +ha nlante are alv- c N

oo find

— . ~ . ~ e ~ o o 1 . ~ a4 a

.- . . . .
Haa genntune dictrihntinn oo n tae-

2.2.7 Orthogonally and Diagonalizable of a Matrix
A square matrix A is said to be orthogonally diagonalizable if there exists an
orthogonal matrix € such that D = CTAC is a diagonal matrix.

Notes:
» A square matrix A is said to be orthogonally diagonalizable < A is a
symmetric matrix.

» A square matrix C is said to be orthogonal < the columns (rows) of C is
an orthonormal set.

» The ecigenvalues of a square matrix A lies on the main diagonal of D =
C~1AC = CTAC, where C is an orthogonal matrix.

X1
» Norm of vector v = lle 1s denoted and define as follows:
xn

[lv]| = Vxi2 + %2+ 4,2

22


Maher
Pencil

Maher
Pencil


Applied Mathematics Dr. Maher N.

0O 0 =2
0o -2 0 ] orthogonally diagonalizable.
-2 0 3

Examplel4: s A =

0 0
Solution: A, = —2 and eigenvector v; =1y [1‘, take v; = [1],

0 0
-1 /2' [—1
A; = 4 and eigenvector v, =1, o | takev, = 0 |,
1 | | 2

2 2
A3 = —1 and eigenvector v; =13 [0 , take v3 = 0],
11 |1

The set {v;,v,,v3} is linearly independent (HW) and orthogonal but not
orthonormal. We can normalize these vectors as follows:

Vi V2 V3
V1 =7 ,V -—,V
11 ||V1|I 9 22 ” 9 33

[Ivsll

-1
/\/"
The set {vyq1, V42, V33}= { } is an orthonormal set in R3.

1
/f
-1 2
s s
Let € =11 0 0 |is orthogonal matrix because C~1 = €T (HW) (or
2 1
0 Yr Y
by previous notes) Hence C'lAC CTAC - CTAC =
1 —_
-1, 2/ 2 /\/— /\/— -2 0 0
V5 \/' ] -{0 4 0 [whichis
2 1 —
/ N 0 \/_ \/— 0 0 -1
diagonal matrix then A is orthogonally dlagonahzable.
Exercises
Find orthogonally diagonalizable for the following matrices:
0 2 0 0 2 2
anll oeft Se=foooleafo o)
0 0 1 2 20

23
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Chapter Three

Bimatrices

Definition of Bimatrices
A bimatrix Ap is defined as the union of two rectangular away of numbers A and A4,

arranged into rows and columns. It is written as follows Agp = A; U A, where A1 # A,

1 1 1 2 2 2
a’11 4712 e Qi a“11 A%12 . QTqp
1 1 1 2 2 2
. 21 Q22 .. A7 A“21 A%22 ... AT
Wlth Al — . . and AZ — . . .
1 1 1 2 2 2
B @rgmg o O @y @z =

U is just the notational convenience (symbol) only. A; and A, are called as the
component matrices of the bimatrix Ag.

The above array 1s called a m by n bimatrix (written as B(m x n) ) since each
of A; (i=1, 2) has m rows and n columns. It is to be noted a bimatrix has no
numerical value associated with it. It is only a convenient way of representing a
pair of arrays of numbers. The A; and A, be called the components matrices of

the bimatrix Ag.

Notes
» If A = A, then Ag = A; U A, is not a bimatrix. A bimatrix Ag is denoted

1 2
by (a l.].) U(a l.].).
» Ifboth A; and A, are (m % n) matrices then the bimatrix Ap is called the (m

x n) rectangular bimatrix.

» If both A; and A, are square matrices then Ap is called the square bimatrix.
» If one of the matrices in the bimatrix A is square and other is
rectangular or both A; and A, are rectangular matrices say (m; x n,),

(m, % n,) with my #m, or n; # n, then Ag is called the mixed

bimatrix.
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» A bimatrix whose all elements are zero is called zero (null) bimatrix and
itis denoted by Op = 04 U O, = 04 U 0,.

» We make an assumption the zero bimatrix is a union of two zero
matrices even if A; and A, are one and the same (i.e. A; = 4, = (0)).

