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Introduction

A mathematical problem originating in electrical engineering is the recovery of
a signal which is transmitted over a noisy medium. Examples include electrical
signals traveling down a wire (e.g. data networking), radio signals traveling
through free space (e.g. cellular phones or space probes), magnetization domains
on a hard disk, or pits on an optical disk. In the latter cases, the issue is storage
rather than transmission; for brevity we will use the term transmission
nonetheless.

Abstractly, let ) be a finite set, or alphabet, of symbols. Often, but not
necessarily, = {0,1}, in which case symbols are called bits. )’ * be the
(infinite) set of all strings, or messages, of zero or more symbols over ). Let M
be an element of ).*, transmitted over some medium. Due to physical
phenomena occurring during transmission, the transmitted string M may differ
from the received string M'. For example, let ) be the lower-case letters along
with the space character. Errors include, but are not limited to, the following:
insertion or duplication of symbols (e.g. "the house” is received as “the
houuse™), deletion of symbols (e.g. “the huse”), and/or modified symbols (e.g.
"the hopse”). When we type, a common error is transposition ("teh house").

The essential idea is that protection against errors is accomplished by adding
additional symbols to M in such a way that the redundant information may be
used to detect and/or correct the errors in M'. This insertion of redundant
information is called coding. The term error control encompasses error
detection and error correction. We will be discussing so-called block codes, in
which a message is divided into blocks of k symbols at a time. The transmitter
will encode by adding additional symbols to each block of k symbols to form a
transmitted block of n symbols. The receiver will decode by transforming each
received block of n symbols back into a k-symbol block, making a best estimate
which k-symbol block to decode to. (Note that you can mentally fix each
misspelling of the house” above, without needing redundant information. You
do this (a) by context, i.e. those weren't just random letters, and (b) by using
your intelligence. Automated error-control systems typically have neither
context nor intelligence, and so require redundancy in order to perform their
task.)

Encoding circuitry is typically simple. It is the decoding circuity which is more
complicated and hence more expensive in terms of execution time, number of
transistors on a chip, power consumption (which translates into battery life), etc.

$ °
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For this reason, in situations with low error rate it is common for a receiver to
detect errors without any attempt at correcting them, then have the sender re-
transmit. It is also for this reason that much of the effort in coding-theory
research involves finding better codes, and more efficient decoding algorithms.

Different media require different amounts of redundancy. For example,
communications between a motherboard and a mouse or keyboard are
sufficiently reliable that they typically have no error detection at all. The higher-
speed USB protocol uses short cyclic redundancy checks (not discussed today)
to implement light error detection. (For engineering reasons, higher-speed
communications are more error prone. The basic idea is that at higher data rates,
voltages have less time to correctly swing between high and low values.)
Compact disks have moderately strong error-correction abilities (specifically,
Reed-Solomon codes): this is what permits them to keep working in spite of
little scratches. Deep-space applications have more stringent error-correction
demands ([VO]). An interesting recent innovation is home networking over
ordinary power lines ([Gib]). Naturally, this requires very strong error
correction since it must keep working even when the vacuum cleaner is switched
on.
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1. Fundamental terms and examples

1.1 The binary symmetric channel

We are confining ourselves to communications channels in which only random
errors occur, rather than burst or synchronization errors. Also, for today we will
talk about binary codes, where the alphabet is {0,1}. We can quantify the
random-error property a bit more by assuming there is a probability p of any bit
being flipped from O to 1 or vice versa. This model of a transmission medium is
called the binary symmetric channel, or BSC: binary since the symbols are bits,
and symmetric since the probabilities of bit-setting and bit-clearing are the same.

The fundamental theorem of communication is Shannon's theorem ([Sha ]),
which when restricted to the BSC says that if p < 1/2, reliable communication is
possible: we can always make a code long enough that decoding mistakes are
very unlikely. Shannon's theorem defines the channel capacity, i.e. what
minimum amount of redundant data needs to be added to make communication
reliable. (See [ Sud ] for a nice proof.) Note however that Shannon's theorem
proves only the existence of codes with desirable properties; it does not tell how
.to construct them

In [ MS] it is shown that if p is exactly 1/2 then no communication is possible,
but that if p > 1/2 then one may interchange 0 and 1, and then assume p< 1/2.
(For example, if p = 1, then it is certain that all 0's become I's and vice versa, and
after renaming symbols there is no error whatsoever)

If n bits are transmitted in a block, the probability of all bits being wrong is

(1 — p)?2. The probability of an error in the first position is p(1 — p)*1, and
the same for the other single-position errors. Any given double error has
probability p?(1 — p)™2, and so on; the probability of an error in all n
positions is p. Since we assume p < 1/2, the most likely scenario is no error at
all. Each single-bit error case is the next likely, followed by each of the double-
bit error cases, etc. (For example, with n = 3 and p = 0.1, these probabilities are
0.729, 0.081, 0.009, and 0.001.) So, when | send you something that gets
garbled in transit, you can only guess what happened to the message. But since
we assume that fewer bit errors are more probable, you can use the maximum

Jlikelihood assumption to help guide your guesses, as we will see below
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1.2 Linear codes

In physics, to facilitate analysis of a problem one often makes certain
simplifying assumptions. For example, orbital mechanics is simpler, but
fractionally less accurate, if one assumes the earth is a perfect sphere rather than
a lumpy oblate spheroid. In particular, one often makes assumptions that permit
analysis of a system using linear rather than non-linear differential equations,
since the former are easy to solve. In engineering, by contrast, one designs
systems rather than studying preexisting systems: one has the liberty of
.designing in linearity (and other simplifying assumptions) from the start

In this spirit, to facilitate analysis, we immediately replace the abstract alphabet
> with the finite field of g elements, [F,. (Recall that a finite field has a prime-
power number of elements. See [LN ]

for background on finite fields. For today, g will simply be 2 so you won't need
any particular expertise in finite fields.) Furthermore, since we divide a message
M into blocks of k symbols each, i.e. k-tuples over [Fg, we have vectors over a

field. This permits the application of the well-known and powerful tools of
linear algebra

.Definitions 1.2.1 :

e A block code (here, we will just call it a code) is any subset of the set of all n-
tuples over 3’ for some positive integer n. Since we take 3’ = [Fg, this means

that a code is any subset C of the vector space [Fy.

e If C is not just a subset of [Ft, but a subspace as well, then we say that C is a

linear code, In this case, we take k to be the dimension of C. (All codes
discussed today will be linear)

eThe parameter k is called the dimension of the linear code C; n is called the
length of C

e The encoding problem is that of embedding the smaller vector space IF’;
into the larger vector space IFg in a maximal way as will be discussed below.

e A vector in IF’,; , Is called a message word; its image in C is called a
codeword
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e During transmission, a codeword may be turned into any element of [Fg. We
will call this a received word.

