

 وزارة التعليم العالي والبحث العلمي

 جامعة ديالى

 كلية التربية المقداد

 لرياضياتاقسم

 قسى انشَاضُاث / بحث يقذو انً كهُت انتشبُت انًقذاد

 وهى جزء يٍ يتطهباث َُم شهادة انبكانىسَىس / سَاضُاث

 نطانباٌايقذو يٍ قبم

 كاظى جاسى يها عساف عباس عهىاٌ

 بأششاف

 .د خانذ هادٌو
2022

 تـــشــفـُــش انشَاضــُـــاث

 انًـشـشف اقشاس

 اىَ٘سً٘ ىَششٗع ٕزا اػذاد تاُ اشٖذ

 ----------------- انشَاضــُــاث تشـــفـــُش ------------------

 -------- ماظٌ جاسٌ ٍٖا ٗ ػي٘اُ ػثاط ػساف ----- ىطاىثاُ قثو ٍِ ٗاىَؼذ

 دٌاىى جاٍؼح / اىَقذاد اىرشتٍح ميٍح / اىشٌاضٍاخ قسٌ فً تأششافً ذٌ قذ

 سٌاضٍاخ / اىثناى٘سٌ٘ط شٖادج ٍّو ٍرطيثاخ ٍِ جضء ٕٗ٘

 التوقيع :

 اسم المشرف :

 المرتبة العلمية :

 التاريخ :

 ~I ~

 انكشًَت الاَت

 بسى الله انشحًٍ انشحُى

 ٌَ ٍَ َخَۡشَىۡ هُ جُهىُدُ ٱنهزَِ ُۡ ثاََیَِ تقَۡشَعِشُّ يِ بهِا يه ٰـ تشََ با يُّ ٰـ ٍَ ٱنۡحَذَِثِ كِتَ لَ أحَۡسَ ُ َزَه ﴿ٱللَّه

ِِۚ رَٰ ٰ ًٰ رِكۡشِ ٱللَّه ٍُ جُهىُدُهُىۡ وَقهُىُبهُُىۡ إنَِ ِ نكَِ ⁠سَبههُىۡ ثىُه تهَُِ َهَۡذِی بهِۦِ يٍَ َشََاۤءُِۚ هُذَي ٱللَّه

ٍۡ هَادٍ﴾ ا نهَُۥ يِ ًَ ُ فَ وَيٍَ َضُۡهمِِ ٱللَّه

 (٣٢انزيش) صذق الله انعظُى

 ~II ~

 الاهــــــــــــــــذاء

 إىى ٍِ ٌسؼذ قيثً تيقٍإا

 إىى سٗضح اىذة اىرً ذْثد أصمى الأصٕاس

 اًٍ

 إىى سٍض اىشج٘ىح ٗاىرضذٍح

 إىى ٍِ دفؼًْ إىى اىؼيٌ ٗتٔ اصداد افرخاس

 اتً

 إىى ٍِ ٌٕ اقشب أىً ٍِ سٗدً

 إىى ٍِ شاسمًْ دضِ ألاً ٗتٌٖ اسرَذ ػضذً ٗإصشاسي

 اخ٘ذً

 إىى ٍِ آّسًْ فً دساسرً ٗشاسمًْ ًٍَٕ٘

 ذزماساً ٗذقذٌشاً

 أصذقائٍ

 إىى ٕزٓ اىصشح اىؼيًَ اىفرً ٗاىجثاس

 يٍح اىرشتٍح اىَقذادم

 ~III ~

 شـكش وتقـذَش

ؼ٘د إىى أػ٘اً قضٍْإا فً اىذٍاج اىجاٍؼٍح ٍِ ٗقفٔ ّ ّخط٘ خط٘اذْا الأخٍشج لاتذ ىْا ّٗذِ

 فً سداب اىجاٍؼح

ٍغ أساذزذْا اىنشاً اىزٌِ قذٍ٘ا ىْا اىنثٍش تارىٍِ تزىل جٖ٘دا مثٍشج فً تْاء جٍو اىغذ ىْثؼث

 الأٍح ٍِ جذٌذ

ٌِ دَي٘ا أقذط لاٍرْاُ ٗاىرقذٌش ٗاىَذثح إىى اىزَّضً ّقذً أسَى آٌاخ اىشنش ٗا أُٗقثو

 سساىح فً اىذٍاج

 إىى اىزٌِ ٍٖذٗا ىْا طشٌق اىؼيٌ ٗاىَؼشفح

 أساذزذْا الأفاضو إىى جٍَغ

مِ ػاىَا . فإُ ىٌ ذسرطغ فنِ ٍرؼيَا ، فإُ ىٌ ذسرطغ فأدة اىؼيَاء ، فإُ ىٌ ذسرطغ فلا "

 ذثغضٌٖ"

ىشاػً اىشٌاضٍاخ ٍٗشتٍٖا فً ميٍح اىرشتٍح اىَقذاد صادة اىقية خص تاىشنش ٗاىرقذٌشّٗ

 اىطٍة اىزي ماّد ىٔ قذً سائذج فً طشٌق اىرؼيٌٍ ٗاىؼيٌ،

 حًُذ هادٌخانذ انذكتىس

 اىزي ّق٘ه ىٔ تششك ق٘ه سس٘ه الله صيى الله ػئٍ ٗسيٌ

 ى ٍؼيٌ اىْاط اىخٍش"إُ اىذ٘خ فً اىثذش ، ٗاىطٍش فً اىسَاء ىٍصيُ٘ ػي"

ْا ٌذ اىَساػذج ػيى إذَاً ٕزا اىثذث ٗقذً ىْا اىؼُ٘ ٍٗذ ى ّاٗمزىل ّشنش مو ٍِ ساػذ

 اىلاصٍح لإذَاً ٕزا اىثذثٗصٗدّا تاىَؼيٍ٘اخ

 ~IV ~

 انخلاصت

اىرطثٍقٍح ، ٕٗ٘ ٍصطيخ فً ٕزا اىثذث ذٌ دساسح ادذ اىَفإٌٍ الاساسٍح ٗاىشئٍسٍح فً اىشٌاضٍاخ

 اىرشفٍش .

1اٗ 0دٍث ذٌ ذذٌ٘و ٍجَ٘ػح ٍِ الاػذاد اىذقٍقٍح اىَ٘جثح اىى ّظاً اىثْائً دٍث ٌأخز اىقٌٍ اٍا

إضافح اىى رىل ذٌ اػطاء خصائص ىٖزا اىْظاً ٍِ دٍث ذؼشٌف ػَيٍرً اىجَغ ٗاىضشب ػيى

 . الاػذاد اىثْائٍح

𝔽ٗفً اىخراً ذٌ ذصٌٍَ َّ٘رج

 ٗ 𝔽

 ٗ 𝔽

 ٗ 𝔽

 ~V ~

Page TITLE OF PAGE

I اَِت انقشآَُت

II الاهذاء

III انشكش وانتقذَش

IV انخلاصت

V CONTENTS

1 Introduction

 Chapter one Page

table

4 Fundamental terms and examples 1

4 The binary symmetric channels 1.1

5 Linear codes 1.2

6 The repetition codes 1.3

6 Minimum distance 1.4

7 Error detection and error correction 1.5

 9 The even-weight parity check codes 1.6

10 A graphical perspective 1.7

11 Rae, relative minimum distance, and asymptotic 1.8

12 Code parameters; upper and lower bounds 1.9

Chapter two

15 Encoding 2.1

15 The generator matrix 2.1.1

 16 systematic codes 2.1.2

17 Decoding 2.2

17 The parity-check matrix 2.2.1

21 Computing 𝙃 for systematic codes 2.2.2

22 Brute-force decoding 2.2.3

22 The coat of arms 2.2.4

23 Standard-array decoding 2.2.5

 انتىصُاث 26

27 References

CONTENTS

 ~1 ~

Introduction

A mathematical problem originating in electrical engineering is the recovery of

a signal which is transmitted over a noisy medium. Examples include electrical

signals traveling down a wire (e.g. data networking), radio signals traveling

through free space (e.g. cellular phones or space probes), magnetization domains

on a hard disk, or pits on an optical disk. In the latter cases, the issue is storage

rather than transmission; for brevity we will use the term transmission

nonetheless.