» The unit (identity) square bimatrix denoted by Iy = ™™, U ™™,

» Identity mixed square bimatrix denoted by Iy = I"™*™; U I,

> Examplel: Classify each the following bimatrices

£

c)A"g=[3 -2 0 1 1]Juft 1 -1 2 1],

3
LT R [ s IEP A

3 0 17 4 1 1 3 8 % f 11 2
d)AlB:IZ 1 1juf2 1 Ol,e)AZB:2 1 0 OUO 2 1],
110 lo o1 o0 1 0 004
3 0 1 11 3 0
2 0 4 1 1
f)A3B—[O 1 0 1 u[4 _3],andg)A4B=[2 1 U[z 1 o]'
1 0 2 1 1 1

Solution: a) (2 x 3) rectangular bimatrix, b) is a column bimatrix , c) is a row
bimatrix, d) (3 x 3) square bimatrix, ¢) mixed square bimatrix ,f) mixed
bimatrix and g) mixed rectangular bimatrix .

Operations on Bimatrices
Here the operations on Bimatrices are introduce

Equal
Let Ag = A; U A, and Cp = C{ U C, be two bimatrice, Ay and Cp are equal

(le AB = CB) HAl = C1 and AZ = Cz.
Ap isnotequal to Cg (i.e. Ag # Cg) © A1 # Cy or Ay # C,.

Example 2: Let

ban=ly 1 avlo O dhe=lo o oVl 6
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2. A 001][ —2]6.8001 0 0 0

1 0 1F

Solution: 1- and 2- Ap # Cp.

Multiply by a Constant (Scalar Multiplication)
Let Ag = A; U A, and A € R be a scalar then

1 1 1 2 2 2
Aatyy Aatq, .. Aatq, Aa“yy  Aa“y, .. Aatq,
1 1 1 2 2 2
}{a 21 /1(1 22 }la n Aa 21 /’la 22 Aa m
AMpg = : : o c U : : ::: 8
1 1 1 2 2 2
Aa 1 Ad o . Aagn Aap1 Adce . At

The product AAg is another (m x n) bimatrix. If Ag is (m x n) bimatrix then
AAB = [Aali]'] U [Aazi]’] = [ali]'l] U [azi]-/l] = ABA

Example 3: - Let Ap = 2 0 _1] 1 _01], find AAg when A =3,
2- LetAg=[3 2 1 —4] Ulo0 1 —1 0], find 1A when A = —

Solution

_[6 0 37,[0 3 -3
3=y g Sfulg 3 o)
2-(-2)4p=[-6 —4 —2 8JU[0 -2 2 o]

Addition
Let Ag = A; U A and Cg = €1 U C, be two (m % n) bimatrices. The sum
D g of the bimatrices Ag and Cp is defined as follows:

Dp=Ap+Cp=(41UA;) +(CLU () =[A; + C1] U [4; + (]
Where A4 + €4 and A, + C, are the usual addition on matrices (i.e. if
AB = A1 V) AZ = [ali]'] l]] and CB = Cl v C2 = [C l]] U l]]

DB — AB + CB = [ali]’ + Cli]'] U [azi]- + Czi]'] =
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[ a111 + C111 a112 + C112 alln + Clln T
a121 + C121 a122 + Clzz alzn + Clzn
. . T . U
al, ety alys+cty, oo alp, + el
[ a211 + C211 a212 + C2212 azln + Czln i
a221 + C221 azzz + C222 a22n + szn
2 L2 2 L2 9 2
am1+Cm1 am2+cm2 amn+cmn_
Notes
* The sum of two bimatrices is not in general bimatrix. For example, let
1 2 1 0
A ] [ ,and Cg = [ ] [
B~ 1 o 317 (2 B7l1 1 1 2 0 2
3 Z 1 3 2 11. ) .
Ap + Cp = ] U [ ] 1s not bimatrix because
B B=lo 1 4/"lo 1 4

[A; + C1] = [4; + C,].

» [fAp and Cp be two mixed bimatrix then (Ag + Cp) is always mixed
bimatrix.