Notation. For brevity, we will often write n -tuples in the form 111 rather than
(1,1,1). There is no ambiguity as long as each coordinate takes only a single
digit, which is certainly the case over IF,

1.3 The repetition codes

Example. The three-bit repetition code embeds FF, into IF5 via the following:
0 — 000 and

1 — 111. Here, k = 1 and n = 3. Note that there are 23 =8 elements of F>
.but only two of them are codewords

More generally, we have a family of n -bit repetition codes, embedding [, into
F3 : 0 maps to the vector consisting of n zeroes, and 1 maps to n ones. Clearly,
.these are linear codes

1.4 Minimum distance

Definition 1.4.1 . The Hamming weight of a vector v in [Fg is given by the
number of non-zero entries in v. This is a function e : Fz— Z. For example,
.0(101)=2

Definition 1.4.2 . The Hamming distance between vectors u and v in 7 is
given by the number of non-zero entries in their difference. That is, d: Fy * [F
.— Z is given by d(u, v) = w(u— v). For example, d (101, 110) = (011) =2

Remark. When g =2 this means we simply count the number of
.differing slots

Definition 1.4.3 . The minimum distance of a code C is the smallest distance
between distinct pairs of vectors of C. If C is linear, then the difference of u and
v is also in C, so the minimum distance is
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then the minimum weight over all non-zero vectors in C. For example, the
three-bit repetition code has minimum distance 3. We overload the letter d by
writing the minimum distance of C as d(C), or simply d. From the context, it's

.clear which meaning of d is intended

Note: For some codes it is clear what the minimum distance is. For others, )
while it may be relatively easy to compute a lower bound on a code's minimum
distance, the true minimum distance may be much harder to find. For some
families of codes, true minimum distances are unknown.)

1.5 Error detection and error correction

By example, we will see how error-detection and error-correction abilities of a
code are related to the code's minimum distance. Suppose we are sending single
O'sand 1's using a three-bit repetition code. You may trust me to encode only
0 or 1, as 000 or 111, respectively, but due to noise you might receive any of
000, 001, 010, 011, 100, 101, 110 or 111. If you were to receive the block 111,
then you may assume that either I sent 111 and all bits are intact, or | sent 000
and there was a triple bit error. Using the maximum likelihood assumption
from above, the former conclusion is the more likely. Now suppose you receive
the message 101 from me. Which is more likely: that | sent 000 and two bits
were flipped, or that | sent 111 and the middle bit was flipped? Again, the
Jatter is the more likely

That is :

e If you receive 000 (weight 0), then you decode to 0, and you assume there
Were no errors in transmission.

e If you receive 100, 010, or 001 (weight 1), then you decode to 0, and you -
believe there was a single bit error in transmission.

e I[f you receive 110, 101, or 011 (weight 2), then you decode to 1, and you
.believe there was a single bit error in transmission

e If you receive 111 (weight 3), then you decode to 1, and you assume there
.WEre no errors in transmission
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In the following figure | mark codewords with an open circle. Maximum-
likelihood decoding involves finding the codeword which is nearest to a given

:received word

000 100, 010,001 110,101,011 111
w=10 w=1 w=2 w=23
o ) [
& : : 5

Figure ( 1.1) : Hamming distance F3

And Hamming weight F3

For this 3-bit repetition code, you can correctly detect any one-bit error. If a
triple bit error occurs, you won’t know it; if a double-bit error occurs, it will
look like a single-bit error instead. In these latter two cases, you would have
made a

decoding error.

Now suppose we use a four-bit repetition code. | encode 0 as 0000 and 1 as
1111. If you receive a vector of weight O or 1, you decode to O; if you receive a
vector of weight 3 or 4, then you decode to 1. However, if you receive a vector
with two zero bits and two one bits, then you know something is wrong (I can
be trusted to only have sent 0000 or 1111, neither of which you got), but it's a
coin toss whether two bits got set by error, or two bits got cleared by error :

1000, 0100 1100, 1010, 1001 1110,1101

0010, 0001 0110,0101,0011 1011,0111 Hil

T-U=l u"=2 u|=3 'U.’=4

Figure ( 1.2) : Hamming distance [F5

And Hamming weight F3

For this 4-bit repetition code, you can reliably correct any 1-bit error,
.but you can only detect a 2-bit error

More generally, we see intuitively that if the minimum distance d of a
code C is odd, then C can detect and correct up to (d - 1)/2 errors per
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block. If d is even, then C can correct up to d/2 - 1 errors per block,
and can detect up to d/2 errors per block.

Thus, when an error-control system is being designed, the error
statistics of the transmission medium must be known so that the
minimum distance can be made high enough that the chance of d/2 or
more errors occurring in a block is vanishingly small. (Shannon's
theorem guarantees the existence of such codes.) Any fixed code may
be defeated by worse-than-expected noise: either a system must be
designed to handle worst-case noise, or it must be parameterized such
that parameters may be adaptively adjusted at run time to match

.changing channel conditions

1.6 The even-weight parity check codes

Let n=k+1. Embed F¥ into F% by sending

(ao, ay, .,ar) to (ag, ay, ..., ag, apt...+ay)

where the sum is taken mod 2. For example, with k = 4, 1110 maps to
11101. By construction, every codeword has even weight. The extra bit
may be thought of as a parity bit: It is 0 when the input message word
has an even number of 1 bits, and 1 when the input message word has
an odd number of 1 bits. (Of course, we could define an odd-weight
parity-check code as well. Since it would lack the zero vector, though,
it would be not be a subspace of F3.) Thus, these are called the even-
weight parity check codes.

