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 انكشًَت الاَت

 

 بسى الله انشحًٍ انشحُى

 

 ٌَ ٍَ َخَۡشَىۡ هُ جُهىُدُ ٱنهزَِ ُۡ ثاََیَِ تقَۡشَعِشُّ يِ بهِا يه ٰـ تشََ با يُّ ٰـ ٍَ ٱنۡحَذَِثِ كِتَ لَ أحَۡسَ ُ َزَه ﴿ٱللَّه

ِِۚ رَٰ ٰ  ًٰ رِكۡشِ ٱللَّه ٍُ جُهىُدُهُىۡ وَقهُىُبهُُىۡ إنَِ ِ  نكَِ ⁠سَبههُىۡ ثىُه تهَُِ َهَۡذِی بهِۦِ يٍَ َشََاۤءُِۚ هُذَي ٱللَّه

ٍۡ هَادٍ﴾ ا نهَُۥ يِ ًَ ُ فَ     وَيٍَ َضُۡهمِِ ٱللَّه

 

 ( ٣٢انزيش  )                 صذق الله انعظُى                                
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 الاهــــــــــــــــذاء

 

 إىى ٍِ ٌسؼذ قيثً تيقٍإا 

 إىى سٗضح اىذة اىرً ذْثد أصمى الأصٕاس

 اًٍ     

 إىى سٍض اىشج٘ىح ٗاىرضذٍح

 إىى ٍِ دفؼًْ إىى اىؼيٌ ٗتٔ اصداد افرخاس 

 اتً       

 إىى ٍِ ٌٕ اقشب أىً ٍِ سٗدً

 إىى ٍِ شاسمًْ دضِ ألاً ٗتٌٖ اسرَذ ػضذً ٗإصشاسي 

 اخ٘ذً

 إىى ٍِ آّسًْ فً دساسرً ٗشاسمًْ ًٍَٕ٘

 ذزماساً ٗذقذٌشاً 

 أصذقائٍ

 إىى ٕزٓ اىصشح اىؼيًَ اىفرً ٗاىجثاس

 يٍح اىرشتٍح اىَقذادم
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 شـكش وتقـذَش

  

ؼ٘د إىى أػ٘اً قضٍْإا فً اىذٍاج اىجاٍؼٍح ٍِ ٗقفٔ ّ ّخط٘ خط٘اذْا الأخٍشج لاتذ ىْا ّٗذِ

 فً سداب اىجاٍؼح

ٍغ أساذزذْا اىنشاً اىزٌِ قذٍ٘ا ىْا اىنثٍش تارىٍِ تزىل جٖ٘دا مثٍشج فً تْاء جٍو اىغذ ىْثؼث 

 الأٍح ٍِ جذٌذ .....

ٌِ دَي٘ا أقذط لاٍرْاُ ٗاىرقذٌش ٗاىَذثح إىى اىزَّضً ّقذً أسَى آٌاخ اىشنش ٗا  أُٗقثو 

 سساىح فً اىذٍاج

 إىى اىزٌِ ٍٖذٗا ىْا طشٌق اىؼيٌ ٗاىَؼشفح

 أساذزذْا الأفاضو  إىى جٍَغ

 

مِ ػاىَا . فإُ ىٌ ذسرطغ فنِ ٍرؼيَا ، فإُ ىٌ ذسرطغ فأدة اىؼيَاء ، فإُ ىٌ ذسرطغ فلا  "

 ذثغضٌٖ"

 

ىشاػً اىشٌاضٍاخ ٍٗشتٍٖا فً ميٍح اىرشتٍح اىَقذاد صادة اىقية  خص تاىشنش ٗاىرقذٌشّٗ

 اىطٍة اىزي ماّد ىٔ قذً سائذج فً طشٌق اىرؼيٌٍ ٗاىؼيٌ، 

 حًُذ هادٌخانذ  انذكتىس

 اىزي ّق٘ه ىٔ تششك ق٘ه سس٘ه الله صيى الله ػئٍ ٗسيٌ

 ى ٍؼيٌ اىْاط اىخٍش"إُ اىذ٘خ فً اىثذش ، ٗاىطٍش فً اىسَاء ىٍصيُ٘ ػي" 

 

ْا ٌذ اىَساػذج ػيى إذَاً ٕزا اىثذث ٗقذً ىْا اىؼُ٘ ٍٗذ ى ّاٗمزىل ّشنش مو ٍِ ساػذ

 اىلاصٍح لإذَاً ٕزا اىثذثٗصٗدّا تاىَؼيٍ٘اخ 
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 انخلاصت
 

 

اىرطثٍقٍح ، ٕٗ٘ ٍصطيخ فً ٕزا اىثذث ذٌ دساسح ادذ اىَفإٌٍ الاساسٍح ٗاىشئٍسٍح  فً اىشٌاضٍاخ 

 اىرشفٍش .

1اٗ   0دٍث  ذٌ ذذٌ٘و  ٍجَ٘ػح ٍِ الاػذاد اىذقٍقٍح اىَ٘جثح  اىى ّظاً اىثْائً  دٍث ٌأخز اىقٌٍ  اٍا    

إضافح اىى رىل ذٌ اػطاء خصائص ىٖزا اىْظاً  ٍِ دٍث  ذؼشٌف ػَيٍرً اىجَغ  ٗاىضشب ػيى   

 . الاػذاد اىثْائٍح

𝔽ٗفً اىخراً ذٌ ذصٌٍَ َّ٘رج 
 

 
   ٗ 𝔽

 

 
    ٗ 𝔽

 

 
    ٗ 𝔽
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Introduction 

A mathematical problem originating in electrical engineering is the recovery of 

a signal which is transmitted over a noisy medium. Examples include electrical 

signals traveling down a wire (e.g. data networking), radio signals traveling 

through free space (e.g. cellular phones or space probes), magnetization domains 

on a hard disk, or pits on an optical disk. In the latter cases, the issue is storage 

rather than transmission; for brevity we will use the term transmission 

nonetheless. 

Abstractly, let   be a finite set, or alphabet, of symbols. Often, but not 

necessarily,  = {0,1}, in which case symbols are called bits.   * be the 

(infinite) set of all strings, or messages, of zero or more symbols over  . Let M 

be an element  of   * , transmitted over some medium. Due to physical 

phenomena occurring during transmission, the transmitted string M may differ 

from the received string M'. For example, let    be the lower-case letters along 

with the space character. Errors include, but are not limited to, the following: 

insertion or duplication of symbols (e.g. "the house” is received as “the 

houuse”), deletion of symbols (e.g. “the huse”), and/or modified symbols (e.g. 

"the hopse”). When we type, a common error is transposition ("teh house"). 

The essential idea is that protection against errors is accomplished by adding 

additional symbols to M in such a way that the redundant information may be 

used to detect and/or correct the errors in M'. This insertion of redundant 

information is called coding. The term error control encompasses error 

detection and error correction. We will be discussing so-called block codes, in 

which a message is divided into blocks of 𝑘 symbols at a time. The transmitter 

will encode by adding additional symbols to each block of 𝒌 symbols to form a 

transmitted block of 𝑛 symbols. The receiver will decode by transforming each 

received block of 𝑛 symbols back into a 𝒌-symbol block, making a best estimate 

which 𝒌-symbol block to decode to. (Note that you can mentally fix each 

misspelling of the house” above, without needing redundant information. You 

do this (a) by context, i.e. those weren't just random letters, and (b) by using 

your intelligence. Automated error-control systems typically have neither 

context nor intelligence, and so require redundancy in order to perform their 

task.) 