Abstractly, let be a finite set, or alphabet, of symbols. Often, but not

necessarily, = {0,1}, in which case symbols are called bits. * be the

(infinite) set of all strings, or messages, of zero or more symbols over . Let M

be an element of * , transmitted over some medium. Due to physical

phenomena occurring during transmission, the transmitted string M may differ

from the received string M'. For example, let be the lower-case letters along

with the space character. Errors include, but are not limited to, the following:

insertion or duplication of symbols (e.g. "the house” is received as “the

houuse”), deletion of symbols (e.g. “the huse”), and/or modified symbols (e.g.

"the hopse”). When we type, a common error is transposition ("teh house").

The essential idea is that protection against errors is accomplished by adding

additional symbols to M in such a way that the redundant information may be

used to detect and/or correct the errors in M'. This insertion of redundant

information is called coding. The term error control encompasses error

detection and error correction. We will be discussing so-called block codes, in

which a message is divided into blocks of 𝑘 symbols at a time. The transmitter

will encode by adding additional symbols to each block of 𝒌 symbols to form a

transmitted block of 𝑛 symbols. The receiver will decode by transforming each

received block of 𝑛 symbols back into a 𝒌-symbol block, making a best estimate

which 𝒌-symbol block to decode to. (Note that you can mentally fix each

misspelling of the house” above, without needing redundant information. You

do this (a) by context, i.e. those weren't just random letters, and (b) by using

your intelligence. Automated error-control systems typically have neither

context nor intelligence, and so require redundancy in order to perform their

task.)

Encoding circuitry is typically simple. It is the decoding circuity which is more

complicated and hence more expensive in terms of execution time, number of

transistors on a chip, power consumption (which translates into battery life), etc.

 ~2 ~

For this reason, in situations with low error rate it is common for a receiver to

detect errors without any attempt at correcting them, then have the sender re-

transmit. It is also for this reason that much of the effort in coding-theory

research involves finding better codes, and more efficient decoding algorithms.

Different media require different amounts of redundancy. For example,

communications between a motherboard and a mouse or keyboard are

sufficiently reliable that they typically have no error detection at all. The higher-

speed USB protocol uses short cyclic redundancy checks (not discussed today)

to implement light error detection. (For engineering reasons, higher-speed

communications are more error prone. The basic idea is that at higher data rates,

voltages have less time to correctly swing between high and low values.)

Compact disks have moderately strong error-correction abilities (specifically,

Reed-Solomon codes): this is what permits them to keep working in spite of

little scratches. Deep-space applications have more stringent error-correction

demands ([VO]). An interesting recent innovation is home networking over

ordinary power lines ([Gib]). Naturally, this requires very strong error

correction since it must keep working even when the vacuum cleaner is switched

on.

 ~3 ~

Chapter one

Fundamental terms
and examples

 ~4 ~

The binary symmetric channel 1.1

We are confining ourselves to communications channels in which only random

errors occur, rather than burst or synchronization errors. Also, for today we will

talk about binary codes, where the alphabet is {0,1}. We can quantify the

random-error property a bit more by assuming there is a probability p of any bit

being flipped from 0 to 1 or vice versa. This model of a transmission medium is

called the binary symmetric channel, or BSC: binary since the symbols are bits,

and symmetric since the probabilities of bit-setting and bit-clearing are the same.

The fundamental theorem of communication is Shannon's theorem ([Sha]),

which when restricted to the BSC says that if p < 1/2, reliable communication is

possible: we can always make a code long enough that decoding mistakes are

very unlikely. Shannon's theorem defines the channel capacity, i.e. what

minimum amount of redundant data needs to be added to make communication

reliable. (See [Sud] for a nice proof.) Note however that Shannon's theorem

proves only the existence of codes with desirable properties; it does not tell how

to construct them.

In [MS] it is shown that if p is exactly 1/2 then no communication is possible,

but that if p > 1/2 then one may interchange 0 and 1, and then assume p< 1/2.

(For example, if p = 1, then it is certain that all 0's become l's and vice versa, and

after renaming symbols there is no error whatsoever)

If 𝑛 bits are transmitted in a block, the probability of all bits being wrong is

 . The probability of an error in the first position is p , and

the same for the other single-position errors. Any given double error has

probability , and so on; the probability of an error in all 𝑛

positions is p. Since we assume p < 1/2, the most likely scenario is no error at

all. Each single-bit error case is the next likely, followed by each of the double-

bit error cases, etc. (For example, with 𝑛 = 3 and p = 0.1, these probabilities are

0.729, 0.081, 0.009, and 0.001.) So, when I send you something that gets

garbled in transit, you can only guess what happened to the message. But since

we assume that fewer bit errors are more probable, you can use the maximum

likelihood assumption to help guide your guesses, as we will see below.

1. Fundamental terms and examples

 ~5 ~

1.2 Linear codes

In physics, to facilitate analysis of a problem one often makes certain

simplifying assumptions. For example, orbital mechanics is simpler, but

fractionally less accurate, if one assumes the earth is a perfect sphere rather than

a lumpy oblate spheroid. In particular, one often makes assumptions that permit

analysis of a system using linear rather than non-linear differential equations,

since the former are easy to solve. In engineering, by contrast, one designs

systems rather than studying preexisting systems: one has the liberty of

designing in linearity (and other simplifying assumptions) from the start.

In this spirit, to facilitate analysis, we immediately replace the abstract alphabet

∑ with the finite field of q elements, 𝔽 . (Recall that a finite field has a prime-𝒒

power number of elements. See [LN]

for background on finite fields. For today, q will simply be 2 so you won't need

any particular expertise in finite fields.) Furthermore, since we divide a message

M into blocks of k symbols each, i.e. k-tuples over 𝔽 , we have vectors over a 𝒒

field. This permits the application of the well-known and powerful tools of

linear algebra

.Definitions 1.2.1 :

● A block code (here, we will just call it a code) is any subset of the set of all 𝑛-

tuples over ∑ for some positive integer 𝑛. Since we take ∑ = 𝔽 , this means

that a code is any subset C of the vector space 𝔽
 .

● If C is not just a subset of 𝔽
 , but a subspace as well, then we say that C is a

linear code, In this case, we take 𝒌 to be the dimension of C. (All codes

discussed today will be linear)

●The parameter 𝒌 is called the dimension of the linear code C; 𝑛 is called the

length of C

 ●The encoding problem is that of embedding the smaller vector space 𝔽
𝒌

into the larger vector space 𝔽
 in a maximal way as will be discussed below.

●A vector in 𝔽
𝒌 , is called a message word; its image in C is called a

codeword

 ~6 ~

● During transmission, a codeword may be turned into any element of 𝔽
 . We

will call this a received word.

Notation. For brevity, we will often write 𝑛 -tuples in the form 111 rather than

(1,1,1). There is no ambiguity as long as each coordinate takes only a single

digit, which is certainly the case over 𝔽

1.3 The repetition codes

Example. The three-bit repetition code embeds 𝔽 into 𝔽
 via the following:

0 → 000 and

 1 → 111. Here, 𝒌 = 1 and 𝑛 = 3. Note that there are = 8 elements of 𝔽

but only two of them are codewords.