Since F¥ consists of all k-tuples, including those with 1 in a single
position and zeroes elsewhere, the code contains some (k+1)-tuples of
weight 2. Since all

codewords have even weight, this means that these parity-check codes
have minimum distance 2. From the above discussion, this means

they can detect single-bit errors, but can’t correct any errors at all. These are
useful in the case when the probability of a single bit error is quite small but
non-zero, and the probability of a double bit error is vanishingly small. They
.enable the receiver to flag a block as bad, and request the sender to retransmit it
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As with the repetition codes, these form a family of codes: the n-bit even-weight
parity-check codes, embedding F% 1 into F%. Since q = 2, the difference of two
even-weight vectors is another even-weight vector. Thus these are linear codes.

1.7 A graphical perspective

Here is what the 3-bit repetition and parity-check codes look like, respectively,
inside T3 :

Figure (1.3) : Graphical perspective inside [F3

On the left, F, could have been sent to any edge, e.g. 000 and 001, but the two
codewords would have distance 1 between them; as shown, they have distance
3. Likewise, on the right, IF% could have been sent to a face of the cube, with
minimum distance 1; as shown, the codewords are spread out over the cube, as
far apart from one another as possible, with minimum distance 2. These are
clearly the highest-distance 1-dimensional and 2-dimensional subspaces,
respectively, of [F5. Here we have q=2, =3 and k =1 or 2. For higher n, k
and g, though, it’s not immediately obvious how to spread out codewords in this
.maximum-distance manner

In general, the encoding problem consists in large part of finding a way of
constructing such embeddings such that all codewords are as far apart from one
another as possible. This problem clearly is combinatorial in nature. However, in
recent years various approaches have happened to prove fruitful, including finite
(Jgeometry (JAK]) and algebraic geometry  Pre2]).
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1.8 Rate, relative minimum distance, and asymptotic

The repetition codes have good error-correcting ability. However, the drawback
Is that most of the transmitted data is redundant. For the 5-bit repetition codes,
only one of every 5 bits is actual data. The parity-check codes, on the other
hand, add just a single redundant bit, but tolerate fewer errors.

Definition (1.8.1) . The rate of a code is the ratio R = k/n.

The repetition codes have rate R = 1/n. As n increases, R approaches zero. The
.parity-check codes have rate R = (n — 1)/n, which approaches 1 as n increases

Definition (1.8.2 ) . The relative minimum distance of a code is the ratio
o =dn.

The repetition codes have relative minimum distance & =n/n =1. The parity-
check codes have relative minimum distance 2/n, which approaches 0 as n
.Increases

Of course, R and 6 are both confined to the unit interval. We say that
asymptotically (as n gets big) the repetition-code family has R=0 and 6 = 1;
asymptotically the parity-check family has R = 1 and & = 0. For large n, the
repetition codes carry vanishingly little actual data; their overhead is too large.
For large n, the parity-check codes detect vanishingly few errors per block; their
overhead is too small.

Definition(1.8.3) . A good code (really, a good family of codes) is one
whose asymptotic rate and asymptotic relative minimum distance are both
bounded away from zero.

Clearly, the repetition and parity-check codes are not good. It can be shown that
good codes exist; see [MS] for examples.
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1.9 Code parameters; upper and lower bounds

A linear code is parameterized by the four integers n, k, d and g, or equivalently
by the four rational numbers n, R, & and g. Sometimes one says that C is an
[n, k, d] code, or perhaps an [n, k, d] q code. For example, the 5-bit binary
repetition code isa [5,1,5], code. (Similarly, we might write an asymptotic
parameterization of a family of codes as [R, 6] or [ R, 5] )

We encode by embedding [F’; into [Fg. Not any embedding will do: as we saw in

section 2.7, the canonical injection which appends n - k zeroes is an
embedding, but it has minimum distance 1. We want to find an embedding
which keeps the vectors as far apart from one another as possible, maximizing
ds, in order to maximize the code’s error-control ability. Or, given a fixed
minimum distance, we would like to minimize n or maximize K, to keep the
code’s rate high. Ideally we would like the rate and the relative minimum
distance to both be high, but there are results (see [MS], [PW], [Wal]) which
show that there are upper bounds on the asymptotic rate and relative minimum
.distance

Both R and 6 are in the unit interval, so we may think of a parameter space
which looks like the unit square :

Parity-check codes Unattainable ideal
Asymptotic Singleton upper bound

\ Good codes exist
\ \ Asymptotic Plotkin upper bound

\ Repetition codes
é

Note that there are particular codes with parameters in various places on this
square. The zero- appending code, given by the map from [F, to Fg which

appends n + 1 zeroes, has R =1/n and 6= 1/n. Asymptotically, both are zero.
Also, the identity code with 7=k =1 has R=1 and 6 =1 . However, this

.has no error-control ability at all

The Singleton bound states that for all codes, & < n — k + 1. Thus, for any
code with 2>1,the R=1, 6 =1 corner is unattainable. Asympotically, the

S
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Singleton bound shows that R + 6 < 1. This means that the asymptotic (R, 9)
of a family of codes must be below the main diagonal. Clearly, this applies to
even the identity codes, for which R =1 but 6 — 0. The Plotkin bound shows
that the asymptotic (R, 0) must be below the lower diagonal as well, where the
interceptis 1—1/q. See [Wal] for a lucid discussion of these and other
bounds.

The Singleton and Plotkin bounds provide upper limits on the best code
families: no codes can be asymptotically better. There are also lower bounds
which specify how good the best codes can be, but don’t constrain how bad the
worst codes can be (for example, the zero-appending code mentioned above).
One proves a lower bound, showing that there exist codes with (R, d) above
some curve in R, & space; the problem of actually producing such codes is

.another problem entirely. Both of these issues are topics of research
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2.1 Encoding

2.1.1 The generator matrix

Up to now we haven't really put much linear algebra to work. To facilitate
analysis, we now require not only that we have linear block codes mapping
injectively from Ff into Fy, but furthermore that the injective mapping is a
vector-space homomorphism, i.e. a linear transformation. There are many
advantages to using a linear transformation, not the least of which is that instead
of having to remember g® images for all the message words, we need to
remember only the images of k basis vectors.

Such a linear transformation exists for any linear code. For example, {000,
100,010, 110} is a subspace of F3 , but | can send F3 into it by 00 — 110,
01— 100, 10— 000, 11— 010. This is a 1-1 map but it isn't linear since it
doesn't send zero to zero. As long as | don't insist on which elements of Fj

map to which elements of C, though, | can produce a linear map: since IF§ and C
are vector spaces of the same dimensions over the same field, an isomorphism
exists. To obtain it explicitly if only C is given, form a tall matrix the rows of
which are all the vectors of C, then row-reduce and discard zero rows. The result
Is a basis for C. Then, send the ith standard basis vector in IF{,‘ to the ith basis

vector of C.