= [f Ag and Cp be two (m X n) bimatrices then Ag + Cp = Cp + Ag. Also
if Ag , Cg and Dg be three (m x n) bimatrices then Ag + (Cg + Dg) =

. 2 0 1 0 1 -1
Example4: Let 1- Ap = 3 3 _1]U 5 1 0 ],and
-1 0 1 3 3 1
CB_[Z 2 —1]U[0 2 —1]'
2- Ag=[3 2 1 —4 oJul[o 1 -1 o0 1],

Solution: 1- Az + Cp = 5 5 _2] ],

2- Ag+ Cg=[4 3 2 -3 1]u[5 01 0 4]
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6 —11 [3 1]
ExampleS: Letdg =2 2 |U| 0 2|, find Ap + Ap.
1 -11 1—-1 3]
12 =21 [6 2]
Solution: Ag+ Ag=[4 4 |U| 0 4|=2Ap.
2 =21 L1-2 6l

Subtraction
Let A = A4 U A; and Cg = C{ U C, be two (m % n) bimatrices. The
subtraction of the bimatrices Ap and Cp is defined as follows:

Ap —Cg =Ap+ (—Cp) = (A1 UA;) + (—C; U —C3)
=[41 — C1]U[A; — C3] = [A1 + (—C1)] U [A; + (—C2)].

Where A4 + (—Cy) and A, + (—C;) are the usual addition on matrices.

Example6: Let Ag =1 2 3 -1 2 1]Ju[3 -1 2 0 3 1],
Cg=[-1 1 1 1 1 0oJu[2 0 =2 0 3 0] find Ap — Cp.
Solution: Az — Cg=[2 1 2 -2 1 1]Jufl -1 4 0 0 1]

Notes
= The subtract of two bimatrices is not in general bimatrix. For example, let

51 11.[3 2 2 12 1 07.70 2 1
AB_[1 0 3U[—1 1 gl-and CB_[1 1 Z]U—l 0 1)
Ap — Cp = [g (1) ﬂu[g g 1 is not bimatrix because

[A1 - C1] = [Az - Cz]-

» [fAp and Cp be two mixed bimatrix then (Ag — Cp) is always mixed
bimatrix.

Multiplication of Two Bimatrices
Let A = A1 U A, and Cg = C{ U C, be two square bimatrices. The
multiplication of the bimatrices Ag and Cp is defined as follows:

AB'CB = (Al U] Az) (Cl U Cz) = [A1C1] U] [A2C2]

Example7: a) Let Ag = [i (2)] U [(1) ;], Cp = [_12 g] U [(2) _01]



Applied Mathematics Dr. Maher Nadher

32 2 0
2 0 1 01 1
b) Ag = [-1 4|u | s =] —Julo 0‘,
P ! 2 0 —7|]
3 2 1 o 11 [3 0 0
oo 1|.3 2 1 3 B 0 -1 0
Ag=|1 o 1 U[o 1 0 —1]’63‘[31 g” 1 0 of
2 3 —a4l = -1 2 1
ﬁndAB.CB.
- 3 01,01 11[=2 0], [2 —1]_
Solutlon.a)AB.CB—[1 Z]U[O 2]. { OU[O 0]—
3 01=2 01..[1 1172 -1
[1 2[1 O]UO 2”0 0]
=6 01, (2 -1
_[0 O]U[O 0]’
3 2 2 0
01 11 .12 0 1
b) Ap. Cp = |—1 4] ] ][o 0}
o otz 0 =Pl 2 )]
4 3 1]
[8 -1 =5 u[i :1
6 0 —3]
g g 1 (0 11 3 2 1 3 3 —01 8
©)Ag.Cg=11 o 1 31‘2“’[010—1]1 0 0
2 3 —4ll= 1 2 1
5 5
=1 2 7 4 3
-1 3 (Y1 =3 —1]'
13 —6
Notes:

» The multiply of two bimatrices is not in general bimatrix.

» [fAg = (A1)™ ™ U (43)P*? be mixed rectangular bimatrix and Cg
=(C1)™™ U (€3)7? be another mixed rectangular bimatrix then (Ag.Cp) is
square bimatrix.

Transpose

Let Ap = A1 U A, ,to transpose the bimatrix, swap the rows and columns of
each matrix A; and 4, (i.e. ATp = AT, U AT)).
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» LetAp = A4 U A, and Cp = C{ U C, be two bimatrices and
Dg=Ap+Cgthen DTy = ATy + CTg.

» If Ag and Cg be two bimatrices then (AgCp)T = CTgATg.

= [fApg, Cp, ..., Ng be bimatrices such that their product
(Ag Cg ... Ng) is well defined then (AgCp..Ng)T = NT ...CT3ATg.