Encoding circuitry is typically simple. It is the decoding circuity which is more 

complicated and hence more expensive in terms of execution time, number of 

transistors on a chip, power consumption (which translates into battery life), etc. 
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For this reason, in situations with low error rate it is common for a receiver to 

detect errors without any attempt at correcting them, then have the sender re-

transmit. It is also for this reason that much of the effort in coding-theory 

research involves finding better codes, and more efficient decoding algorithms. 

Different media require different amounts of redundancy. For example, 

communications between a motherboard and a mouse or keyboard are 

sufficiently reliable that they typically have no error detection at all. The higher-

speed USB protocol uses short cyclic redundancy checks (not discussed today) 

to implement light error detection. (For engineering reasons, higher-speed 

communications are more error prone. The basic idea is that at higher data rates, 

voltages have less time to correctly swing between high and low values.) 

Compact disks have moderately strong error-correction abilities (specifically, 

Reed-Solomon codes): this is what permits them to keep working in spite of 

little scratches. Deep-space applications have more stringent error-correction 

demands ([VO]). An interesting recent innovation is home networking over 

ordinary power lines ([Gib]). Naturally, this requires very strong error 

correction since it must keep working even when the vacuum cleaner is switched 

on. 
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Chapter one 

Fundamental terms 
and examples 
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The binary symmetric channel 1.1 

We are confining ourselves to communications channels in which only random 

errors occur, rather than burst or synchronization errors. Also, for today we will 

talk about binary codes, where the alphabet is {0,1}. We can quantify the 

random-error property a bit more by assuming there is a probability p of any bit 

being flipped from 0 to 1 or vice versa. This model of a transmission medium is 

called the binary symmetric channel, or BSC: binary since the symbols are bits, 

and symmetric since the probabilities of bit-setting and bit-clearing are the same. 

The fundamental theorem of communication is Shannon's theorem ([Sha ]), 

which when restricted to the BSC says that if p < 1/2, reliable communication is 

possible: we can always make a code long enough that decoding mistakes are 

very unlikely. Shannon's theorem defines the channel capacity, i.e. what 

minimum amount of redundant data needs to be added to make communication 

reliable. (See [ Sud ] for a nice proof.) Note however that Shannon's theorem 

proves only the existence of codes with desirable properties; it does not tell how 

to construct them. 

In [ MS]  it is shown that if p is exactly 1/2 then no communication is possible, 

but that if   p > 1/2 then one may interchange 0 and 1, and then assume p< 1/2. 

(For example, if p = 1, then it is certain that all 0's become l's and vice versa, and 

after renaming symbols there is no error whatsoever) 

If 𝑛 bits are transmitted in a block, the probability of all bits being wrong is 

      . The probability of an error in the first position is p          , and 

the same for the other single-position errors. Any given double error has 

probability             , and so on; the probability of an error in all 𝑛 

positions is p. Since we assume p < 1/2, the most likely scenario is no error at 

all. Each single-bit error case is the next likely, followed by each of the double-

bit error cases, etc. (For example, with 𝑛 = 3 and p = 0.1, these probabilities are 

0.729, 0.081, 0.009, and 0.001.) So, when I send you something that gets 

garbled in transit, you can only guess what happened to the message. But since 

we assume that fewer bit errors are more probable, you can use the maximum 

likelihood assumption to help guide your guesses, as we will see below. 

 

 

1. Fundamental  terms  and examples 
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1.2 Linear codes 

In physics, to facilitate analysis of a problem one often makes certain 

simplifying assumptions. For example, orbital mechanics is simpler, but 

fractionally less accurate, if one assumes the earth is a perfect sphere rather than 

a lumpy oblate spheroid. In particular, one often makes assumptions that permit 

analysis of a system using linear rather than non-linear differential equations, 

since the former are easy to solve. In engineering, by contrast, one designs 

systems rather than studying preexisting systems: one has the liberty of 

designing in linearity (and other simplifying assumptions) from the start. 

In this spirit, to facilitate analysis, we immediately replace the abstract alphabet  

∑ with the finite field of q elements,  𝔽 . (Recall that a finite field has a prime-𝒒

power number of elements. See [LN ] 

for background on finite fields. For today, q will simply be 2 so you won't need 

any particular expertise in finite fields.) Furthermore, since we divide a message 

M into blocks of k symbols each, i.e.    k-tuples over  𝔽 , we have vectors over a 𝒒

field. This permits the application of the well-known and powerful tools of 

linear algebra 

 

.Definitions 1.2.1  :  

● A block code (here, we will just call it a code) is any subset of the set of all 𝑛-

tuples over ∑ for some positive integer  𝑛. Since we take ∑ = 𝔽 , this means 

that a code is any subset C of the vector space  𝔽 
 . 

● If C is not just a subset of  𝔽 
 , but a subspace as well, then we say that C is a 

linear code, In this case, we take 𝒌 to be the dimension of C. (All codes 

discussed today will be linear)   

●The parameter 𝒌 is called the dimension of the linear code C; 𝑛  is called the 

length of C  

 ●The encoding problem is that of embedding  the smaller  vector space 𝔽 
𝒌  

into the larger vector space 𝔽 
   in a maximal way as will be discussed below. 

●A vector in 𝔽 
𝒌  , is called a message word; its image in C is called a     

codeword 



 ~6 ~ 
 

● During transmission, a codeword may be turned into any element of  𝔽 
 . We 

will call this a received word. 

 

Notation. For brevity, we will often write 𝑛 -tuples in the form 111 rather than 

(1,1,1). There is no ambiguity as long as each coordinate takes only a single 

digit, which is certainly the case over 𝔽  

 

1.3 The repetition codes 

Example. The three-bit  repetition code embeds 𝔽   into 𝔽 
   via the following:  

0 → 000 and 

 1 → 111. Here, 𝒌 = 1 and  𝑛 = 3. Note that there are     = 8  elements of  𝔽 
   

but only two of them are codewords. 

More generally, we have a family of 𝑛 -bit repetition codes, embedding  𝔽   into 

𝔽 
  : 0  maps to the vector consisting of 𝑛 zeroes, and 1 maps to 𝑛 ones. Clearly, 

these are linear codes. 

 

1.4 Minimum distance 

Definition 1.4.1   . The Hamming weight  of a vector  𝒗 in  𝔽   
 is given by the 

number of non-zero entries in 𝒗. This is a function ω : 𝔽 
 → Z. For example, 

ω(101) = 2. 

Definition 1.4.2  . The Hamming distance between vectors 𝒖 and 𝒗 in 𝔽 
  is 

given by the number of non-zero entries in their difference. That is, 𝑑: 𝔽 
   ˣ 𝔽 

  

→ Z is given by 𝑑(𝒖, 𝒗) = w(𝒖– 𝒗). For example, 𝑑 (101, 110) = ω(011) = 2. 

 Remark. When 𝑞 =2 this means we simply count the number of 

differing slots. 

Definition 1.4.3  . The minimum distance of a code C is the smallest distance 

between distinct pairs of vectors of C. If C is linear, then the difference of 𝒖 and 

𝒗 is also in C, so the minimum distance is  
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then the minimum weight over all non-zero vectors in C. For example, the 

three-bit repetition code has minimum distance 3.  We overload the letter 𝑑 by 

writing the minimum distance of C as 𝑑(C), or simply 𝑑. From the context, it's 

clear which meaning of 𝑑 is intended. 

(Note: For some codes it is clear what the minimum distance is. For others, 

while it may be relatively easy to compute a lower bound on a code's minimum 

distance, the true minimum distance may be much harder to find. For some 

families of codes, true minimum distances are unknown.) 