However it is obtained, we write a generator matrix

G: [Fg —>IFZIL

where C is the image of G in [Fz. For convenience later on (although it seems

quite strange at the moment), we write G as a k x n matrix: to encode the
message word m, we write mG rather than Gm. (If this seems awkward, you
may wish to temporarily think in terms of an ~ n X k generator matrix, then
transpose it when you're done. Also, from the context it is clear whether I'm
treating m as a row or column vector.)

What is a generator matrix for the repetition codes? Clearly, we write (n =5
here)

G=[11111]

For the parity-check code, we want (with n = 5)

S
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[a,b,c,d, a+b+c+d]=[a,b,c d]

So

Of course, when &4 is the ith standard basis vector for FX , €4 G is the 4th row
of G. Unless k =1 and g = 2, there will be more than one basis vector, hence
more than one permutation of the basis, along with various linear combinations
of the basis vectors. Thus the generator matrix is generally not unique. Two
different generator matrices are equivalent, though, if they generate the same
subspace C of IFy. To test for equivalence of two generator matrices, test for
equality of their row-echelon forms.

(Computational note: finite fields have the property that computer arithmetic is
exact. Thus, there is no roundoff error, and algorithms such as row reduction
may be implemented easily for finite fields, with naive pivoting.)

2.1.2 Systematic codes

We've been saying that a linear code C is a k-dimensional subspace of 7.
From this definition, G could take any form as long as it has rank k. However,
our two examples so far (repetition and parity-check codes) have an additional
property: the first k bits of each n-bit codeword are identical to the k bits of the
corresponding message word.

Definition (2.1.2.1) . A linear code is systematic if its generator matrix @ is
of the form [Ix|A] for some k x ( n - k) matrix A, where I is the k x k identity
matrix.

Any linear code can be made systematic: just put G in row-echelon form.

S
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2.2 Decoding

2.2.1 The parity-check matrix

If a linear code C has been chosen, we've just seen that encoding is easy: it's just
matrix multiplication. But how do we decode, and moreover, how do we do so
efficiently? This might seem to be a harder problem. In fact, in general it is.
There have been codes which were published before any decoding algorithm
was known. And even for well-known codes, one area of current research is to
develop improved decoding algorithms.

Below, it will be useful to find a so-called parity-check matrix, H, such that C
is precisely the kernel of H. (The terminology originally comes from parity-
check codes, but it is a poor choice of words: all linear codes, not just the parity-
check ones, have a parity-check matrix.) That is, we will want H v to be zero if
and only if v is in C. By the rank-nullity theorem, H will necessarily be (n —K)
x n. Unlike with G, we post-multiply, i.e. we write H v, not v H.

How can such a matrix H be constructed, given G? First, some terminology.

Definition (2.2.1.1) . The dual code of C, written C+ , is the set of vectors in
IF7 which are orthogonal to all vectors of C, using the standard dot product.

(Note that the term dual code here has nothing to do with the term dual space
from linear algebra.) That is,

C+t ={ve F}:U v=0forallUeC}

(The Hamming weight is a vector-space norm, if we define | C | con Fy, to have
value 0 when ¢ =0, 1 otherwise. If we use the standard dot product, then Fy
satisfies all the axioms for an inner product space except for the positive-
definiteness of the dot product. E.g. if F, has characteristic 2, the non-zero
vector (1,1) dotted with itself is 1+1 = 0. Note that the Hamming weight is
computed in Z: it is the number of non-zero coordinates in a vector. However,
the dot product is computed in F,. Thus the Hamming weight and Hamming
distance are positive definite, while the dot product is not. This means that
inner-product-space results such as Fy = C @ C* do not apply: the intersection
of a subspace and its perp can contain more than just the zero vector. In fact, a
code can be self dual, i.e. C = C+ For example, {00, 11} is a self-dual subspace
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of IF% . From the result immediately below, a self-dual code must have even n,
and k must be n /2.)

We already have G; it remains to actually compute a matrix for H. Suppose that
our problem were reversed, i.e. if we had H, how would we compute G? That's
easy: since the kernel of H is the image of G (which is C) we could just compute
the kernel basis of H, which is a standard elementary linear algebra problem. G
would have rows equal to the elements of that basis.

Now, | claim that, fortuitously, the generator matrix of C+ is H and the parity-
check matrix of C* is G. Thatis, Ct's G and H are swapped from C's. Also note
that (C1)* is just C. We are given G, which is C's generator matrix as well as
C*'s parity-check matrix. The kernel basis of G is the generator matrix for C+
which is also the parity-check matrix for C. So this trick means that not only can
we get a G by computing a kernel basis of an H, but vice versa as well.

It remains to prove that C+ has generator matrix H and parity-check matrix G.
Remember the convention that a generator matrix acts by post-multiplication
and that a parity-check matrix acts by pre-multiplication. So in this role, H maps
F2~* to F} by sending Z to ZH, and G maps F to F¥ by sending v to Gv. To

avoid confusion (only for the duration of this proof) we will write G for G: [F’g —
IF7 acting by post-multiplication and G. for G: Fj — ]F’g acting by pre-
multiplication. Likewise, we will write H. for H: [Fj —>]Fg"‘ and - H for H:
IFZ"‘—> [Fg . Plain G and H refer to the matrices without respect to a linear
transformation.

We want the following short exact sequences:

kG n
0—>]Fq—r ]Fq

k G- n
0—FkE& o

with im(G)=C=ker(H) and im(HH) = C* = ker(G). The short exactness means
that .G and H are 1-1, while H. and G: are onto. Thus, it suffices to show: (1)
im(H) =C*; (2) His1-1, (3) ker(G) = C*, and (4) G is onto. Now, we already
have that the matrix G has rank k and H has rank n — k. Since row rank equals
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column rank, (4) will follow from (3) by the rank-nullity theorem. Likewise, (2)
will follow from (1) since C+ has dimension n — k.

To prove (3), first letv € CL . The rows of G form a basis for C; let g; be
the ith row of G, for i=1, ..., k, where each g;, is a vector of length n (since it is
in IF7). Also let v = (vy,...,1,,). The matrix-times-vector multiplication G. v

consists of dot products of v with the rows of G:

G-v

Since each g; ; is in C and since v is in C*, all the dot products are zero and so
G. v=0.