More generally, we have a family of 𝑛 -bit repetition codes, embedding 𝔽 into

𝔽
 : 0 maps to the vector consisting of 𝑛 zeroes, and 1 maps to 𝑛 ones. Clearly,

these are linear codes.

1.4 Minimum distance

Definition 1.4.1 . The Hamming weight of a vector 𝒗 in 𝔽
 is given by the

number of non-zero entries in 𝒗. This is a function ω : 𝔽
 → Z. For example,

ω(101) = 2.

Definition 1.4.2 . The Hamming distance between vectors 𝒖 and 𝒗 in 𝔽
 is

given by the number of non-zero entries in their difference. That is, 𝑑: 𝔽
 ˣ 𝔽

→ Z is given by 𝑑(𝒖, 𝒗) = w(𝒖– 𝒗). For example, 𝑑 (101, 110) = ω(011) = 2.

 Remark. When 𝑞 =2 this means we simply count the number of

differing slots.

Definition 1.4.3 . The minimum distance of a code C is the smallest distance

between distinct pairs of vectors of C. If C is linear, then the difference of 𝒖 and

𝒗 is also in C, so the minimum distance is

 ~7 ~

then the minimum weight over all non-zero vectors in C. For example, the

three-bit repetition code has minimum distance 3. We overload the letter 𝑑 by

writing the minimum distance of C as 𝑑(C), or simply 𝑑. From the context, it's

clear which meaning of 𝑑 is intended.

(Note: For some codes it is clear what the minimum distance is. For others,

while it may be relatively easy to compute a lower bound on a code's minimum

distance, the true minimum distance may be much harder to find. For some

families of codes, true minimum distances are unknown.)

 Error detection and error correction 1.5

By example, we will see how error-detection and error-correction abilities of a

code are related to the code's minimum distance. Suppose we are sending single

 0's and 1's using a three-bit repetition code. You may trust me to encode only

0 or 1, as 000 or 111, respectively, but due to noise you might receive any of

000, 001, 010, 011, 100, 101, 110 or 111. If you were to receive the block 111,

then you may assume that either I sent 111 and all bits are intact, or I sent 000

and there was a triple bit error. Using the maximum likelihood assumption

from above, the former conclusion is the more likely. Now suppose you receive

the message 101 from me. Which is more likely: that I sent 000 and two bits

were flipped, or that I sent 111 and the middle bit was flipped? Again, the

latter is the more likely.

That is :

● If you receive 000 (weight 0), then you decode to 0, and you assume there

were no errors in transmission.

 •● If you receive 100, 010, or 001 (weight 1), then you decode to 0, and you

believe there was a single bit error in transmission.

● If you receive 110, 101, or 011 (weight 2), then you decode to 1, and you

believe there was a single bit error in transmission.

● If you receive 111 (weight 3), then you decode to 1, and you assume there

were no errors in transmission.

 ~8 ~

In the following figure I mark codewords with an open circle. Maximum-

likelihood decoding involves finding the codeword which is nearest to a given

received word:

For this 3-bit repetition code, you can correctly detect any one-bit error. If a

triple bit error occurs, you won’t know it; if a double-bit error occurs, it will

look like a single-bit error instead. In these latter two cases, you would have

made a

 decoding error.

Now suppose we use a four-bit repetition code. I encode 0 as 0000 and 1 as

1111. If you receive a vector of weight 0 or 1, you decode to 0; if you receive a

vector of weight 3 or 4, then you decode to 1. However, if you receive a vector

with two zero bits and two one bits, then you know something is wrong (I can

be trusted to only have sent 0000 or 1111, neither of which you got), but it's a

coin toss whether two bits got set by error, or two bits got cleared by error :

For this 4-bit repetition code, you can reliably correct any 1-bit error,

but you can only detect a 2-bit error.

More generally, we see intuitively that if the minimum distance 𝑑 of a

code C is odd, then C can detect and correct up to (𝑑 - 1)/2 errors per

Figure (1.1) : Hamming distance 𝔽𝟐
𝟑

 And Hamming weight 𝔽𝟐
𝟑

Figure (1.2) : Hamming distance 𝔽𝟐
𝟒

 And Hamming weight 𝔽𝟐
𝟒

 ~9 ~

block. If 𝑑 is even, then C can correct up to 𝑑/2 - 1 errors per block,

and can detect up to 𝑑/2 errors per block.

Thus, when an error-control system is being designed, the error

statistics of the transmission medium must be known so that the

minimum distance can be made high enough that the chance of 𝑑/2 or

more errors occurring in a block is vanishingly small. (Shannon's

theorem guarantees the existence of such codes.) Any fixed code may

be defeated by worse-than-expected noise: either a system must be

designed to handle worst-case noise, or it must be parameterized such

that parameters may be adaptively adjusted at run time to match

changing channel conditions.

1.6 The even-weight parity check codes

Let 𝑛=k+1. Embed 𝔽
 into 𝔽

 by sending

 (, , ...,) to (, , ..., , +...+)

where the sum is taken mod 2. For example, with k = 4, 1110 maps to

11101. By construction, every codeword has even weight. The extra bit

may be thought of as a parity bit: It is 0 when the input message word

has an even number of 1 bits, and 1 when the input message word has

an odd number of 1 bits. (Of course, we could define an odd-weight

parity-check code as well. Since it would lack the zero vector, though,

it would be not be a subspace of 𝔽
 .) Thus, these are called the even-

weight parity check codes.

Since 𝔽
 consists of all k-tuples, including those with 1 in a single

position and zeroes elsewhere, the code contains some (k+1)-tuples of

weight 2. Since all

codewords have even weight, this means that these parity-check codes

have minimum distance 2. From the above discussion, this means

they can detect single-bit errors, but can’t correct any errors at all. These are

useful in the case when the probability of a single bit error is quite small but

non-zero, and the probability of a double bit error is vanishingly small. They

enable the receiver to flag a block as bad, and request the sender to retransmit it.

 ~11 ~

As with the repetition codes, these form a family of codes: the 𝑛-bit even-weight

parity-check codes, embedding 𝔽
 into 𝔽

 . Since q = 2, the difference of two

even-weight vectors is another even-weight vector. Thus these are linear codes.

 A graphical perspective 1.7

Here is what the 3-bit repetition and parity-check codes look like, respectively,

inside 𝔽
 :

On the left, 𝔽 could have been sent to any edge, e.g. 000 and 001, but the two

codewords would have distance 1 between them; as shown, they have distance

3. Likewise, on the right, 𝔽
 could have been sent to a face of the cube, with

minimum distance 1; as shown, the codewords are spread out over the cube, as

far apart from one another as possible, with minimum distance 2. These are

clearly the highest-distance 1-dimensional and 2-dimensional subspaces,

respectively, of 𝔽
 . Here we have q = 2, 𝑛 = 3 and k = 1 or 2. For higher 𝑛, k

and q, though, it’s not immediately obvious how to spread out codewords in this

maximum-distance manner.

In general, the encoding problem consists in large part of finding a way of

constructing such embeddings such that all codewords are as far apart from one

another as possible. This problem clearly is combinatorial in nature. However, in

recent years various approaches have happened to prove fruitful, including finite

geometry ([AK]) and algebraic geometry Pre2]) .)]

Figure (1.3) : Graphical perspective inside 𝔽

 ~11 ~

 Rate, relative minimum distance, and asymptotic 1.8

The repetition codes have good error-correcting ability. However, the drawback

is that most of the transmitted data is redundant. For the 5-bit repetition codes,

only one of every 5 bits is actual data. The parity-check codes, on the other

hand, add just a single redundant bit, but tolerate fewer errors.