 

 Error detection and error correction 1.5 

By example, we will see how  error-detection and  error-correction abilities of a 

code are related to the code's minimum distance. Suppose we are sending single 

 0's and  1's  using a  three-bit repetition code. You may trust me to encode only  

0 or 1, as 000 or 111, respectively, but due to noise you might receive any of 

000, 001, 010, 011, 100, 101, 110 or  111. If you were to receive the block 111, 

then you may assume that either  I sent  111 and all bits are intact, or I sent  000 

and there was a triple bit error. Using the maximum likelihood assumption 

from above, the former conclusion is the more likely. Now suppose you receive 

the message 101 from me. Which is more likely: that  I  sent  000 and two bits 

were flipped, or that  I  sent  111 and the middle bit was flipped?  Again, the 

latter is the more likely. 

That is : 

● If you receive 000 (weight 0), then you  decode to 0, and you assume there 

were no errors in transmission.  

 •● If you receive 100, 010, or 001 (weight 1), then you decode to 0, and you 

believe there was a single bit error in transmission.  

● If you receive 110, 101, or 011 (weight 2), then you decode to 1, and you 

believe there was a single bit error in transmission. 

 

● If you receive 111 (weight 3), then you decode to 1, and you assume there 

were no errors in transmission. 
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In the following figure I mark codewords with an open circle. Maximum-

likelihood decoding involves finding the codeword which is nearest to a given 

received word: 

 

 

 

 

 

For this 3-bit repetition code, you can correctly detect any one-bit error. If  a 

triple bit error occurs, you won’t know it; if a double-bit error occurs, it will 

look like a single-bit error instead. In these latter two cases, you would have 

made a 

 decoding error. 

Now suppose we use a four-bit repetition code. I encode 0 as 0000 and 1 as 

1111. If you receive a vector of weight 0 or 1, you decode to 0; if you receive a 

vector of weight 3 or 4, then you decode to 1. However, if you receive a vector 

with two zero bits and two one bits, then you know something is wrong ( I  can 

be trusted to only have sent 0000 or 1111, neither of which you got), but it's a 

coin toss whether two bits got set by error, or two bits got cleared by error : 

 

  

 

 

 

 

For this 4-bit repetition code, you can reliably correct any 1-bit error, 

but you can only detect a 2-bit error. 

More generally, we see intuitively that if the minimum distance 𝑑 of a 

code C is odd, then C can detect and correct up to (𝑑 - 1)/2 errors per 

Figure ( 1.1) : Hamming distance 𝔽𝟐
𝟑 

                    And Hamming weight  𝔽𝟐
𝟑 

Figure ( 1.2) : Hamming distance 𝔽𝟐
𝟒 

                   And Hamming weight 𝔽𝟐
𝟒 
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block. If 𝑑 is even, then C can correct up to 𝑑/2 - 1 errors per block, 

and can detect up to 𝑑/2 errors per block. 

Thus, when an error-control system is being designed, the error 

statistics of the transmission medium must be known so that the 

minimum distance can be made high enough that the chance of 𝑑/2 or 

more errors occurring in a block is vanishingly small. (Shannon's 

theorem guarantees the existence of such codes.) Any fixed code may 

be defeated by worse-than-expected noise: either a system must be 

designed to handle worst-case noise, or it must be parameterized such 

that parameters may be adaptively adjusted at run time to match 

changing channel conditions. 

1.6  The even-weight parity check codes 

Let 𝑛=k+1. Embed 𝔽 
   into 𝔽 

  by sending 

             (,   , ...,  ) to (   ,    , ...,   ,   +...+      )          

where the sum is taken mod 2. For example, with k = 4, 1110 maps to 

11101. By construction, every codeword has even weight. The extra bit 

may be thought of as a parity bit: It is 0 when the input message word 

has an even number of 1 bits, and 1 when the input message word has 

an odd number of 1 bits. (Of course, we could define an odd-weight 

parity-check code as well. Since it would lack the zero vector, though, 

it would be not be a subspace of 𝔽 
 .) Thus, these are called the even-

weight parity check codes. 

 

Since 𝔽 
  consists of all k-tuples, including those with 1 in a single 

position and zeroes elsewhere, the code contains some (k+1)-tuples of 

weight 2. Since all  

codewords have even weight, this means that these parity-check codes 

have minimum distance 2. From the above discussion, this means 

they can detect single-bit errors, but can’t correct any errors at all. These are 

useful in the case when the probability of a single bit error is quite small but 

non-zero, and the probability of a double bit error is vanishingly small. They 

enable the receiver to flag a block as bad, and request the sender to retransmit it. 
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As with the repetition codes, these form a family of codes: the 𝑛-bit even-weight 

parity-check codes, embedding 𝔽 
    into 𝔽 

 . Since q = 2, the difference of two 

even-weight vectors is another even-weight vector. Thus these are linear codes. 

 

 A graphical perspective  1.7 

Here is what the 3-bit repetition and parity-check codes look like, respectively, 

inside 𝔽 
  : 

 

 

 

 

 

 

On the left, 𝔽   could have been sent to any edge, e.g. 000 and 001, but the two 

codewords would have distance 1 between them; as shown, they have distance 

3. Likewise, on the right, 𝔽 
  could have been sent to a face of the cube, with 

minimum distance 1; as shown, the codewords are spread out over the cube, as 

far apart from one another as possible, with minimum distance 2. These are 

clearly the highest-distance  1-dimensional  and  2-dimensional  subspaces, 

respectively, of 𝔽 
 . Here we have  q = 2, 𝑛 = 3 and k = 1 or 2. For higher  𝑛, k 

and q, though, it’s not immediately obvious how to spread out codewords in this 

maximum-distance manner. 

In general, the encoding problem consists in large part of finding a way of 

constructing such embeddings such that all codewords are as far apart from one 

another as possible. This problem clearly is combinatorial in nature. However, in 

recent years various approaches have happened to prove fruitful, including finite 

geometry ([AK]) and algebraic geometry      Pre2 ]) .   )] 

 

 

Figure (1.3) :  Graphical perspective inside   𝔽 
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 Rate, relative minimum distance, and asymptotic 1.8 

The repetition codes have good error-correcting ability. However, the drawback 

is that most of the transmitted data is redundant. For the 5-bit repetition codes, 

only one of every 5 bits is actual data. The parity-check codes, on the other 

hand, add just a single redundant bit, but tolerate fewer errors. 

Definition (1.8.1 ) . The rate of a code is the ratio R = k/𝑛. 

The repetition codes have rate R = 1/𝑛. As 𝑛 increases, R approaches zero. The 

parity-check codes have rate  R = (𝑛 − 1)/𝑛, which approaches 1 as 𝑛 increases. 

Definition (1.8.2 ) . The relative minimum distance of a code is the ratio     

    δ = 𝑑/𝑛.   

The repetition codes have relative minimum distance  δ = 𝑛/𝑛 = 1.  The parity-

check codes have relative minimum distance  2/𝑛, which approaches 0 as 𝑛 

increases. 

Of course, R and  δ  are both confined to the unit interval.  We say that 

asymptotically  (as 𝑛 gets big) the repetition-code family has R = 0 and δ = 1; 

asymptotically the parity-check family has R = 1 and δ = 0. For large  𝑛, the 

repetition codes carry vanishingly little actual data; their overhead is too large. 

For large 𝑛, the parity-check codes detect vanishingly few errors per block; their 

overhead is too small. 