Conversely, let v € ker(G.). Then G » v = 0. Again, this product consists of dot
products of rows of G with v, so g;» v =0 for all g;'s. Let c be an arbitrary
element of C. Since the g;'s are a basis for C,c = Y¥_, ¢; g; for some ¢; g;
in.IF, Then

veC=7v Zl 16Ci 9i

l 1G(w.g;) =
Therefore v € C*

To prove that im(H) = C* notice in general that when a matrix X acts on a
standard basis by Xei, the image of that basis consists of the columns of X.
Likewise, when X acts on a standard basis by ¢iX, the image of that basis
consists of the rows of X. It will suffice to show that the rows

of H are a basis for C+. Remember that we set up H to check the elements of C,
and since G has rows forming a basis for C, necessarily

HC* =0
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This means that the rows of H are orthogonal to the rows of G, which shows
that the rows of H are in C-. Since we know that H has rank n —k, the image of
the standard basis for IFZ"‘ under H is linearly independent, and im(H) must be
all of Ch.

Example(2.2.1.1) . Let's carry out this computation for the two families of
codes we've seen so far. The 5-bit repetition code has generator matrix

G=[11111]
We then compute the kernel basis (in row-echelon form)

0
0
1
0

Intuitively, this makes sense: recalling that we are working mod 2, this means
that H v is 0 only when v has all coordinates the same. The two possible cases
are 00000 and 11111, which are precisely the codewords of the 5-bit repetition
codes.

Next, the 5-bit parity-check code has generator matrix

0 0 1
G =

0 1 0 1
0 0 1 1
0 0 O 1

We then compute
H=[11111]

Intuitively, this also makes sense: pre-multiplying v by H just adds up the bits of
v mod 2. The result will be zero precisely when v has even parity, which is the
case iff visin C.

As an added bonus, since the first G is the same as the second H, and vice versa,
we now see that the repetition and parity-check families are duals of one
another.
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2.2.2 Computing H for systematic codes

The parity-check matrix is particularly easy to compute when C is systematic,
I.e. when G is in row-echelon form. For example, take k = 3, n = 6 and suppose

1 0 0 a4 a5 a4
G = [l |A] =10 1 0 az az az
0 0 1 azy azs aszg

Writing Gtm rather than mG to save horizontal space on the paper, a message
word (m,,m, m3) is encoded as

r 1 0 0 7 I my
0 1 0 m,
0 0 1 ms

Q14 Q4 Q34

Q15 Qzs 04zs A1sMy +aysm, +azsms

Q16 Q26 A36- L Q1M T Azem, +a36M3 .

We want to write an H such that H times this codeword is zero, but that's easy:

mq

ms

mgy
a14 My +0A,M; +az4Mm3
A15My +azsm; +azsm3
L a1gMy +ayemy +azems .

_a14 _a24 _a34 1 0 0
_a15 _a25 _a35 0 1 0
_a16 _a26 _a36 1 0 1

We can generalize this example to see that if

G=[I, | A]

H=[-AT|I,_]

Thus, systematic G and H may be computed from one another by inspection.
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2.2.3 Brute-force decoding

If I send you an encoded message, with errors in transit, how do you decode to
find out what I really meant to say? If the message space is small, i.e.if gand n
are small, then you could simply make a list of all possible elements of F} , with

the nearest-neighbor codeword precomputed by hand for each. This is what we
did in section 2.5 However this is infeasible for larger codes, which might have
billions of codewords or more: it requires having a table of size gq".

2.2.4 The coat of arms

A useful diagram from [MS], attributed therein to David Slepian, is the
following:

Sender Encoder Channel Decoder Recipient

m=m;...m, U=U;...Uy $ v=u+e 6= ¢;...6

n

Received vector Estimate of error
Message codeword

e=€...e4 m =1y My

Estimate of message
Error vector

Since we are assuming our channel only inserts random errors, without changing
the block length by loss of synchronization, we can think of the error vector as
being added to the codeword during transmission. Since we embed our ]F’(‘Jc into
[F7 using a linear transformation (rather than any old injective map), and since
Hu is zero for all codewords u, we have the following key fact:

v=u+te

Hv=H(u+e)=Hu+He=He
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2.2.5 Standard-array decoding

Definition( 2.2.5.1) . The quantity Hv =He from the previous section is
called the syndrome of v. When we form the quotient space FF7/C, from
elementary algebra we know that the cosets of C partition [Fy. Since C is
precisely the kernel of H, if two received vectors are in the same coset,

u~v
u—-vecC
Hu-v)=0
Hu = Hv
Thus, two vectors are in the same coset iff they share the same syndrome.

Now, u was transmitted; v = u + e was received, but the receiver can only guess
at what e is. Since v and e have the same syndrome, the true error vector e is
somewhere in v's coset. Furthermore, since we are using the maximum
likelihood assumption mentioned in section 2.1, the most likely error vector & is
the smallest-weight vector in v's coset. (A decoding error means e # €.)

So, the standard-array decoding algorithm has two stages: the first stage is
some precomputation before any data is received; the second is done as each
block is received.

Precomputation stage:

e Write down the elements of ]F’; and encode each element. This is a two-by-

g table, pairing up message words and codewords. Sort this by codeword
for easy lookup later.

e Write down the quotient space IF/C. This requires making, for the moment,
a matrix of all g™ elements of F7. (Note that this algorithm is also not OK

for large codes, although the resulting tables will be smaller than for the
brute-force method.)

For each coset, search for the smallest-weight element in the coset. This is
called the coset leader. Compute and remember the syndrome of the coset
leader; forget about the rest of the coset.
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e Make a list pairing up syndromes and coset leaders. Thisisa  two-by-
g™k table. Sort this by syndrome for easy lookup later.

Decoding stage:

* Given a received vector v, compute its syndrome s.

* Look up this syndrome in the precomputed syndrome / leader table.
* Find the most likely error vector € corresponding to s.

* Compute G1=v - &.

* Look up O in the precomputed message/codeword table to obtain m.
.This is our best guess of what the transmitter sent

Note that both table lookups are done on sorted data. This means we don't have
to sequentially scan either table at run time. The syndromes are all of F*~*, so
we can use base-q arithmetic to go directly to the desired element of the
syndrome /leader table. For the message/codeword table, we can use a binary
search, with a number of lookups roughly log2 of the table size.