3 2
Example8: Let Ag =|0 1|V [2 5 1 4],
1 2 01 0 2
3 3
3 0 1 2 0 O - T T T
CB—[O 11 —Z]U 1 _1,F1ndA g, C' gand (AgCp)".
-2 0
2 0 3 0
o _[3 0 1 3 1| or 0 1 3 0 1 -2
Solutlon.AB—[2 1 Y7 ol Ce=11 1\U[3 0 -1 0
4 2 2 -2
9 0 3
9 2 5 2
_ -1 5 T _12 1 2 -1 —4
AgCg =10 1 1 -2 U[_4 O]a(ABCB) 15 1 3 U 5 0]
3 2 3 -2 2 —2 2
9 0 3
T . _ |2 1 2 -1 —4
ells=1 1 3|vls
2 -2 -2

Then (ABCB)T = CTBATB.

Some Basic Properties of Bimatrices

o LetAg = A1 U A, and Cg = C; U C, be two (m x n) bimatrices. The sum
Ag +Cg =(A1 UAy) +(C,UC,) =[A1 + C1] U[Ay + C,] is bimatrix &
[A; + C1] # [A; + C,].

o LetAp =AU A; and Cg = C; U C, be two (m % n) bimatrices. The
Ag—Cg =(A; VUA,)— (C,UCy) =[A; — C1] U [A; — C,] is bimatrix &
[A; — C4] # [A; — C4].

o LetAp = A; U A, and Cy = C; U C, be two square bimatrices. The
Ag.Cg = [A1.C1] U [A;.C5] is bimatrix & [A;.C1] # [A5.C5].

o If Ag and Cg be two (m x m) square bimatrices. In general Ag.Cp # Cp.Ap.
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Example9: Let AB:E (Z)]U[(l) ;]’CBZ[_lz 8]U[(2) _01],Find
Ap.Cpg and Cp. Ap.
sotution: 45. €= [} 5][7° glvly Bllg 7]
=[5 ovls ok
2 vl Fy R R
-[7° olB 2vle Bl 2=[5 olvls o
Ag.Cp # Cy. Ag.

¢ In some cases for the bimatrices Ag and Cg only one type of product
Ap. Cp may defined and Cg. Ag may not be even defined.

0 1 1 1] 2 1 5 5l m g g
Examplel0: Let Az=|1 0 0 2|U[3 0[.Cp=[3 U[z i
-1 0 1 -1 1 2 L

0 1 1 195 f] 12 4z o g
Solution: Ag. Cp =1 0 0 2 3 oY 3 0] 5 —1 4
-1 0 1 -1 _ 1 2

(e

4 8 —1 6
=13 0|Uf9 0 3}
1 ~1 5 -2 9

But Cpg. Ap is not define.

% LetAg =AU A, ,Cp =C{ VU Cyand Dg = D; U D, be three square
bimatrices:
Ag(CgDg) = (AgCp) Dy = AgCgDy (Associative law)
Where Ag(CgDp) = Ag(C1D1 VU C;D;) = A1(C1D1) U A(C2D,) =
(A1€C1)D1 U (A2€2)D; = (A1€, U AyC3)Dg = (ApCp) Dp.

% LetAg =AU A, ,Cg =C1 U Cyand Dg = D4 U D, be three square
bimatrices:
AB(CB + DB) = ABCB + ABDB (DiStributiVe laW)
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Where Ag(Cp + Dp) = Ap{(C1 + D1) U (C2 + D)} = (A1(C, + D)) U
(A2(Cy+D,)) = (A1Cy + A1D1) U (A3C3+A,D5) =
(A1C1 U AZCZ)-I_(AIDI U AzDz) == ABCB + ABDB'

s Let Ap = A; U A, be a (m X m) square bimatrix. Ag is called diagonal if
each of A; and A, are (m x m) diagonal matrices. The identity bimatrix is
diagonal bimatrix. But if Ag mixed square bimatrix, A is called mixed
diagonal bimatrix if both A; and A, are diagonal matrices.

% Diagonal bimatrix cannot be defined in case of rectangular bimatrix or
mixed bimatrix which is not mixed square bimatrix.

% For every bimatrix Ag there is exist a zero bimatrix O such that

Ap +0p =0+ Ap = Ap

% OgAp = Ogp, this is true only in case of square bimatrix or mixed square
bimatrix only.

s If Ap is square bimatrix or mixed square bimatrix then

AgAp = A?p , AgAgAp = A35 and so on.