Definition(1.8.3) . A good code  (really, a good family of codes) is one 

whose asymptotic rate and asymptotic relative minimum distance are both 

bounded away from zero. 

Clearly, the repetition and parity-check codes are not good. It can be shown that 

good codes exist; see [MS] for examples. 
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 Code parameters; upper and lower bounds 1.9 

A linear code is parameterized by the four integers  𝑛, k, 𝑑 and q, or equivalently 

by the four rational numbers  𝑛,  R,  δ  and q. Sometimes one says that  C  is an 

[𝑛, k, 𝑑] code, or perhaps an [𝑛, k, 𝑑] q code. For example, the 5-bit binary 

repetition code is a            code. (Similarly, we might write an asymptotic 

parameterization of a family of codes as [R, δ] or         ) 

We encode by embedding 𝔽 
𝒌 into 𝔽 

 . Not any embedding will do: as we saw in 

section 2.7, the canonical injection which appends  𝑛 -  k  zeroes is an 

embedding, but it has minimum distance 1. We want to find an embedding 

which keeps the vectors as far apart from one another as possible, maximizing 

ԃ, in order to maximize the code’s error-control ability. Or, given a fixed 

minimum distance, we would like to minimize 𝑛 or maximize k, to keep the 

code’s rate high.   Ideally we would like the rate and the relative minimum 

distance to both be high, but there are results (see [MS], [PW], [Wal]) which 

show that there are upper bounds on the asymptotic rate and relative minimum 

distance. 

Both R and  δ  are in the unit interval, so we may think of a parameter space 

which looks like the unit square : 

 

 

 

Note that there are particular codes with parameters in various places on this 

square. The zero- appending code, given by the map from  𝔽   to  𝔽 
   which 

appends 𝑛   1 zeroes, has  R = 1/𝑛  and  δ = 1/𝑛.  Asymptotically, both are zero. 

 Also, the identity code with  𝑛 = k = 1  has  R = 1  and  δ = 1 . However, this 

has no error-control ability at all. 

The Singleton bound states that for all codes, ԃ     𝑛    k    1. Thus, for any 

code with  𝑛 > 1 , the  R = 1,  δ = 1  corner is unattainable. Asympotically, the 
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Singleton bound shows that  R + δ     1.  This means that the asymptotic  (R, δ) 

 of a family of codes must be below the main diagonal. Clearly, this applies to 

even the identity codes, for which  R = 1  but  δ →  0.  The Plotkin bound shows 

that the asymptotic (R, δ) must be below the lower diagonal as well, where the δ 

intercept is  1 – 1/q.   See  [Wal] for a lucid discussion of these and other 

bounds. 

The Singleton and Plotkin bounds provide upper limits on the best code 

families: no codes can be asymptotically better. There are also lower bounds 

which specify how good the best codes can be, but don’t constrain how bad the 

worst codes can be (for example, the zero-appending code mentioned above). 

One  proves a lower bound, showing that there exist codes with (R, δ) above 

some curve in  R, δ  space; the problem of actually producing such codes is 

another problem entirely. Both of these issues are topics of  research. 
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 2.1  Encoding 

2.1.1  The generator matrix 

Up to now we haven't really put much linear algebra to work. To facilitate 

analysis, we now require not only that we have linear block codes mapping 

injectively from  𝔽 
   into 𝔽 

 , but furthermore that the injective mapping is a 

vector-space homomorphism, i.e. a linear transformation. There are many 

advantages to using a linear transformation, not the least of which is that instead 

of having to remember    images for all the message words, we need to 

remember only the images of k basis vectors. 

Such a linear transformation exists for any linear code. For example, {000, 

100,010, 110} is a subspace of  𝔽 
  , but I can send 𝔽 

  into it by  00 → 110 , 

01→ 100, 10→ 000, 11→ 010. This is a 1-1 map but it isn't linear since it 

doesn't send zero to zero. As long as I don't insist on which elements of  𝔽 
   

map to which elements of C, though, I can produce a linear map: since 𝔽 
  and C 

are vector spaces of the same dimensions over the same field, an isomorphism 

exists. To obtain it explicitly if only C is given, form a tall matrix the rows of 

which are all the vectors of C, then row-reduce and discard zero rows. The result 

is a basis for C. Then, send the ith standard basis vector in 𝔽 
  to the ith basis 

vector of C.  

However it is obtained, we write a generator matrix 

                                                                        G : 𝔽 
   →𝔽 

       

where C is the image of G in 𝔽 
 . For convenience later on (although it seems 

quite strange at the moment), we write G as a k x 𝑛 matrix: to encode the 

message word m, we write mG rather than Gm. (If this seems awkward, you 

may wish to temporarily think in terms of an      𝑛   k generator matrix, then 

transpose it when you're done. Also, from the context it is clear whether I'm 

treating m as a row or column vector.) 

What is a generator matrix for the repetition codes? Clearly, we write (𝑛 = 5 

here) 

G=[11111] 

For the parity-check code, we want (with 𝑛 = 5) 
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[ a , b, c, 𝑑,  a + b + c + 𝑑] = [a , b, c, 𝑑 ] [

     
     
     
     

] 

So             

                           G=[

     
     
     
     

] 

  

 

Of course, when  Ɛ𝒾  is the ith standard basis vector for  𝔽 
   , Ɛ𝒾 𝙂 is the 𝒾th row 

of 𝙂. Unless 𝜿 = 1 and 𝑞 = 2, there will be more than one basis vector, hence 

more than one permutation of the basis, along with various linear combinations 

of the basis vectors. Thus the generator matrix is generally not unique. Two 

different generator matrices are equivalent, though, if they generate the same 

subspace 𝑪 of 𝔽 
 . To test for equivalence of two generator matrices, test for 

equality of their row-echelon forms. 

 

(Computational note: finite fields have the property that computer arithmetic is 

exact. Thus, there is no roundoff error, and algorithms such as row reduction 

may be implemented easily for finite fields, with naive pivoting.) 

 

Systematic codes 2.1.2 

We've been saying that a linear code 𝑪 is a 𝒌-dimensional subspace of  𝔽 
 . 

From this definition, 𝙂 could take any form as long as it has rank 𝒌. However, 

our two examples so far (repetition and parity-check codes) have an additional 

property: the first 𝒌 bits of each 𝑛-bit codeword are identical to the 𝒌 bits of the 

corresponding message word. 

Definition (2.1.2.1) . A linear code is systematic if its generator matrix 𝙂 is 

of the form [  |A] for some 𝒌 x ( 𝑛 - 𝒌) matrix A, where    is the 𝒌 x 𝒌 identity 

matrix. 

Any linear code can be made systematic: just put 𝙂 in row-echelon form. 
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2.2  Decoding 

The parity-check matrix 2.2.1 

If a linear code C has been chosen, we've just seen that encoding is easy: it's just 

matrix multiplication. But how do we decode, and moreover, how do we do so 

efficiently? This might seem to be a harder problem. In fact, in general it is. 

There have been codes which were published before any decoding algorithm 

was known. And even for well-known codes, one area of current research is to 

develop improved decoding algorithms. 

Below, it will be useful to find a so-called parity-check matrix, H, such that C 

is precisely the kernel of  H. (The terminology originally comes from parity-

check codes, but it is a poor choice of words: all linear codes, not just the parity-

check ones, have a parity-check matrix.) That is, we will want H 𝒗 to be zero if 

and only if 𝒗 is in C. By the rank-nullity theorem, H will necessarily  be (𝑛 – k) 

  𝑛. Unlike with G, we post-multiply,  i.e. we write  H 𝒗, not  𝒗 H. 