(Note that the message/codeword table isn't necessary. Once we have a
codeword 0, we can solve the linear system G = mG for m using row reduction.
This reduces table space, at the expense of making the decoding stage use more
computation.)

Example( 2.2.5.1). Let's compute the standard array for the 3-bit repetition
code. We have

1 0 1
0 1 1

The message words are 0 and 1. Their images under G are 000 and 111. So, the
message/codeword table is as follows:

G:[111],H:[

m u

0 000
1 111

The possible received vectors (all of [F) are:
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000,111

{000, 111},
{010, 101},
{100, 011},
(001, 110}

The coset leaders are the minimum-weight vectors of each coset. These are as
follows, with corresponding syndromes:
é s
000 00
010 01

100 10
001 11

Here is an example of using the standard array to decode a received vector:
* Receive v = 011.

* Compute s = Hv =10

* 10 in binary is 2 in decimal, so go to row 2 (with row indices starting at 0)
of the syn-drome/leader table.

* At that spot, find & = 100.
* Compute 0=v-£€é=011-100=111.

* Match codeword 111 with message word 1 in the message/codeword table to
obtain m = 1.
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Table (1) : @ and @ in FF3

F;={0,1}

(F;.©,0)
éD 0 1 Hamming weight | Hamming distance
1 1 1 1 1
® 0 1 Hamming weight | Hamming distance
0 0 0 0 0
1 1 1 1 1




Table (2) : ® and @ in [F3

F2={00,01, 10,11}

(F3,0,0)

&) 00 01 10 11 | Hamming weight | Hamming distance
00 00 01 10 11 0 0

01 01 00 11 10 1 1

10 10 11 00 01 1 1

11 11 10 01 00 2 2

® 00 01 10 11 Hamming weight | Hamming distance
00 00 00 00 00 0 0

01 00 01 00 01 1 1

10 00 00 10 10 1 1

11 00 01 10 11 2 2




Table (3) : @ and ®@ in F3

IF3 = {000, 001, 010, 011, 100, 101, 110,111}

(F3,0,0)

&)

000

001

010

011

100

101

110

111

Hamming Weight

Hamming distance

000

000

001

010

011

100

101

110

111

0

001

001

000

011

010

101

100

111

110

010

010

011

000

001

110

111

100

101

011

011

010

001

000

111

110

101

100

100

100

101

110

111

000

001

010

011

101

101

100

111

110

001

000

011

010

110

110

111

100

101

010

011

000

001

111

111

110

101

100

011

010

001

000

WININIFER]INFR]| -

WININNIEFER]INIFR] -

000

001

010

011

100

101

110

111

Hamming Weight

Hamming distance

000

000

000

000

000

000

000

000

000

001

000

001

000

001

000

001

000

001

010

000

000

010

010

000

000

010

010

011

000

001

010

011

000

100

010

011

100

000

000

000

000

100

100

100

100

101

000

001

000

001

100

101

100

101

110

000

000

010

010

100

100

110

110

111

000

001

010

011

100

101

110

111




IF5 = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111}

Table (4) : ® and @ in F3

(F3,®,0)

@ 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 ) 4w | H.D
0000| 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111, 1000| 1001 | 1010 | 1011 1100| 1101| 1110 | 1111 0 0
0001} o001 | 0000 | 0011 | 0010 | 0101 | 0100 | 0111 | 0110 | 1001 | 1000 | 1011 | 1010 | 1101 | 1100 | 1111 | 1110 1 1
0010, ooi0| 0011 | 0000 | OOO1 | 0110 | 0101 | 0100 | 0101 | 1010 | 1011 | 1000 | 1001 | 1110 | 1111 | 1100 | 1101 1 1
0011, ooi1| 0010 | 0001 | 0OOO | 0111 | 0110 | 0101 | 0100 | 1011 | 1010 | 1001 | 1000 | 1111 | 1110 | 1101 | 1100 2 2
0100, o100 | 0101 | 0110 | 0111 | 0000 | 0001 | 0010 | O0O11 | 1100 | 1001 | 1110 | 1111 | 1000 | 1001 | 1010 | 1011 1 1
0101, o101 | 0100 | 0111 | 0110 | 0001 | 0000 | 0011 | 0010 | 1101 | 1110 | 1111 | 1110 | 1001 | 1000 | 1011 | 1010 2 2
0110, o110 0111 | 0100 | 0101 | 0010 | 0011 | 0000 | OOO1 | 1110 | 1111 | 1100 | 1101 | 1010 | 1011 | 1000 | 1001 2 2
0111, o111} 0110 | 0101 | 0100 | 0011 | 0010 | 0001 | 00OO | 1111 | 1110 | 1101 | 1100 | 1011 | 1010 | 1001 | 1000 3 3
1000| 1000 | 1001 | 1010 | 1100 | 1100 | 1101 | 1110 | 1111 | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 1 1
1001| 1001 | 1000 | 1011 | 1010 | 1101 | 1100 | 1111 | 1110 | 0001 | 0000 | 0011 | 0010 | 0101 | 0100 | 0111 | 0110 2 2
1010| 1010 | 1011 | 1000 | 1001 | 1110 | 1111 | 1100 | 1101 | 0010 | 0011 | 0000 | 0001 | 0110 | 0111 | 0100 | 0101 2 2
1011 1011 | 1010 | 1001 | 1000 | 1111 | 1110 | 1101 | 1100 | 0011 | 0010 | 0001 | 0000 | 0111 | 0110 | 0101 | 0100 3 3
1100| 1100} 1101 | 1110 | 1111 | 1000 | 1001 | 1010 | 1011 | 0100 | 0101 | 0110 | 0111 | 0000 | 0001 | 0010 | 0011 2 2
1101 1101 | 1100 | 1111 | 1110 | 1001 | 1010 | 1011 | 1010 | 0101 | 0100 | 0111 | 0110 | 0001 | 0OOO | 0011 | 0010 3 3
1110| 1110 1111 | 1100 | 1101 | 1010 | 1011 | 1000 | 1001 | 0110 | 0111 | 0100 | 0101 | 0010 | OO11 | OOOO | 0001 3 3
1111} 1111} 1110 | 1101 | 1100 | 1011 | 1010 | 1001 | 1000 | 0111 | 0110 | 0101 | 0100 | 0011 | 0010 | 0001 | OOOO 4 4