¢+ This type of product does not exist in case of rectangular bimatrix or
mixed rectangular bimatrix.

% For any scalar 4, the square bimatrix A™ ™ is called a scalar bimatrix
if

AmxmB — AlmxmB.
% If Ag = A™™, U A™™, then scalar bimatrix of Ap is defined as:
Ag = Alg = AI™ ™, U AI'™™,
¢ Null the bimatrix can be got for any form of bimatrices AB and Cp
provided the product (AgCp) is defined and AgCp =

5
10 o oy, |0
Examplell: Let Ap = ]u 00 0 1 0,Cg= [4 3 1] 2|.
0
6
Find AgCp.
5
Solution: Ag. C —[O N ° 0]u[o 0 0 1 o]g
. B “B — 1 O 3 1 0
6
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Symmetric and Skew Symmetric Bimatrices
A bimatrix is symmetric if it is equal to its own transpose, (i.e. for the
bimatrix Ag, the component matrices of Ag are also symmetric,

Ag = ATg). A symmetric bimatrix must be either a square bimatrix or a
mixed square bimatrix. Let Ag = A; U A, be a (m x m) square bimatrix.
This is an m*" order square bimatrix. This will not have 2m? arbitrary
elements since a';; = a';; and a®;; = a®; where A; = (a'y;) and A; =
(a?; ;) both below and above the main diagonal. The number above the main
diagonal of Ag is (m? — m) and the diagonal elements are also arbitrary. Thus
the total number of arbitrary elements in an mt" order square symmetric
bimatrix is (m? —m + 2m) = m(m + 1). But if Ag = A™>*™; UA™*", be
a mixed square bimatrix then it has a total number

m(m+1) = n(n+1)
( 2 T 2

) arbitrary elements.

3 0 2 0O 1 2
Examplel2: Let A =|0 1 -—-1|U|1l -5 3],

2 -1 =5 2 3 0
3 1 2 4
_[2 0 1 0 -1 2 . -
Cg = 0 1] U 5 —1 1 -4l find if Ag and Cp are symmetric
4 2 -4 8
bimatrices.

3 0 2 0 1 2
Solution: AT = [0 1 —1] U ll —5 3|= Ag, Aghas(3(3+1) =

2 -1 -5 2 3 0
3(4) = 12) arbitrary elements.

3 1 2 4

r _[2 O 1 0 -1 21|_ 2(2+1) | 4(4+1) _ 2(3)
CB—[ ]UZ 1 1 _4—CB,CBhaS( > + 2 —2+

4 2 —4 8
+ 22—0 = 3+ 10 = 13) arbitrary elements.

N | oy

Ap and Cpg are symmetric bimatrices.

10
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» A skew-symmetric is a bimatrix Ag for which
(Ag = — ATg) where (— ATy = —AT; U —AT,) (i.e. the component
matrices A4 and A, of Ap are also skew-symmetric).

e If the m*" order skew-symmetric bimatrix have the diagonal elements of
A; and A, are zero (i.e. al;; = a?;; = 0) then the number of arbitrary
elements is 2m(m — 1).

o If Ag =A™*™; UA™™", isamixed square bimatrix then Ap is called
skew-symmetric A = — ATy, i.e.,

(A" 7™ == (A™*™)T ) and (4" " = — (A"*")"). This
bimatrix has (m(m — 1) + n(n — 1)) arbitrary elements.

Lo ikl e

Examplel3: Let Ag =

0 -1 —2
Cp = % _01 4 [0 1] find if Ap and Cp are skew-symmetric
4 2 —4 0
bimatrices.
0o -1 2 0 3 13
Solution: —A"g =1 0 3|u|-3 0 —2|= Ap, Aghas
-2 =3 0 -13 2 0
2(3)(3 — 1) = 6(2) = 12 arbitrary elements.
0 -1 —2
_~ _|1 0 0 —-1y_
C B — 2 _1 “ [ ] CB, CB has
4 2 —4 0

4(4—-1)+2(2—-1)=43)+ 2(1) = 12 + 2 = 14) arbitrary elements.
Ap and Cp are skew-symmetric bimatrices.

Subbimatrix
Let Ag = AT"*" U Ag 4 e a bimatrix. If we cross out all but kq rows and s,

columns of (m X n) matrix A, and cross out all but k, rows and s, columns of
(p* q) matrix A, the resulting (kq x s4) and (k, x s5) bimatrix is called a
Subbimatrix of Ag.