How can such a matrix H be constructed, given G? First, some terminology. 

 

Definition (2.2.1.1) . The dual code of C, written    , is the set of vectors in 

𝔽 
  which are orthogonal to all vectors of C, using the standard dot product. 

(Note that the term dual code here has nothing to do with the term dual space 

from linear algebra.) That is, 

                            = {𝒗 ∈  𝔽 
  : 𝒰 · 𝒗 =0 for all 𝒰 ∈ C} 

(The Hamming weight is a vector-space norm, if we define │c│ con   , to have 

value 0 when c = 0, 1 otherwise. If we use the standard dot product, then 𝔽 
   

satisfies all the axioms for an inner product space except for the positive-

definiteness of the dot product.  E.g.  if      has characteristic 2, the non-zero 

vector (1,1) dotted with itself is 1+1 = 0. Note that the Hamming weight is 

computed in  ℤ: it is the number of non-zero coordinates in a vector. However, 

the dot product is computed  in   . Thus the Hamming weight and Hamming 

distance are positive definite, while the dot product is not. This means that 

inner-product-space results such as 𝔽 
  = C ⊕     do not apply: the intersection 

of a subspace and its perp can contain more than just the zero vector. In fact, a 

code can be self dual, i.e. C =     For example, {00, 11} is a self-dual subspace 
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of 𝔽 
  . From the result immediately below, a self-dual code must have even 𝑛, 

and k must be  𝑛 /2.) 

We already have G; it remains to actually compute a matrix  for H. Suppose that 

our problem were reversed, i.e. if we had H, how would we compute G? That's 

easy: since the kernel of H is the image of G (which is C) we could just compute 

the kernel basis of H, which is a standard elementary linear algebra problem. G 

would have rows equal to the elements of that basis. 

Now, I claim that, fortuitously, the generator matrix of     is H and the parity-

check matrix of     is G. That is,   's G and H are swapped from C's. Also note 

that        is just C. We are given G, which is C's generator matrix as well as 

  's parity-check matrix. The kernel basis of G is the generator matrix for     

which is also the parity-check matrix for C. So this trick means that not only can 

we get a G by computing a kernel basis of an H, but vice versa as well. 

It remains to prove that     has generator matrix H and parity-check matrix G. 

Remember the  convention that a generator matrix acts by post-multiplication 

and that a parity-check matrix acts by pre-multiplication. So in this role, 𝙃 maps 

𝔽 
    to 𝔽 

  by sending 𝓩 to 𝓩𝙃, and 𝙂 maps 𝔽 
  to 𝔽 

   by sending 𝒗 to 𝙂𝒗. To 

avoid confusion (only for the duration of this proof) we will write 𝙂 for 𝙂: 𝔽 
  → 

𝔽 
  acting by post-multiplication and 𝙂. for 𝙂: 𝔽 

   → 𝔽 
    acting by pre-

multiplication. Likewise, we will write 𝙃. for 𝙃: 𝔽 
   →𝔽 

      and · 𝙃 for 𝙃: 

𝔽 
   → 𝔽 

   . Plain 𝙂 and 𝙃 refer to the matrices without respect to a linear 

transformation. 

We want the following short exact sequences: 

 

 

 

 

with im(𝙂)=C=ker(𝙃) and im(H𝙃) =     = ker(𝙂). The short exactness means 

that .𝙂  and  𝙃 are 1-1, while 𝙃. and 𝙂: are onto. Thus, it suffices to show: (1) 

im(𝙃) =   ;  (2)  𝙃 is 1-1,  (3)  ker(𝙂) =   , and (4) 𝙂 is onto. Now, we already 

have that the matrix 𝙂 has rank k  and  𝙃  has rank 𝑛  𝑘. Since row rank equals 
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column rank, (4) will follow from (3) by the rank-nullity theorem. Likewise, (2) 

will follow from (1) since    has dimension  𝑛  𝑘. 

To prove  (3),  first  let 𝒗  ∈      . The rows of 𝙂 form a basis for C; let     be 

the ith row of 𝙂, for i=1, ..., 𝚔, where each   , is a vector of length 𝑛 (since it is 

in 𝔽 
 ). Also let 𝒗 = (   ,...,  ). The matrix-times-vector multiplication 𝙂. 𝒗 

consists of dot products of v with the rows of 𝙂: 

 

Since each     ; is in C and since 𝒗 is in   , all the dot products are zero and so 

𝙂. 𝒗=0. 

Conversely, let 𝒗 ∈ ker(𝙂.). Then 𝙂 • 𝒗 = 0.  Again, this product consists of dot 

products of rows of 𝙂 with 𝒗, so   • 𝒗 = 0 for all    's. Let c be an arbitrary 

element of  C. Since the   's are a basis for C, c =        
 
    for some         

in.𝔽  Then 

𝒗 • c = 𝒗 .      
 
    

             
 
   = 0   = 

Therefore 𝒗 ∈    

To prove that im(𝙃) =    notice in general that when a matrix X acts on a 

standard basis by Xεi, the image of that basis consists of the columns of X. 

Likewise, when X acts on a standard basis by ɛi𝐗, the image of that basis 

consists of the rows of X. It will suffice to show that the rows 

 

of 𝙃 are a basis for C+. Remember that we set up 𝙃 to check the elements of C, 

and since G has rows forming a basis for C, necessarily 

H    = 0 
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This means that the rows of 𝙃 are orthogonal to the rows of  G, which shows 

that the rows of 𝙃 are in C-. Since we know that 𝙃 has rank  𝑛 – k, the image of 

the standard basis for  𝔽 
    under 𝙃 is linearly independent, and im(𝙃) must be 

all of Ch. 

Example(2.2.1.1) . Let's carry out this computation for the two families of 

codes we've seen so far. The 5-bit repetition code has generator matrix 

G=[1 1 1 1 1] 

We then compute the kernel basis (in row-echelon form) 

                             H  =  [

     
     
     
     

] 

Intuitively, this makes sense: recalling that we are working mod 2, this means 

that 𝙃 𝒗 is 0 only when 𝒗 has all coordinates the same. The two possible cases 

are 00000 and 11111, which are precisely the  codewords of the 5-bit repetition 

codes. 

Next, the 5-bit parity-check code has generator matrix 

      G  =  [

     
     
     
     

] 

We then compute 

H = [1 1 1 1 1] 

Intuitively, this also makes sense: pre-multiplying 𝒗 by 𝙃 just adds up the bits of 

v mod 2. The result will be zero precisely when 𝒗 has even parity, which is the 

case iff 𝒗 is in C. 

As an added bonus, since the first G is the same as the second 𝙃, and vice versa, 

we now see that the repetition and parity-check families are duals of one 

another. 
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2.2.2 Computing  𝙃  for systematic codes  

The parity-check matrix is particularly easy to compute when C is systematic, 

i.e. when 𝙂 is in row-echelon form. For example, take 𝒌 = 3, 𝑛 = 6 and suppose 

𝙂 = [      = [ 

            

            

            

] 

Writing   𝒎 rather than 𝒎𝖦 to save horizontal space on the paper, a message 

word (  ,     ) is encoded as 

[
 
 
 
 
 

   
   
   

         

         

         ]
 
 
 
 
 

  [

  

  

  

] =  

[
 
 
 
 
 

  

  

  

                  

                  
                 ]

 
 
 
 
 

 

 

We want to write an 𝙃 such that 𝙃 times this codeword is zero, but that's easy: 

[

               
                
               

]   

[
 
 
 
 
 

  

  

  

                  

                  
                 ]

 
 
 
 
 

    =   

[
 
 
 
 
 
 
 
 
 
 
 ]
 
 
 
 
 

  

 

We can generalize this example to see that if 

𝙂 = [      

    

Then  

𝙃 = [    │    ] 

 Thus, systematic G and 𝙃 may be computed from one another by inspection. 
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2.2.3  Brute-force decoding 

If I send you an encoded message, with errors in transit, how do you decode to 

find out what I really meant to say? If the message space is small, i.e. if 𝘲 and   

are small, then you could simply make a list of all possible elements of 𝔽 
  , with 

the nearest-neighbor codeword precomputed by hand for each. This is what we 

did in section 2.5 However this is infeasible for larger codes, which might have 

billions of  codewords or more: it requires having a table of size 𝑞 . 