Definition (1.8.1) . The rate of a code is the ratio R = k/𝑛.

The repetition codes have rate R = 1/𝑛. As 𝑛 increases, R approaches zero. The

parity-check codes have rate R = (𝑛 − 1)/𝑛, which approaches 1 as 𝑛 increases.

Definition (1.8.2) . The relative minimum distance of a code is the ratio

 δ = 𝑑/𝑛.

The repetition codes have relative minimum distance δ = 𝑛/𝑛 = 1. The parity-

check codes have relative minimum distance 2/𝑛, which approaches 0 as 𝑛

increases.

Of course, R and δ are both confined to the unit interval. We say that

asymptotically (as 𝑛 gets big) the repetition-code family has R = 0 and δ = 1;

asymptotically the parity-check family has R = 1 and δ = 0. For large 𝑛, the

repetition codes carry vanishingly little actual data; their overhead is too large.

For large 𝑛, the parity-check codes detect vanishingly few errors per block; their

overhead is too small.

Definition(1.8.3) . A good code (really, a good family of codes) is one

whose asymptotic rate and asymptotic relative minimum distance are both

bounded away from zero.

Clearly, the repetition and parity-check codes are not good. It can be shown that

good codes exist; see [MS] for examples.

 ~12 ~

 Code parameters; upper and lower bounds 1.9

A linear code is parameterized by the four integers 𝑛, k, 𝑑 and q, or equivalently

by the four rational numbers 𝑛, R, δ and q. Sometimes one says that C is an

[𝑛, k, 𝑑] code, or perhaps an [𝑛, k, 𝑑] q code. For example, the 5-bit binary

repetition code is a code. (Similarly, we might write an asymptotic

parameterization of a family of codes as [R, δ] or)

We encode by embedding 𝔽
𝒌 into 𝔽

 . Not any embedding will do: as we saw in

section 2.7, the canonical injection which appends 𝑛 - k zeroes is an

embedding, but it has minimum distance 1. We want to find an embedding

which keeps the vectors as far apart from one another as possible, maximizing

ԃ, in order to maximize the code’s error-control ability. Or, given a fixed

minimum distance, we would like to minimize 𝑛 or maximize k, to keep the

code’s rate high. Ideally we would like the rate and the relative minimum

distance to both be high, but there are results (see [MS], [PW], [Wal]) which

show that there are upper bounds on the asymptotic rate and relative minimum

distance.

Both R and δ are in the unit interval, so we may think of a parameter space

which looks like the unit square :

Note that there are particular codes with parameters in various places on this

square. The zero- appending code, given by the map from 𝔽 to 𝔽
 which

appends 𝑛 1 zeroes, has R = 1/𝑛 and δ = 1/𝑛. Asymptotically, both are zero.

 Also, the identity code with 𝑛 = k = 1 has R = 1 and δ = 1 . However, this

has no error-control ability at all.

The Singleton bound states that for all codes, ԃ 𝑛 k 1. Thus, for any

code with 𝑛 > 1 , the R = 1, δ = 1 corner is unattainable. Asympotically, the

 ~13 ~

Singleton bound shows that R + δ 1. This means that the asymptotic (R, δ)

 of a family of codes must be below the main diagonal. Clearly, this applies to

even the identity codes, for which R = 1 but δ → 0. The Plotkin bound shows

that the asymptotic (R, δ) must be below the lower diagonal as well, where the δ

intercept is 1 – 1/q. See [Wal] for a lucid discussion of these and other

bounds.

The Singleton and Plotkin bounds provide upper limits on the best code

families: no codes can be asymptotically better. There are also lower bounds

which specify how good the best codes can be, but don’t constrain how bad the

worst codes can be (for example, the zero-appending code mentioned above).

One proves a lower bound, showing that there exist codes with (R, δ) above

some curve in R, δ space; the problem of actually producing such codes is

another problem entirely. Both of these issues are topics of research.

 ~14 ~

Chapter two

Encoding

 ~15 ~

 2.1 Encoding

2.1.1 The generator matrix

Up to now we haven't really put much linear algebra to work. To facilitate

analysis, we now require not only that we have linear block codes mapping

injectively from 𝔽
 into 𝔽

 , but furthermore that the injective mapping is a

vector-space homomorphism, i.e. a linear transformation. There are many

advantages to using a linear transformation, not the least of which is that instead

of having to remember images for all the message words, we need to

remember only the images of k basis vectors.

Such a linear transformation exists for any linear code. For example, {000,

100,010, 110} is a subspace of 𝔽
 , but I can send 𝔽

 into it by 00 → 110 ,

01→ 100, 10→ 000, 11→ 010. This is a 1-1 map but it isn't linear since it

doesn't send zero to zero. As long as I don't insist on which elements of 𝔽

map to which elements of C, though, I can produce a linear map: since 𝔽
 and C

are vector spaces of the same dimensions over the same field, an isomorphism

exists. To obtain it explicitly if only C is given, form a tall matrix the rows of

which are all the vectors of C, then row-reduce and discard zero rows. The result

is a basis for C. Then, send the ith standard basis vector in 𝔽
 to the ith basis

vector of C.

However it is obtained, we write a generator matrix

 G : 𝔽
 →𝔽

where C is the image of G in 𝔽
 . For convenience later on (although it seems

quite strange at the moment), we write G as a k x 𝑛 matrix: to encode the

message word m, we write mG rather than Gm. (If this seems awkward, you

may wish to temporarily think in terms of an 𝑛 k generator matrix, then

transpose it when you're done. Also, from the context it is clear whether I'm

treating m as a row or column vector.)

What is a generator matrix for the repetition codes? Clearly, we write (𝑛 = 5

here)

G=[11111]

For the parity-check code, we want (with 𝑛 = 5)

 ~16 ~

[a , b, c, 𝑑, a + b + c + 𝑑] = [a , b, c, 𝑑] [

]

So

 G=[

]

Of course, when Ɛ𝒾 is the ith standard basis vector for 𝔽
 , Ɛ𝒾 𝙂 is the 𝒾th row

of 𝙂. Unless 𝜿 = 1 and 𝑞 = 2, there will be more than one basis vector, hence

more than one permutation of the basis, along with various linear combinations

of the basis vectors. Thus the generator matrix is generally not unique. Two

different generator matrices are equivalent, though, if they generate the same

subspace 𝑪 of 𝔽
 . To test for equivalence of two generator matrices, test for

equality of their row-echelon forms.

(Computational note: finite fields have the property that computer arithmetic is

exact. Thus, there is no roundoff error, and algorithms such as row reduction

may be implemented easily for finite fields, with naive pivoting.)

Systematic codes 2.1.2

We've been saying that a linear code 𝑪 is a 𝒌-dimensional subspace of 𝔽
 .

From this definition, 𝙂 could take any form as long as it has rank 𝒌. However,

our two examples so far (repetition and parity-check codes) have an additional

property: the first 𝒌 bits of each 𝑛-bit codeword are identical to the 𝒌 bits of the

corresponding message word.

Definition (2.1.2.1) . A linear code is systematic if its generator matrix 𝙂 is

of the form [|A] for some 𝒌 x (𝑛 - 𝒌) matrix A, where is the 𝒌 x 𝒌 identity

matrix.

Any linear code can be made systematic: just put 𝙂 in row-echelon form.

 ~17 ~

2.2 Decoding

The parity-check matrix 2.2.1

If a linear code C has been chosen, we've just seen that encoding is easy: it's just

matrix multiplication. But how do we decode, and moreover, how do we do so

efficiently? This might seem to be a harder problem. In fact, in general it is.