Table (4): ® and @ in F;

IF5 = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111}

(F3,®,0)

O] 0000 | 0001 | 0010 | 0011 | O100 | O101 | 0110 | O111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 | HW | H.D
0000 0000 | 0000 | 0000 | OOOO | OOOO | OOOO | OOOO | OOOO | OOOO | OOOO | OOOO | OOOO | OOOO | OOOO | OOOO | 0000 0 0
0001 0000 | 0001 | 0000 | OOO1 | OOOO | OOO1 | OOOO | OOO1 | OOOO | OOO1 | OOOO | OOO1 | OOOO | 0001 | O0OO | 0001 1 1
0010 0000 | 0000 | 0010 | 0010 | OOOO | OOOO | 0010 | OO10 | OOOO | OOOO | 0010 | 0010 | OOOO | OOOO | 0010 | 0010 1 1
0011 0000 | 0001 | 0010 | OO11 | OOOO | OOO1 | 0010 | OO11 | OOOO | OOO1 | OO10 | OO11 | OOOO | 0001 | 0010 | OO11 2 2
0100 0000 | 0000 | 0000 | OOOO | 0100 | 0100 | 0100 | 0100 | OOOO | OOOO | OOCOO | OOOO | 0100 | 0100 | 0100 | 0100 1 1
0101 0000 | 0001 | 0000 | OOO1 | 0100 | 0101 | 0100 | 0101 | OOOCO | OOO1 | OOCOO | OOO1 | O100 | 0101 | 0100 | O101 2 2
0110 0000 | 0000 | 0010 | 0010 | 0100 | 0100 | 0110 | O110 | OOOCO | OOOO | OO10 | 0010 | O100 | 0100 | 0110 | O110 2 2
0111 0000 | 0001 | 0010 | OO11 | 0100 | 0101 | 0110 | O111 | OOOCO | OOO1 | OO10 | OO11 | O100 | 0101 | 0110 | O111 3 3
1000 0000 | 0000 | 0000 | OOOO | OOOO | OOOO | OOOO | OOOO | 1000 | 1000 | 1000 | 1000 | 0100 | 1000 | 1000 | 1000 1 1
1001 0000 | 0001 | 0000 | OOO1 | OOOO | 0001 | OOOO | OOO1 | 1000 | 1001 | 1000 | 1001 | 0100 | 1001 | 1000 | 1001 2 2
1010 0000 | 0000 | 0010 | 0010 | OOOO | OOOO | 0010 | OO10 | 1000 | 1000 | 1010 | 1010 | O100 | 1001 | 1010 | 1010 2 2
1011 0000 | 0001 | 0010 | OO11 | OOOO | OOO1 | OO10 | OO11 | 1000 | 1001 | 1010 | 1011 | 0100 | 1001 | 1010 | 1011 3 3
1100 0000 | 0000 | 0000 | OOOO | 0100 | 0100 | 0100 | 0100 | 1000 | 1000 | 1000 | 1000 | 1100 | 1100 | 1100 | 1100 2 2
1101 0000 | 0001 | 0000 | OOO1 | 0100 | 0101 | O100 | 0101 | 1000 | 1001 | 1000 | 1001 | 1100 | 1101 | 1100 | 1101 3 3
1110 0000 | 0000 | 0010 | 0010 | 0100 | 0100 | 0110 | 0110 | 1000 | 1000 | 1010 | 1010 | 1100 | 1100 | 1110 | 1110 3 3
1111 0000 | 0001 | 0010 | OO11 | 0100 | 0101 | 0110 | O111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 4 4




Table (5) : Hamming distance and Hamming weight in F3

X=(%, X1, Xp,.....)
Y=(Yo, V1, Yo,eeer)
XOY=(XV,® X1yY1 D X1, ..)=number (0 or 1)

XOY=(x.®B y,, x1@y1, x2®D y3,...) = vector

(Fz,®,0)
1 —
F; ={0, 1}
(<5 0 1 Hamming Weight | Hamming distance
(0,0) (0,1) 0 0
0 1 Hamming Weight | Hamming distance
0 0 0 0
0 1 1 1




Table (6) : Hamming distance and Hamming weight in [F3

F2={00, 01, 10,11}

(F5,®,0)
o) 00 01 10 11 Hamming weight | Hamming distance
00 | (00) | (0,1) | (1,0) | (1,1) 0 0
01 | (01) | (00) | (1,1) | (1,0) 1 1
10 | (1,0) | (1L,1) | (0,0) | (02) 1 1
11 | (1) | (1,0 | (01) | (0,0) 2 %
(F3,0)
0 00 01 10 11 Hamming weight | Hamming distance
00 0 0 0 0 0 0
01 0 1 0 1 1 1
10 0 0 1 1 1 1
11 0 1 1 0 2 2




Table (7) : Hamming distance and Hamming weight in [F>

FF5 = {000, 001, 010, 011, 100, 101, 110,111}

(F3,0,0)
@ | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 | Hamming | Hamming
Weight | distance
000 | (0,0,0) | (0,0,1) | (0,1,0) | (0,1,1) | (1,0,0) | (1,0,1) | (1,1,0) | (1,1,1) 0 0
001 | (0,0,2) | (0,0,0) | (0,1,2) ] (0,2,0) | (1,0,2) | (1,0,0) | (1,1,2) | (1,1,0) 1 1
010 (0,1,0) | (0,1,2) | (0,0,0) | (0,0,1) | (1,1,0) | (1,1,2) | (2,0,0) | (1,0,2) 1 1
011 (0,1,1) | (0,1,0) | (0,0,1) | (0,0,0) | (1,1,2) | (1,1,0) | (1,0,2) | (1,0,0) 2 2
100 (1,0,0) | (1,0,2) | (1,12,0) | (2,1,2) | (0,0,0) | (0,0,1) | (0,1,0) | (0,1,2) 1 1
101 (1,0,1) | (1,0,0) | (1,1,1) | (1,1,0) | (0,0,2) | (0,0,0) | (0,1,1) | (0,1,0) 2 2
110 (1,1,0) | (1,1,2) | (1,0,0) | (1,0,1) | (0,1,0) | (0,1,1) | (0,0,0) | (0,0,1) 2 2
111 (1,1,1) | (1,1,0) | (1,0,2) | (1,0,0) | (0,1,2) | (0,1,0) | (0,0,1) | (0,0,0) 3 3
© | 000 | 001|010 | 011 | 100 | 101 | 110 | 111 | Hamming |  Hamming
Weight distance
oo0o, 0 | 0O]J O] O] O] O0O]| O] O 0 0
o001, o |10 ] 10| 1] o021 1 1
010 o | 0o | 1] 1] 01] 01 1 1 1
011, o | 1 |10 | 0] 1] 11|00 2 2
100 | O ol of o] 1] 1] 1] 1 1 1
101/ 0o | 1 /o | 1| 1]0]1]0 2 2
170/ o | o | 2 /1 | 1| 1] 0| O 2 2
1112/ o | 1 |12 J o 1 |0 | O | 1 3 3