2.2.4  The coat of arms 

A useful diagram from [MS], attributed therein to David Slepian, is the 

following: 

 

Sender Encoder Channel Decoder Recipient 

   

𝒎=   . . .      𝒖=      .  . .                   𝒗 = 𝒖 +  e          ê =     . . .      

  

 

 

Since we are assuming our channel only inserts random errors, without changing 

the block length by loss of synchronization, we can think of the error vector as 

being added to the codeword during transmission. Since we embed our 𝔽 
  into 

𝔽 
  using a linear transformation (rather than any old injective map), and since 

𝙃𝒖 is zero for all codewords 𝒖, we have the following key fact:  

 

𝒗 = 𝒖 + e  

 H 𝒗 = H(𝒖 + e) = H 𝒖 + He = He 

 

 

𝑀essage codeword 
Received vector Estimate of error 

e =  𝑒  . . . 𝑒 𝑛  

 Error vector 
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2.2.5  Standard-array decoding 

Definition( 2.2.5.1) . The  quantity 𝙃𝒗 =𝙃e  from the previous section is 

called the syndrome of 𝒗. When we form the quotient space  𝔽 
 /C, from 

elementary algebra we know that the  cosets of  C  partition  𝔽 
 . Since C is 

precisely the kernel of 𝙃, if two received vectors  are  in  the  same  coset, 

u ~ 𝒗 

u − 𝒗 ∈ 𝙲 

H(u – 𝒗) = 0 

Нu = H𝒗 

Thus, two vectors are in the same coset iff they share the same syndrome. 

Now, u was transmitted;  𝒗 = u + e was received, but the receiver can only guess 

at what e is. Since 𝒗 and e have the same syndrome, the true error vector e is 

somewhere in 𝒗's coset. Furthermore, since we are using the maximum 

likelihood assumption mentioned in section 2.1, the most likely error vector ê is 

the smallest-weight vector in 𝒗's coset. (A decoding error means e ≠ ê.) 

So, the standard-array decoding algorithm has two stages: the first stage is 

some precomputation before any data is received; the second is done as each 

block is received. 

Precomputation stage: 

 Write down the elements of  𝔽 
  and encode each element. This is a two-by-

𝑞  table, pairing up message words and codewords. Sort this by codeword 

for easy lookup later. 

 

 Write down the quotient space 𝔽 
 /C. This requires making, for the moment, 

a matrix of all 𝑞  elements of  𝔽 
 . (Note that this algorithm is also not OK 

for large codes, although the resulting tables will be smaller than for the 

brute-force method.) 

 

 For each coset, search for the smallest-weight element in the coset. This is 

called the coset leader. Compute and remember the syndrome of the coset 

leader; forget about the rest of the coset. 
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 Make a list pairing up syndromes  and  coset  leaders. This is a      two-by-

𝑞    table. Sort this by syndrome for easy lookup later. 

 

 

Decoding stage: 

• Given a received vector 𝒗, compute its syndrome s. 

• Look up this syndrome in the precomputed syndrome / leader table. 

• Find the most likely error vector ê corresponding to s. 

•  Compute  û = 𝒗 - ê. 

• Look up û in the precomputed message/codeword table to obtain 𝒎̂. 

This is our best guess of what the transmitter sent. 

 

Note that both table lookups are done on sorted data. This means we don't have 

to sequentially scan either table at run time. The syndromes are all of  𝔽   , so 

we can use base-q arithmetic to go directly to the desired element of the 

syndrome /leader table. For the message/codeword table, we can use a binary 

search, with a number of lookups roughly log2 of the table size. 

(Note that the  message/codeword  table isn't necessary. Once we have a 

codeword  û, we can solve the linear system û = 𝒎̂G for 𝒎̂ using row reduction. 

This reduces table space, at the expense of making the decoding stage use more 

computation.) 

Example( 2.2.5.1). Let's compute the standard array for the 3-bit repetition 

code. We have 

G = [ 1 1 1 ]  , H = [
   
   

] 

The message words are 0 and 1. Their images under G are 000 and 111. So, the 

message/codeword table is as follows: 

            

 
 
        

   
   

 

The possible received vectors (all of 𝔽 
 ) are: 

000,001,010,011, 100, 101, 110, 111 
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C is:                    000,111 

  

𝔽 
 /C is:                

 

The coset leaders are the minimum-weight vectors of each coset. These are as 

follows, with corresponding syndromes: 

            

   
   
   
   

     

  
  
  
  

  

 

 

Here is an example of using the standard array to decode a received vector: 

• Receive 𝒗 =  011. 

• Compute s  =  𝙃𝒗  = 10 

• 10 in binary  is  2 in decimal,  so go to row 2  (with row indices starting at 0) 

of the syn-drome/leader table. 

• At that spot, find ê = 100. 

• Compute  û = 𝒗 – ê = 011 – 100 = 111. 

• Match codeword 111 with message word 1 in the message/codeword table to 

obtain  ̂ = 1. 
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 انتىصُاث

 

ٌ٘صً اىثادثاُ تأُ ٌرٌ اسرخذاً ٕزا اىرصٌٍَ فً دساسح اىَصف٘فاخ اىرً ذنُ٘ ػيى شنو ٍصف٘فاخ  -1

 ٍشتؼح

 

قْاج الاسساه فً ْٕذسح الاذصالاخ   channel فً اسساه اىَؼيٍ٘اخ ػثش  ٌرٌ اسرخذاً ٕزا اىرصٌٍَ -2   
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Table (1) : ⨁ and  ⨀ in   
  

 

 

  
  = { 0 , 1} 

 (   
  , ⨁ , ⨀ ) 

⨁ 0 1 Hamming  weight Hamming distance  

0 0 1 0 0 

1 1 1 1 1 

 

 

 

 

⨀ 0 1 Hamming  weight Hamming distance  

0 0 0 0 0 

1 1 1 1 1 

 

 

  



Table (2) : ⨁ and  ⨀ in   
  

 

 

  
  = { 00 , 01, 10,11} 

(   
  , ⨁ , ⨀ ) 

⨁ 00 01 10 11 Hamming weight Hamming distance 

00 00 01 10 11 0 0 

01 01 00 11 10 1 1 

10 10 11 00 01 1 1 

11 11 10 01 00 2 2 

 

 

 

⨀ 00 01 10 11 Hamming weight Hamming distance 

00 00 00 00 00 0 0 

01 00 01 00 01 1 1 

10 00 00 10 10 1 1 

11 00 01 10 11 2 2 

 

 

  



Table (3) : ⨁ and  ⨀ in   
  

 

  
  = {000, 001, 010, 011, 100, 101, 110,111} 

(   
  , ⨁ , ⨀ ) 

 