There have been codes which were published before any decoding algorithm

was known. And even for well-known codes, one area of current research is to

develop improved decoding algorithms.

Below, it will be useful to find a so-called parity-check matrix, H, such that C

is precisely the kernel of H. (The terminology originally comes from parity-

check codes, but it is a poor choice of words: all linear codes, not just the parity-

check ones, have a parity-check matrix.) That is, we will want H 𝒗 to be zero if

and only if 𝒗 is in C. By the rank-nullity theorem, H will necessarily be (𝑛 – k)

 𝑛. Unlike with G, we post-multiply, i.e. we write H 𝒗, not 𝒗 H.

How can such a matrix H be constructed, given G? First, some terminology.

Definition (2.2.1.1) . The dual code of C, written , is the set of vectors in

𝔽
 which are orthogonal to all vectors of C, using the standard dot product.

(Note that the term dual code here has nothing to do with the term dual space

from linear algebra.) That is,

 = {𝒗 ∈ 𝔽
 : 𝒰 · 𝒗 =0 for all 𝒰 ∈ C}

(The Hamming weight is a vector-space norm, if we define │c│ con , to have

value 0 when c = 0, 1 otherwise. If we use the standard dot product, then 𝔽

satisfies all the axioms for an inner product space except for the positive-

definiteness of the dot product. E.g. if has characteristic 2, the non-zero

vector (1,1) dotted with itself is 1+1 = 0. Note that the Hamming weight is

computed in ℤ: it is the number of non-zero coordinates in a vector. However,

the dot product is computed in . Thus the Hamming weight and Hamming

distance are positive definite, while the dot product is not. This means that

inner-product-space results such as 𝔽
 = C ⊕ do not apply: the intersection

of a subspace and its perp can contain more than just the zero vector. In fact, a

code can be self dual, i.e. C = For example, {00, 11} is a self-dual subspace

 ~18 ~

of 𝔽
 . From the result immediately below, a self-dual code must have even 𝑛,

and k must be 𝑛 /2.)

We already have G; it remains to actually compute a matrix for H. Suppose that

our problem were reversed, i.e. if we had H, how would we compute G? That's

easy: since the kernel of H is the image of G (which is C) we could just compute

the kernel basis of H, which is a standard elementary linear algebra problem. G

would have rows equal to the elements of that basis.

Now, I claim that, fortuitously, the generator matrix of is H and the parity-

check matrix of is G. That is, 's G and H are swapped from C's. Also note

that is just C. We are given G, which is C's generator matrix as well as

 's parity-check matrix. The kernel basis of G is the generator matrix for

which is also the parity-check matrix for C. So this trick means that not only can

we get a G by computing a kernel basis of an H, but vice versa as well.

It remains to prove that has generator matrix H and parity-check matrix G.

Remember the convention that a generator matrix acts by post-multiplication

and that a parity-check matrix acts by pre-multiplication. So in this role, 𝙃 maps

𝔽
 to 𝔽

 by sending 𝓩 to 𝓩𝙃, and 𝙂 maps 𝔽
 to 𝔽

 by sending 𝒗 to 𝙂𝒗. To

avoid confusion (only for the duration of this proof) we will write 𝙂 for 𝙂: 𝔽
 →

𝔽
 acting by post-multiplication and 𝙂. for 𝙂: 𝔽

 → 𝔽
 acting by pre-

multiplication. Likewise, we will write 𝙃. for 𝙃: 𝔽
 →𝔽

 and · 𝙃 for 𝙃:

𝔽
 → 𝔽

 . Plain 𝙂 and 𝙃 refer to the matrices without respect to a linear

transformation.

We want the following short exact sequences:

with im(𝙂)=C=ker(𝙃) and im(H𝙃) = = ker(𝙂). The short exactness means

that .𝙂 and 𝙃 are 1-1, while 𝙃. and 𝙂: are onto. Thus, it suffices to show: (1)

im(𝙃) = ; (2) 𝙃 is 1-1, (3) ker(𝙂) = , and (4) 𝙂 is onto. Now, we already

have that the matrix 𝙂 has rank k and 𝙃 has rank 𝑛 𝑘. Since row rank equals

 ~19 ~

column rank, (4) will follow from (3) by the rank-nullity theorem. Likewise, (2)

will follow from (1) since has dimension 𝑛 𝑘.

To prove (3), first let 𝒗 ∈ . The rows of 𝙂 form a basis for C; let be

the ith row of 𝙂, for i=1, ..., 𝚔, where each , is a vector of length 𝑛 (since it is

in 𝔽
). Also let 𝒗 = (,...,). The matrix-times-vector multiplication 𝙂. 𝒗

consists of dot products of v with the rows of 𝙂:

Since each ; is in C and since 𝒗 is in , all the dot products are zero and so

𝙂. 𝒗=0.

Conversely, let 𝒗 ∈ ker(𝙂.). Then 𝙂 • 𝒗 = 0. Again, this product consists of dot

products of rows of 𝙂 with 𝒗, so • 𝒗 = 0 for all 's. Let c be an arbitrary

element of C. Since the 's are a basis for C, c =

 for some

in.𝔽 Then

𝒗 • c = 𝒗 .

 = 0 =

Therefore 𝒗 ∈

To prove that im(𝙃) = notice in general that when a matrix X acts on a

standard basis by Xεi, the image of that basis consists of the columns of X.

Likewise, when X acts on a standard basis by ɛi𝐗, the image of that basis

consists of the rows of X. It will suffice to show that the rows

of 𝙃 are a basis for C+. Remember that we set up 𝙃 to check the elements of C,

and since G has rows forming a basis for C, necessarily

H = 0

 ~21 ~

This means that the rows of 𝙃 are orthogonal to the rows of G, which shows

that the rows of 𝙃 are in C-. Since we know that 𝙃 has rank 𝑛 – k, the image of

the standard basis for 𝔽
 under 𝙃 is linearly independent, and im(𝙃) must be

all of Ch.

Example(2.2.1.1) . Let's carry out this computation for the two families of

codes we've seen so far. The 5-bit repetition code has generator matrix

G=[1 1 1 1 1]

We then compute the kernel basis (in row-echelon form)

 H = [

]

Intuitively, this makes sense: recalling that we are working mod 2, this means

that 𝙃 𝒗 is 0 only when 𝒗 has all coordinates the same. The two possible cases

are 00000 and 11111, which are precisely the codewords of the 5-bit repetition

codes.

Next, the 5-bit parity-check code has generator matrix

 G = [

]

We then compute

H = [1 1 1 1 1]

Intuitively, this also makes sense: pre-multiplying 𝒗 by 𝙃 just adds up the bits of

v mod 2. The result will be zero precisely when 𝒗 has even parity, which is the

case iff 𝒗 is in C.

As an added bonus, since the first G is the same as the second 𝙃, and vice versa,

we now see that the repetition and parity-check families are duals of one

another.

 ~21 ~

2.2.2 Computing 𝙃 for systematic codes

The parity-check matrix is particularly easy to compute when C is systematic,

i.e. when 𝙂 is in row-echelon form. For example, take 𝒌 = 3, 𝑛 = 6 and suppose

𝙂 = [= [

]

Writing 𝒎 rather than 𝒎𝖦 to save horizontal space on the paper, a message

word (,) is encoded as

[

]

 [

] =

[

]

We want to write an 𝙃 such that 𝙃 times this codeword is zero, but that's easy:

[

]

[

]

 =

[

]

We can generalize this example to see that if

𝙂 = [

Then

𝙃 = [│]

 Thus, systematic G and 𝙃 may be computed from one another by inspection.