Table (8) : Hamming distance and Hamming weight in [F3

[F3 = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111}

(F3,®,0)

¢p | 0000] 0001|0010 0011 ] 0700 0101 | 0110] 0111 1000] 1001 [f0I0 [ 1011] 1100 1101] 1T10[ 11IT[ y w 1.0
0000 0,0,0,0{0,0,0,12}0,0,1,0{0,0,1,2}0,1,0,0/0,1,0,1{0,1,1,0}0,1,1,1}1,0,0,0{1,0,0,1}1,0,1,0/1,0,1,1}1,1,0,042,1,0,1}1,1,1,0{2,1,1,2} O 0
0001 |0,0,0,1}0,0,0,0{0,0,1,1}0,0,1,0|0,1,0,1{0,1,0,0|0,1,1,1}0,1,1,01,0,0,1}1,0,0,0{1,0,1,1}1,0,1,0{1,1,0,0/1,1,0,0/1,1,1,1}1,1,1,0f 1 1
0010/0,0,1,0}0,0,1,1}0,0,0,0{0,0,0,1}0,1,1,0/0,1,1,1}0,1,0,0{0,1,0,1/1,0,1,0{1,0,1,1}1,0,0,0|1,0,0,1}1,1,1,041,1,1,1}1,1,0,0{1,1,0,1 1 1
0011/0,0,1,1}0,0,1,040,0,0,1}0,0,0,0|0,1,1,12}0,1,1,0{0,1,0,1}0,1,0,0/1,0,1,1}1,0,1,0{1,0,0,1/1,0,0,0{1,1,1,1}2,1,1,0/1,1,0,11,1,0,0f 2 2
0100/0,1,0,0|0,1,0,12}0,1,1,0{0,1,1,1}0,0,0,040,0,0,1{0,0,1,0}0,0,1,1}1,1,0,0|1,1,0,1§1,1,1,0{1,1,1,1}1,0,0,0}1,0,0,1}1,0,1,0{1,0,1,1 1 1
01010,1,0,1}0,1,0,0/0,1,1,12}0,1,1,0{0,0,0,1}0,0,0,0/0,0,1,2}0,0,1,0{1,1,0,1}1,1,0,2§2,1,1,1}1,1,1,0{1,0,0,1}1,0,0,0{1,0,1,1{1,0,1,0f 2 2
0110/o0,1,1,00,12,1,1/0,1,0,0|0,1,0,1}0,0,1,0{0,0,1,1}0,0,0,0{0,0,0,1}1,1,1,0/1,1,1,1§2,1,0,0{1,1,0,1}1,0,1,01,0,0,1}1,0,0,0{1,0,0,1} 2 2
o111/0,1,1,1f0,1,1,0/0,1,0,12}0,1,0,0|0,0,1,1}0,0,1,0/0,0,0,2}0,0,0,01,1,2,1}1,2,1,02,1,0,1}1,1,0,0{1,0,1,1/1,0,1,041,0,0,11,0,0,0] 3 3
1000 |1.0,0,0{1,0,0,1§1,0,1,0/1,0,1,142,1,0,0/2,1,0,141,1,1,041,1,1,140,0,0,040,0,0,140,0,1,040,0,1,1}0,1,0,040,1,0,1}0,1,1,0{0,1,,1} 1 1
1001 |1.0,0,1§1,0,0,01,0,1,11,0,1,042,1,0,141,1,0,042,1,1,141,1,1,040,0,0,140,0,0,0{0,0,1,1}0,0,1,0}0,1,0,1}0,1,0,0{0,1,1,1}0,1,1,0f 2 2
10101,0,1,0|1,0,2,1}1,0,0,0/2,0,0,1}1,1,1,042,1,1,141,1,0,0{1,1,0,1}0,0,1,0/0,0,1,1}0,0,0,0}0,0,0,1/0,1,1,0{0,1,1,1{0,1,0,0/0,1,0,1| 2 2
1011}1,0,1,1)2,0,1,02,0,0,2}1,0,0,0{1,2,1,142,1,1,0{1,1,0,1}1,1,0,0/0,0,1,1}0,0,1,0}0,0,0,1}0,1,0,0/0,1,1,1}0,1,1,0{0,1,0,1|0,1,0,0f 3 3
1100{1,12,0,042,1,0,22,1,2,0y1,1,1,1}1,0,0,042,0,0,1}1,0,1,0{1,0,1,1}0,1,0,0|0,1,0,1{0,1,1,0/0,2,1,1}0,0,0,0{0,0,0,1}0,0,1,0/0,0,1,1| 2 2
1101|1,1,0,1y2,1,0,042,1,2,241,1,1,0{1,0,0,141,0,0,01,0,1,1}1,0,1,0/0,12,0,12}0,1,0,0|0,1,1,1}0,1,1,0/0,0,0,1}0,0,0,0{0,0,1,1{0,0,1,0f 3 3
1110f1,12,1,042,2,1,22,1,0,041,1,0,1}1,0,1,02,0,1,2§1,0,0,01,0,0,1}0,12,1,040,1,1,2}0,1,0,0{0,1,0,1}0,0,1,0{0,0,1,1|0,0,0,0{0,0,0,1} 3 3
1111 (1.11,141,1,2,041,1,0,1)2,12,0,01,0,2,21,0,1,0f1,0,0,1}1,0,0,0{0,1,1,2}0,1,1,0}0,1,0,1}0,1,0,0}0,0,1,1}0,0,1,0{0,0,0,1{0,0,0,0} 4 4




Table (8) : Hamming distance and Hamming weight in [F3

[F; = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111}
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