⨁ 000 001 010 011 100 101 110 111 Hamming Weight Hamming distance 

000 000 001 010 011 100 101 110 111 0 0 

001 001 000 011 010 101 100 111 110 1 1 

010 010 011 000 001 110 111 100 101 1 1 

011 011 010 001 000 111 110 101 100 2 2 

100 100 101 110 111 000 001 010 011 1 1 

101 101 100 111 110 001 000 011 010 2 2 

110 110 111 100 101 010 011 000 001 2 2 

111 111 110 101 100 011 010 001 000 3 3 

 

 

 

 

⨀ 000 001 010 011 100 101 110 111 Hamming Weight Hamming distance 

000 000 000 000 000 000 000 000 000 0 0 

001 000 001 000 001 000 001 000 001 1 1 

010 000 000 010 010 000 000 010 010 1 1 

011 000 001 010 011 000 100 010 011 2 2 

100 000 000 000 000 100 100 100 100 1 1 

101 000 001 000 001 100 101 100 101 2 2 

110 000 000 010 010 100 100 110 110 2 2 

111 000 001 010 011 100 101 110 111 3 3 



 

Table (4) : ⨁ and  ⨀ in   
  

  
  = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111} 

 (   
  , ⨁ , ⨀ ) 

⊕ 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 H.W H.D 

0000 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 0 0 

0001 0001 0000 0011 0010 0101 0100 0111 0110 1001 1000 1011 1010 1101 1100 1111 1110 1 1 

0010 0010 0011 0000 0001 0110 0101 0100 0101 1010 1011 1000 1001 1110 1111 1100 1101 1 1 

0011 0011 0010 0001 0000 0111 0110 0101 0100 1011 1010 1001 1000 1111 1110 1101 1100 2 2 

0100 0100 0101 0110 0111 0000 0001 0010 0011 1100 1001 1110 1111 1000 1001 1010 1011 1 1 

0101 0101 0100 0111 0110 0001 0000 0011 0010 1101 1110 1111 1110 1001 1000 1011 1010 2 2 

0110 0110 0111 0100 0101 0010 0011 0000 0001 1110 1111 1100 1101 1010 1011 1000 1001 2 2 

0111 0111 0110 0101 0100 0011 0010 0001 0000 1111 1110 1101 1100 1011 1010 1001 1000 3 3 

1000 1000 1001 1010 1100 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111 1 1 

1001 1001 1000 1011 1010 1101 1100 1111 1110 0001 0000 0011 0010 0101 0100 0111 0110 2 2 

1010 1010 1011 1000 1001 1110 1111 1100 1101 0010 0011 0000 0001 0110 0111 0100 0101 2 2 

1011 1011 1010 1001 1000 1111 1110 1101 1100 0011 0010 0001 0000 0111 0110 0101 0100 3 3 

1100 1100 1101 1110 1111 1000 1001 1010 1011 0100 0101 0110 0111 0000 0001 0010 0011 2 2 

1101 1101 1100 1111 1110 1001 1010 1011 1010 0101 0100 0111 0110 0001 0000 0011 0010 3 3 

1110 1110 1111 1100 1101 1010 1011 1000 1001 0110 0111 0100 0101 0010 0011 0000 0001 3 3 

1111 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 4 4 



 

Table (4) : ⨁ and  ⨀ in   
  

  
  = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111} 

 (   
  , ⨁ , ⨀ ) 

⨀ 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 H.W H.D 

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0 0 

0001 0000 0001 0000 0001 0000 0001 0000 0001 0000 0001 0000 0001 0000 0001 0000 0001 1 1 

0010 0000 0000 0010 0010 0000 0000 0010 0010 0000 0000 0010 0010 0000 0000 0010 0010 1 1 

0011 0000 0001 0010 0011 0000 0001 0010 0011 0000 0001 0010 0011 0000 0001 0010 0011 2 2 

0100 0000 0000 0000 0000 0100 0100 0100 0100 0000 0000 0000 0000 0100 0100 0100 0100 1 1 

0101 0000 0001 0000 0001 0100 0101 0100 0101 0000 0001 0000 0001 0100 0101 0100 0101 2 2 

0110 0000 0000 0010 0010 0100 0100 0110 0110 0000 0000 0010 0010 0100 0100 0110 0110 2 2 

0111 0000 0001 0010 0011 0100 0101 0110 0111 0000 0001 0010 0011 0100 0101 0110 0111 3 3 

1000 0000 0000 0000 0000 0000 0000 0000 0000 1000 1000 1000 1000 0100 1000 1000 1000 1 1 

1001 0000 0001 0000 0001 0000 0001 0000 0001 1000 1001 1000 1001 0100 1001 1000 1001 2 2 

1010 0000 0000 0010 0010 0000 0000 0010 0010 1000 1000 1010 1010 0100 1001 1010 1010 2 2 

1011 0000 0001 0010 0011 0000 0001 0010 0011 1000 1001 1010 1011 0100 1001 1010 1011 3 3 

1100 0000 0000 0000 0000 0100 0100 0100 0100 1000 1000 1000 1000 1100 1100 1100 1100 2 2 

1101 0000 0001 0000 0001 0100 0101 0100 0101 1000 1001 1000 1001 1100 1101 1100 1101 3 3 

1110 0000 0000 0010 0010 0100 0100 0110 0110 1000 1000 1010 1010 1100 1100 1110 1110 3 3 

1111 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 4 4 



 

Table (5) : Hamming distance and Hamming weight in   
  

 

X = (   ,    ,    ,…..) 

Y = (   ,    ,    ,…..) 

X ⨀ Y = (     ⨁       ⨁       , …) = number ( 0 or 1) 

X ⨁ Y = (  ⨁    ,     ⨁    ,     ⨁    , … ) = vector 

 

 (   
  , ⨁ , ⨀ ) 

         
  = { 0 , 1} 

 

⨁ 0 1 Hamming Weight Hamming distance 

0 (0,0) (0,1) 0 0 

1 (1.0) (1,1) 1 1 

 

 

 

⨁ 0 1 Hamming Weight Hamming distance 

0 0 0 0 0 

1 0 1 1 1 

 

 

 

 

 

 



 

 

Table (6) : Hamming distance and Hamming weight in   
  

 

 

  
  = { 00 , 01, 10,11} 

(   
  , ⨁ , ⨀ ) 

 

⨁ 00 01 10 11 Hamming weight Hamming distance 

00 (0,0) (0,1) (1,0) (1,1) 0 0 

01 (0,1) (0,0) (1,1) (1,0) 1 1 

10 (1,0) (1,1) (0,0) (0,1) 1 1 

11 (1,1) (1,0) (0,1) (0,0) 2 2 

 

 

(   
  , ⨀ ) 

 

⨀ 00 01 10 11 Hamming weight Hamming distance 

00 0 0 0 0 0 0 

01 0 1 0 1 1 1 

10 0 0 1 1 1 1 

11 0 1 1 0 2 2 

 

 

 



 

Table (7) : Hamming distance and Hamming weight in   
  

 

 

 