 ~22 ~

2.2.3 Brute-force decoding

If I send you an encoded message, with errors in transit, how do you decode to

find out what I really meant to say? If the message space is small, i.e. if 𝘲 and

are small, then you could simply make a list of all possible elements of 𝔽
 , with

the nearest-neighbor codeword precomputed by hand for each. This is what we

did in section 2.5 However this is infeasible for larger codes, which might have

billions of codewords or more: it requires having a table of size 𝑞 .

2.2.4 The coat of arms

A useful diagram from [MS], attributed therein to David Slepian, is the

following:

Sender Encoder Channel Decoder Recipient

𝒎= . . . 𝒖= . . . 𝒗 = 𝒖 + e ê = . . .

Since we are assuming our channel only inserts random errors, without changing

the block length by loss of synchronization, we can think of the error vector as

being added to the codeword during transmission. Since we embed our 𝔽
 into

𝔽
 using a linear transformation (rather than any old injective map), and since

𝙃𝒖 is zero for all codewords 𝒖, we have the following key fact:

𝒗 = 𝒖 + e

 H 𝒗 = H(𝒖 + e) = H 𝒖 + He = He

𝑀essage codeword
Received vector Estimate of error

e = 𝑒 . . . 𝑒 𝑛

 Error vector

 ~23 ~

2.2.5 Standard-array decoding

Definition(2.2.5.1) . The quantity 𝙃𝒗 =𝙃e from the previous section is

called the syndrome of 𝒗. When we form the quotient space 𝔽
 /C, from

elementary algebra we know that the cosets of C partition 𝔽
 . Since C is

precisely the kernel of 𝙃, if two received vectors are in the same coset,

u ~ 𝒗

u − 𝒗 ∈ 𝙲

H(u – 𝒗) = 0

Нu = H𝒗

Thus, two vectors are in the same coset iff they share the same syndrome.

Now, u was transmitted; 𝒗 = u + e was received, but the receiver can only guess

at what e is. Since 𝒗 and e have the same syndrome, the true error vector e is

somewhere in 𝒗's coset. Furthermore, since we are using the maximum

likelihood assumption mentioned in section 2.1, the most likely error vector ê is

the smallest-weight vector in 𝒗's coset. (A decoding error means e ≠ ê.)

So, the standard-array decoding algorithm has two stages: the first stage is

some precomputation before any data is received; the second is done as each

block is received.

Precomputation stage:

 Write down the elements of 𝔽
 and encode each element. This is a two-by-

𝑞 table, pairing up message words and codewords. Sort this by codeword

for easy lookup later.

 Write down the quotient space 𝔽
 /C. This requires making, for the moment,

a matrix of all 𝑞 elements of 𝔽
 . (Note that this algorithm is also not OK

for large codes, although the resulting tables will be smaller than for the

brute-force method.)

 For each coset, search for the smallest-weight element in the coset. This is

called the coset leader. Compute and remember the syndrome of the coset

leader; forget about the rest of the coset.

 ~24 ~

 Make a list pairing up syndromes and coset leaders. This is a two-by-

𝑞 table. Sort this by syndrome for easy lookup later.

Decoding stage:

• Given a received vector 𝒗, compute its syndrome s.

• Look up this syndrome in the precomputed syndrome / leader table.

• Find the most likely error vector ê corresponding to s.

• Compute û = 𝒗 - ê.

• Look up û in the precomputed message/codeword table to obtain 𝒎̂.

This is our best guess of what the transmitter sent.

Note that both table lookups are done on sorted data. This means we don't have

to sequentially scan either table at run time. The syndromes are all of 𝔽 , so

we can use base-q arithmetic to go directly to the desired element of the

syndrome /leader table. For the message/codeword table, we can use a binary

search, with a number of lookups roughly log2 of the table size.

(Note that the message/codeword table isn't necessary. Once we have a

codeword û, we can solve the linear system û = 𝒎̂G for 𝒎̂ using row reduction.

This reduces table space, at the expense of making the decoding stage use more

computation.)

Example(2.2.5.1). Let's compute the standard array for the 3-bit repetition

code. We have

G = [1 1 1] , H = [

]

The message words are 0 and 1. Their images under G are 000 and 111. So, the

message/codeword table is as follows:

The possible received vectors (all of 𝔽
) are:

000,001,010,011, 100, 101, 110, 111

 ~25 ~

C is: 000,111

𝔽
 /C is:

The coset leaders are the minimum-weight vectors of each coset. These are as

follows, with corresponding syndromes:

Here is an example of using the standard array to decode a received vector:

• Receive 𝒗 = 011.

• Compute s = 𝙃𝒗 = 10

• 10 in binary is 2 in decimal, so go to row 2 (with row indices starting at 0)

of the syn-drome/leader table.

• At that spot, find ê = 100.

• Compute û = 𝒗 – ê = 011 – 100 = 111.

• Match codeword 111 with message word 1 in the message/codeword table to

obtain ̂ = 1.

 ~26 ~

 انتىصُاث

ٌ٘صً اىثادثاُ تأُ ٌرٌ اسرخذاً ٕزا اىرصٌٍَ فً دساسح اىَصف٘فاخ اىرً ذنُ٘ ػيى شنو ٍصف٘فاخ -1

 ٍشتؼح

قْاج الاسساه فً ْٕذسح الاذصالاخ channel فً اسساه اىَؼيٍ٘اخ ػثش ٌرٌ اسرخذاً ٕزا اىرصٌٍَ -2

 ~27 ~

References

1-[AK] Assmus, E.F. and Key, J.𝑑. Designs and Their Codes. Cambridge

University Press, 1994.

2-[Ber] E. Berlekamp. Algebraic Coding Theory (revised 1984 edition). Aegean

Park Press, 1984.

3-[Gol] Golay, M.J.E. Notes on digital coding. Proceedings of the IRE, 37:657,

June 1949.

4-[Gib] Gibbs, W.W. The Network in Every Room. Scientific American, February

2002.

5-[Ham] Hamming, R.W. Error Detecting and Error Correcting Codes. Bell

System Technical Journal, 29:147-160, April 1950.

6-[HKCSS] Hammons, A.R. et al. The Z4-Linearity of Kerdock, Preparata,

Goethals and Related Codes. http://www.research.att.com/onjas/doc/linear.ps

7-[LN] R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press,

1997.

8-[MS] MacWilliams, F.J. and Sloane, 𝑛.J.A. The Theory of Error-Correcting

Codes. Elsevier Science B.V., 1997.

9-[PW] Peterson, W.W. and Weldon, E.J. Error-Correcting Codes (2nd ed.). MIT

Press, 1972.

10-[Pre1] Pretzel, O. Error-Correcting Codes and Finite Fields. Oxford University

Press, 1996.

11-[Pre2] Pretzel, O. Codes and Algebraic Curves. Oxford University Press, 1998.

12-[Sha] Shannon, C.E. A mathematical theory of communication. Bell System

Technical Journal,

27:379-423, 623-656, 1948.

13-[Sud] Sudan, M. Algorithmic Introduction to Coding Theory.

http://theory.lcs.mit.edu/~madhu/coding/ibm

14-[VO] Vanstone, S.A. and van Oorschot, P.C. An Introduction to Error

Correcting Codes with Applications. Kluwer Academic Publishers, 1989.