11
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3 8 3 6 -2

0O 0 1 0 2

_ s 4 14 1 1 0 0 1

Examplel4: et Ag=|6 0 1 2|U o o0 1 2 1l

-1 6 -1.00 {5 10 -1 3

1 4 0 0 2
3 8

. [3 2 1 1 1| —_—

Solution: [_1 p _1]Ul2 1 1s a subbimatrix of Ap.

-1 4

Bideterminant
Let A = A4 U A, be a square bimatrix. The bideterminant of a square
bimatrix is an ordered pair (d4 , d,) where d; = | A4| and d, = | A,|.

| Agl = (dy, dy) where dq and d, are real maybe positive or negative or
zero.

ExamplelS: Let Ap =

3 0 0
2 1 1‘u[4 5],fmd|AB|.
-2 0
0 1 1

Solution: | Az| = (0,10).

» If Ag and Cp be square bimatrices of order n then their product
DB = AB CB'

Dp = AgCp = (A1C1) U (A,C3)
| Dg| = | AgCp|=| A41]| C1] U | A2]| C;]

1.e., the determinant of the product is the product of the determinants.

, 12 31.13 6 [l 6]..[5 2
Examplel6: Let Ag = 1 4U[1 1,and CB—[3 2]U[1 3],ﬁndlABClgl.

Solution: | Ap Cg| = (—80,—39).

| A1| = 5,] A;] = =3,| C1| = —16,| C;| = 13,
| AgCgl=| A4l| C1| U | Az|] C2| = (-80,-39)
» If Ag and Cy be rectangular bimatrices then product
Dp = Ap Cg,AgCp = (A1C1) U (4,(,)
| AgCpl=| A1C1| U | A C;| = (dq, d3) where dq = | A{C4] and
d, = | A;C,|.

12
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4 5 [O 1 1,and

Examplel7: Let Ap = B 0 3 U 5 0 1

3 01 [1 1
9 zlu[o 2],ﬁnd|ABcB|.

1 7 5 —1

CB=

Solution: Ag Cp = 44 43 [

| Ay Cgl = (537,-2).

Biinverse of Bimatrix
Let A = A; U A, be a square bimatrix, if there exists a square bimatrix
Al = A71 U A5 which satisfied the following:

Ag Azl = AglAp = A;A71 U A,A;1 = T U I, then At is called the biinverse
or bireciprocal of Ag.

e [t is most important to note that even Ap be a mixed square bimatrix then
also Ag! exists by I, U I, = I will be such I # I,.

1
e [t is most important to note that: 4;* # — or —
AB Ap

Examplel8: Let Ag = B (3)] U [_01 ﬂ, and

sy L0202
Cp = |ulz 1 2| find Az* and c5 (HW).
7 5
2 2 1
1. _
1 0 /o —1
1 . _1: _2 1 —
Solution: Ap [ /3 /3]U 1/2 .

waty=[} Sof} 9

Properties of biinverse
1- (AgCp)~t = C5'Az"
2- CalAz'AgCy = C3lCp = I

13
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Examplel9: Let Ag = B g] U [é ?1) ,and Cg =

[g i] U [2 Z] find (AgCp)~" .

Solution: Af,l = [_2/3 1/3] U [_5 _2 ]
s 2l [0 s
Gzl = U

— ) - =1 -1
(ABCB)_IZ{B g] [3 i} U{é ; .(6) 451} :{[120 153]} U
; L [Bha ) [0 s
{[18 37} - 5., Y., v 3. 1y = C5' A5’

3- (Ag)™' = Ap

Example20: Let Ag = [é ;] U B g], find (A1)~

0
1 /3]

Solution: Az = [_35 _21] ul-

@ity vl 5=

The square bimatrix Ap is non- bisingular if | Ag| # (0,0). If | Ag] = (0,0)
then the bimatrix Ap is bisingular. Let Ag = A; U A,, if one of Aq or A, is

non- singular matrix then the bimatrix Ap is called semi bisingular.

Example21: Let AB=[8 g]u[6 16] Cp = [5 25] B ] nd

3 3
v [1
Solution: Ap is bisingular since | Ag| = (0,0),

= 0 but B g| = 3and Dp is non

5 2l
B 25
bisingular since | Dg| = (5,—3).

. Ce . 1
Cp is semi bisingular since
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