⨀ 000 001 010 011 100 101 110 111 Hamming 

Weight 

Hamming 

distance 

000 0 0 0 0 0 0 0 0 0 0 

001 0 1 0 1 0 1 0 1 1 1 

010 0 0 1 1 0 0  1 1 1 1 

011 0 1 1 0 0 1 1 0 2 2 

100 0 0 0 0 1 1 1 1 1 1 

101 0 1 0 1 1 0 1 0 2 2 

110 0 0 1 1 1 1 0 0 2 2 

111 0 1 1 0 1 0 0 1 3 3 

⨁ 000 001 010 011 100 101 110 111 Hamming 

Weight 

Hamming 

distance 

000 (0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1) 0 0 

001 (0,0,1) (0,0,0) (0,1,1) (0,1,0) (1,0,1) (1,0,0) (1,1,1) (1,1,0) 1 1 

010 (0,1,0) (0,1,1) (0,0,0) (0,0,1) (1,1,0) (1,1,1) (1,0,0) (1,0,1) 1 1 

011 (0,1,1) (0,1,0) (0,0,1) (0,0,0) (1,1,1) (1,1,0) (1,0,1) (1,0,0) 2 2 

100 (1,0,0) (1,0,1) (1,1,0) (1,1,1) (0,0,0) (0,0,1) (0,1,0) (0,1,1) 1 1 

101 (1,0,1) (1,0,0) (1,1,1) (1,1,0) (0,0,1) (0,0,0) (0,1,1) (0,1,0) 2 2 

110 (1,1,0) (1,1,1) (1,0,0) (1,0,1) (0,1,0) (0,1,1) (0,0,0) (0,0,1) 2 2 

111 (1,1,1) (1,1,0) (1,0,1) (1,0,0) (0,1,1) (0,1,0) (0,0,1) (0,0,0) 3 3 

𝔽 
  = {000, 001, 010, 011, 100, 101, 110,111} 

 ( 𝔽 
  , ⨁ , ⨀ ) 

 



⊕ 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 H.W H.D 

0000 0,0,0,0 0,0,0,1 0,0,1,0 0,0,1,1 0,1,0,0 0,1,0,1 0,1,1,0 0,1,1,1 1,0,0,0 1,0,0,1 1,0,1,0 1,0,1,1 1,1,0,0 1,1,0,1 1,1,1,0 1,1,1,1 0 0 

0001 0,0,0,1 0,0,0,0 0,0,1,1 0,0,1,0 0,1,0,1 0,1,0,0 0,1,1,1 0,1,1,0 1,0,0,1 1,0,0,0 1,0,1,1 1,0,1,0 1,1,0,0 1,1,0,0 1,1,1,1 1,1,1,0 1 1 

0010 0,0,1,0 0,0,1,1 0,0,0,0 0,0,0,1 0,1,1,0 0,1,1,1 0,1,0,0 0,1,0,1 1,0,1,0 1,0,1,1 1,0,0,0 1,0,0,1 1,1,1,0 1,1,1,1 1,1,0,0 1,1,0,1 1 1 

0011 0,0,1,1 0,0,1,0 0,0,0,1 0,0,0,0 0,1,1,1 0,1,1,0 0,1,0,1 0,1,0,0 1,0,1,1 1,0,1,0 1,0,0,1 1,0,0,0 1,1,1,1 1,1,1,0 1,1,0,1 1,1,0,0 2 2 

0100 0,1,0,0 0,1,0,1 0,1,1,0 0,1,1,1 0,0,0,0 0,0,0,1 0,0,1,0 0,0,1,1 1,1,0,0 1,1,0,1 1,1,1,0 1,1,1,1 1,0,0,0 1,0,0,1 1,0,1,0 1,0,1,1 1 1 

0101 0,1,0,1 0,1,0,0 0,1,1,1 0,1,1,0 0,0,0,1 0,0,0,0 0,0,1,1 0,0,1,0 1,1,0,1 1,1,0,1 1,1,1,1 1,1,1,0 1,0,0,1 1,0,0,0 1,0,1,1 1,0,1,0 2 2 

0110 0,1,1,0 0,1,1,1 0,1,0,0 0,1,0,1 0,0,1,0 0,0,1,1 0,0,0,0 0,0,0,1 1,1,1,0 1,1,1,1 1,1,0,0 1,1,0,1 1,0,1,0 1,0,0,1 1,0,0,0 1,0,0,1 2 2 

0111 0,1,1,1 0,1,1,0 0,1,0,1 0,1,0,0 0,0,1,1 0,0,1,0 0,0,0,1 0,0,0,0 1,1,1,1 1,1,1,0 1,1,0,1 1,1,0,0 1,0,1,1 1,0,1,0 1,0,0,1 1,0,0,0 3 3 

1000 1,0,0,0 1,0,0,1 1,0,1,0 1,0,1,1 1,1,0,0 1,1,0,1 1,1,1,0 1,1,1,1 0,0,0,0 0,0,0,1 0,0,1,0 0,0,1,1 0,1,0,0 0,1,0,1 0,1,1,0 0,1,1,1 1 1 

1001 1,0,0,1 1,0,0,0 1,0,1,1 1,0,1,0 1,1,0,1 1,1,0,0 1,1,1,1 1,1,1,0 0,0,0,1 0,0,0,0 0,0,1,1 0,0,1,0 0,1,0,1 0,1,0,0 0,1,1,1 0,1,1,0 2 2 

1010 1,0,1,0 1,0,1,1 1,0,0,0 1,0,0,1 1,1,1,0 1,1,1,1 1,1,0,0 1,1,0,1 0,0,1,0 0,0,1,1 0,0,0,0 0,0,0,1 0,1,1,0 0,1,1,1 0,1,0,0 0,1,0,1 2 2 

1011 1,0,1,1 1,0,1,0 1,0,0,1 1,0,0,0 1,1,1,1 1,1,1,0 1,1,0,1 1,1,0,0 0,0,1,1 0,0,1,0 0,0,0,1 0,1,0,0 0,1,1,1 0,1,1,0 0,1,0,1 0,1,0,0 3 3 

1100 1,1,0,0 1,1,0,1 1,1,1,0 1,1,1,1 1,0,0,0 1,0,0,1 1,0,1,0 1,0,1,1 0,1,0,0 0,1,0,1 0,1,1,0 0,1,1,1 0,0,0,0 0,0,0,1 0,0,1,0 0,0,1,1 2 2 

1101 1,1,0,1 1,1,0,0 1,1,1,1 1,1,1,0 1,0,0,1 1,0,0,0 1,0,1,1 1,0,1,0 0,1,0,1 0,1,0,0 0,1,1,1 0,1,1,0 0,0,0,1 0,0,0,0 0,0,1,1 0,0,1,0 3 3 

1110 1,1,1,0 1,1,1,1 1,1,0,0 1,1,0,1 1,0,1,0 1,0,1,1 1,0,0,0 1,0,0,1 0,1,1,0 0,1,1,1 0,1,0,0 0,1,0,1 0,0,1,0 0,0,1,1 0,0,0,0 0,0,0,1 3 3 

1111 1,1,1,1 1,1,1,0 1,1,0,1 1,1,0,0 1,0,1,1 1,0,1,0 1,0,0,1 1,0,0,0 0,1,1,1 0,1,1,0 0,1,0,1 0,1,0,0 0,0,1,1 0,0,1,0 0,0,0,1 0,0,0,0 4 4 

𝔽 
  = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111} 

 ( 𝔽 
  , ⨁ , ⨀ ) 

Table (8) : Hamming distance and Hamming weight in 𝔽 
  

 



Table (8) : Hamming distance and Hamming weight in   
  

 

  
  = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111} 

 (   
  , ⨁ , ⨀ ) 

 

ʘ 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 H.W H.D 

0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0001 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 

0010 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 

0011 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 2 2 

0100 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 

0101 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 2 2 

0110 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 2 2 

0111 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 3 3 

1000 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 

1001 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 2 2 

1010 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 2 2 

1011 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 3 3 

1100 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 2 2 

1101 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 3 3 

1110 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 3 3 

1111 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 4 4 

 