 ~28 ~

15-[Wal] Walker, J. Codes and Curves.

http://www.math. unl.edu/~jwalker/papers/rev.pdf

Table (1) : ⨁ and ⨀ in

 = { 0 , 1}

 (
 , ⨁ , ⨀)

⨁ 0 1 Hamming weight Hamming distance

0 0 1 0 0

1 1 1 1 1

⨀ 0 1 Hamming weight Hamming distance

0 0 0 0 0

1 1 1 1 1

Table (2) : ⨁ and ⨀ in

 = { 00 , 01, 10,11}

(
 , ⨁ , ⨀)

⨁ 00 01 10 11 Hamming weight Hamming distance

00 00 01 10 11 0 0

01 01 00 11 10 1 1

10 10 11 00 01 1 1

11 11 10 01 00 2 2

⨀ 00 01 10 11 Hamming weight Hamming distance

00 00 00 00 00 0 0

01 00 01 00 01 1 1

10 00 00 10 10 1 1

11 00 01 10 11 2 2

Table (3) : ⨁ and ⨀ in

 = {000, 001, 010, 011, 100, 101, 110,111}

(
 , ⨁ , ⨀)

⨁ 000 001 010 011 100 101 110 111 Hamming Weight Hamming distance

000 000 001 010 011 100 101 110 111 0 0

001 001 000 011 010 101 100 111 110 1 1

010 010 011 000 001 110 111 100 101 1 1

011 011 010 001 000 111 110 101 100 2 2

100 100 101 110 111 000 001 010 011 1 1

101 101 100 111 110 001 000 011 010 2 2

110 110 111 100 101 010 011 000 001 2 2

111 111 110 101 100 011 010 001 000 3 3

⨀ 000 001 010 011 100 101 110 111 Hamming Weight Hamming distance

000 000 000 000 000 000 000 000 000 0 0

001 000 001 000 001 000 001 000 001 1 1

010 000 000 010 010 000 000 010 010 1 1

011 000 001 010 011 000 100 010 011 2 2

100 000 000 000 000 100 100 100 100 1 1

101 000 001 000 001 100 101 100 101 2 2

110 000 000 010 010 100 100 110 110 2 2

111 000 001 010 011 100 101 110 111 3 3

Table (4) : ⨁ and ⨀ in

 = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111}

 (
 , ⨁ , ⨀)

⊕ 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 H.W H.D

0000 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 0 0

0001 0001 0000 0011 0010 0101 0100 0111 0110 1001 1000 1011 1010 1101 1100 1111 1110 1 1

0010 0010 0011 0000 0001 0110 0101 0100 0101 1010 1011 1000 1001 1110 1111 1100 1101 1 1

0011 0011 0010 0001 0000 0111 0110 0101 0100 1011 1010 1001 1000 1111 1110 1101 1100 2 2

0100 0100 0101 0110 0111 0000 0001 0010 0011 1100 1001 1110 1111 1000 1001 1010 1011 1 1

0101 0101 0100 0111 0110 0001 0000 0011 0010 1101 1110 1111 1110 1001 1000 1011 1010 2 2

0110 0110 0111 0100 0101 0010 0011 0000 0001 1110 1111 1100 1101 1010 1011 1000 1001 2 2

0111 0111 0110 0101 0100 0011 0010 0001 0000 1111 1110 1101 1100 1011 1010 1001 1000 3 3

1000 1000 1001 1010 1100 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111 1 1

1001 1001 1000 1011 1010 1101 1100 1111 1110 0001 0000 0011 0010 0101 0100 0111 0110 2 2

1010 1010 1011 1000 1001 1110 1111 1100 1101 0010 0011 0000 0001 0110 0111 0100 0101 2 2

1011 1011 1010 1001 1000 1111 1110 1101 1100 0011 0010 0001 0000 0111 0110 0101 0100 3 3

1100 1100 1101 1110 1111 1000 1001 1010 1011 0100 0101 0110 0111 0000 0001 0010 0011 2 2

1101 1101 1100 1111 1110 1001 1010 1011 1010 0101 0100 0111 0110 0001 0000 0011 0010 3 3

1110 1110 1111 1100 1101 1010 1011 1000 1001 0110 0111 0100 0101 0010 0011 0000 0001 3 3

1111 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 4 4

Table (4) : ⨁ and ⨀ in

 = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111}

 (
 , ⨁ , ⨀)

⨀ 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 H.W H.D

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0 0

0001 0000 0001 0000 0001 0000 0001 0000 0001 0000 0001 0000 0001 0000 0001 0000 0001 1 1

0010 0000 0000 0010 0010 0000 0000 0010 0010 0000 0000 0010 0010 0000 0000 0010 0010 1 1

0011 0000 0001 0010 0011 0000 0001 0010 0011 0000 0001 0010 0011 0000 0001 0010 0011 2 2

0100 0000 0000 0000 0000 0100 0100 0100 0100 0000 0000 0000 0000 0100 0100 0100 0100 1 1

0101 0000 0001 0000 0001 0100 0101 0100 0101 0000 0001 0000 0001 0100 0101 0100 0101 2 2

0110 0000 0000 0010 0010 0100 0100 0110 0110 0000 0000 0010 0010 0100 0100 0110 0110 2 2

0111 0000 0001 0010 0011 0100 0101 0110 0111 0000 0001 0010 0011 0100 0101 0110 0111 3 3

1000 0000 0000 0000 0000 0000 0000 0000 0000 1000 1000 1000 1000 0100 1000 1000 1000 1 1

1001 0000 0001 0000 0001 0000 0001 0000 0001 1000 1001 1000 1001 0100 1001 1000 1001 2 2

1010 0000 0000 0010 0010 0000 0000 0010 0010 1000 1000 1010 1010 0100 1001 1010 1010 2 2

1011 0000 0001 0010 0011 0000 0001 0010 0011 1000 1001 1010 1011 0100 1001 1010 1011 3 3

1100 0000 0000 0000 0000 0100 0100 0100 0100 1000 1000 1000 1000 1100 1100 1100 1100 2 2

1101 0000 0001 0000 0001 0100 0101 0100 0101 1000 1001 1000 1001 1100 1101 1100 1101 3 3

1110 0000 0000 0010 0010 0100 0100 0110 0110 1000 1000 1010 1010 1100 1100 1110 1110 3 3

1111 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 4 4

Table (5) : Hamming distance and Hamming weight in

X = (, , ,…..)

Y = (, , ,…..)

X ⨀ Y = (⨁ ⨁ , …) = number (0 or 1)

X ⨁ Y = (⨁ , ⨁ , ⨁ , …) = vector

 (
 , ⨁ , ⨀)

 = { 0 , 1}

⨁ 0 1 Hamming Weight Hamming distance

0 (0,0) (0,1) 0 0

1 (1.0) (1,1) 1 1

⨁ 0 1 Hamming Weight Hamming distance

0 0 0 0 0

1 0 1 1 1

Table (6) : Hamming distance and Hamming weight in

 = { 00 , 01, 10,11}

(
 , ⨁ , ⨀)

⨁ 00 01 10 11 Hamming weight Hamming distance

00 (0,0) (0,1) (1,0) (1,1) 0 0

01 (0,1) (0,0) (1,1) (1,0) 1 1

10 (1,0) (1,1) (0,0) (0,1) 1 1

11 (1,1) (1,0) (0,1) (0,0) 2 2

(
 , ⨀)

⨀ 00 01 10 11 Hamming weight Hamming distance

00 0 0 0 0 0 0

01 0 1 0 1 1 1

10 0 0 1 1 1 1

11 0 1 1 0 2 2

Table (7) : Hamming distance and Hamming weight in

⨀ 000 001 010 011 100 101 110 111 Hamming

Weight

Hamming

distance

000 0 0 0 0 0 0 0 0 0 0

001 0 1 0 1 0 1 0 1 1 1

010 0 0 1 1 0 0 1 1 1 1

011 0 1 1 0 0 1 1 0 2 2

100 0 0 0 0 1 1 1 1 1 1

101 0 1 0 1 1 0 1 0 2 2

110 0 0 1 1 1 1 0 0 2 2

111 0 1 1 0 1 0 0 1 3 3

⨁ 000 001 010 011 100 101 110 111 Hamming

Weight

Hamming

distance

000 (0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1) 0 0

001 (0,0,1) (0,0,0) (0,1,1) (0,1,0) (1,0,1) (1,0,0) (1,1,1) (1,1,0) 1 1

010 (0,1,0) (0,1,1) (0,0,0) (0,0,1) (1,1,0) (1,1,1) (1,0,0) (1,0,1) 1 1

011 (0,1,1) (0,1,0) (0,0,1) (0,0,0) (1,1,1) (1,1,0) (1,0,1) (1,0,0) 2 2

100 (1,0,0) (1,0,1) (1,1,0) (1,1,1) (0,0,0) (0,0,1) (0,1,0) (0,1,1) 1 1

101 (1,0,1) (1,0,0) (1,1,1) (1,1,0) (0,0,1) (0,0,0) (0,1,1) (0,1,0) 2 2

110 (1,1,0) (1,1,1) (1,0,0) (1,0,1) (0,1,0) (0,1,1) (0,0,0) (0,0,1) 2 2

111 (1,1,1) (1,1,0) (1,0,1) (1,0,0) (0,1,1) (0,1,0) (0,0,1) (0,0,0) 3 3

𝔽
 = {000, 001, 010, 011, 100, 101, 110,111}

 (𝔽
 , ⨁ , ⨀)

⊕ 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 H.W H.D

0000 0,0,0,0 0,0,0,1 0,0,1,0 0,0,1,1 0,1,0,0 0,1,0,1 0,1,1,0 0,1,1,1 1,0,0,0 1,0,0,1 1,0,1,0 1,0,1,1 1,1,0,0 1,1,0,1 1,1,1,0 1,1,1,1 0 0

0001 0,0,0,1 0,0,0,0 0,0,1,1 0,0,1,0 0,1,0,1 0,1,0,0 0,1,1,1 0,1,1,0 1,0,0,1 1,0,0,0 1,0,1,1 1,0,1,0 1,1,0,0 1,1,0,0 1,1,1,1 1,1,1,0 1 1

0010 0,0,1,0 0,0,1,1 0,0,0,0 0,0,0,1 0,1,1,0 0,1,1,1 0,1,0,0 0,1,0,1 1,0,1,0 1,0,1,1 1,0,0,0 1,0,0,1 1,1,1,0 1,1,1,1 1,1,0,0 1,1,0,1 1 1

0011 0,0,1,1 0,0,1,0 0,0,0,1 0,0,0,0 0,1,1,1 0,1,1,0 0,1,0,1 0,1,0,0 1,0,1,1 1,0,1,0 1,0,0,1 1,0,0,0 1,1,1,1 1,1,1,0 1,1,0,1 1,1,0,0 2 2

0100 0,1,0,0 0,1,0,1 0,1,1,0 0,1,1,1 0,0,0,0 0,0,0,1 0,0,1,0 0,0,1,1 1,1,0,0 1,1,0,1 1,1,1,0 1,1,1,1 1,0,0,0 1,0,0,1 1,0,1,0 1,0,1,1 1 1

0101 0,1,0,1 0,1,0,0 0,1,1,1 0,1,1,0 0,0,0,1 0,0,0,0 0,0,1,1 0,0,1,0 1,1,0,1 1,1,0,1 1,1,1,1 1,1,1,0 1,0,0,1 1,0,0,0 1,0,1,1 1,0,1,0 2 2

0110 0,1,1,0 0,1,1,1 0,1,0,0 0,1,0,1 0,0,1,0 0,0,1,1 0,0,0,0 0,0,0,1 1,1,1,0 1,1,1,1 1,1,0,0 1,1,0,1 1,0,1,0 1,0,0,1 1,0,0,0 1,0,0,1 2 2

0111 0,1,1,1 0,1,1,0 0,1,0,1 0,1,0,0 0,0,1,1 0,0,1,0 0,0,0,1 0,0,0,0 1,1,1,1 1,1,1,0 1,1,0,1 1,1,0,0 1,0,1,1 1,0,1,0 1,0,0,1 1,0,0,0 3 3

1000 1,0,0,0 1,0,0,1 1,0,1,0 1,0,1,1 1,1,0,0 1,1,0,1 1,1,1,0 1,1,1,1 0,0,0,0 0,0,0,1 0,0,1,0 0,0,1,1 0,1,0,0 0,1,0,1 0,1,1,0 0,1,1,1 1 1

1001 1,0,0,1 1,0,0,0 1,0,1,1 1,0,1,0 1,1,0,1 1,1,0,0 1,1,1,1 1,1,1,0 0,0,0,1 0,0,0,0 0,0,1,1 0,0,1,0 0,1,0,1 0,1,0,0 0,1,1,1 0,1,1,0 2 2

1010 1,0,1,0 1,0,1,1 1,0,0,0 1,0,0,1 1,1,1,0 1,1,1,1 1,1,0,0 1,1,0,1 0,0,1,0 0,0,1,1 0,0,0,0 0,0,0,1 0,1,1,0 0,1,1,1 0,1,0,0 0,1,0,1 2 2

1011 1,0,1,1 1,0,1,0 1,0,0,1 1,0,0,0 1,1,1,1 1,1,1,0 1,1,0,1 1,1,0,0 0,0,1,1 0,0,1,0 0,0,0,1 0,1,0,0 0,1,1,1 0,1,1,0 0,1,0,1 0,1,0,0 3 3

1100 1,1,0,0 1,1,0,1 1,1,1,0 1,1,1,1 1,0,0,0 1,0,0,1 1,0,1,0 1,0,1,1 0,1,0,0 0,1,0,1 0,1,1,0 0,1,1,1 0,0,0,0 0,0,0,1 0,0,1,0 0,0,1,1 2 2

1101 1,1,0,1 1,1,0,0 1,1,1,1 1,1,1,0 1,0,0,1 1,0,0,0 1,0,1,1 1,0,1,0 0,1,0,1 0,1,0,0 0,1,1,1 0,1,1,0 0,0,0,1 0,0,0,0 0,0,1,1 0,0,1,0 3 3

1110 1,1,1,0 1,1,1,1 1,1,0,0 1,1,0,1 1,0,1,0 1,0,1,1 1,0,0,0 1,0,0,1 0,1,1,0 0,1,1,1 0,1,0,0 0,1,0,1 0,0,1,0 0,0,1,1 0,0,0,0 0,0,0,1 3 3

1111 1,1,1,1 1,1,1,0 1,1,0,1 1,1,0,0 1,0,1,1 1,0,1,0 1,0,0,1 1,0,0,0 0,1,1,1 0,1,1,0 0,1,0,1 0,1,0,0 0,0,1,1 0,0,1,0 0,0,0,1 0,0,0,0 4 4

𝔽
 = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111}

 (𝔽
 , ⨁ , ⨀)

Table (8) : Hamming distance and Hamming weight in 𝔽

Table (8) : Hamming distance and Hamming weight in

 = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111}

 (
 , ⨁ , ⨀)

ʘ 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 H.W H.D

0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0001 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1

0010 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1

0011 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 2 2

0100 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1

0101 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 2 2

0110 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 2 2

0111 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 3 3

1000 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1001 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 2 2

1010 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 2 2

1011 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 3 3

1100 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 2 2

1101 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 3 3

1110 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 3 3

1111 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 4 4

