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ء   الأهدأ   

 

ـهِ  حِيمِ  الرحمنبسِمِْ الل َّ  الر َّ

 الهذِينَ آمَنُوا وَتَطْمَئِنُّ قُ لُوبُُمُ بِذكِْرِ اللَّهِ  ۗ أَلََ بِذكِْرِ اللَّهِ تَطْمَئِنُّ الْقُلُوبُ 
 

نحمدالله عز وجل الذي وفقنا في اتمام هذا البحث العلمي :أولا   

  ......اهدي تخرجي

فضل الأول في بلوغي التعليم العالي )والدي الحبيب الى صاحب السيرة. العطرة الذي كان ال

 أطال الله في عمره( 

حياة )أمي الحبيبة(إلى من وضعتني في طريق ال   

الى كل من كان لهم بالغ الأثر في كثير من الصعاب الي جميع استاذتي الكرام ونتقدم بجزيل 

على كل ما قدمه لنا من توجيهات ومعلومات ساهمت    هاديلدكتور المشرف خالد االشكر  

  في اثراء

وضوع دراستنام  

   .طريقناا في نت احيان التي كا الظلمة يضئعونا ونور ا  كإنو وكذلك نشكر الذين 
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 ملخص البحث

 

في هذا البحث تم دراسة الأنظمة الديناميكية التي تفسر الدوال التي  

 وخواصها.بدراسة شكل الدالة  تأثيرتعتمد على متغير حقيقي له 

ها حيث تم دراسة الأنظمة ذات البعد الواحد مع بعض امثلت

 ثم الحقيقة.عها على خط الاعداد بالإضافة الى دراسة اشكالها بتوسي

دراسة وإعطاء من خلال  وأكثرالأنظمة ذات البعدين  تم دراسة

تعاريف خاصة لها بالإضافة الى بعض الأمثلة التوضيحية 

التطبيقية والاشكال المهمة لها. وفي الختام تم توضيح بعض الأمثلة 

   لذلك.



 

 

6 

The Introduction 

 

In mathematics, a dynamical system is a system in which a function describes 

the time dependence of a point in an ambient space. Examples include 

the mathematical models that describe the swinging of a clock pendulum, the 

flow of water in a pipe, and the number of fish each springtime in a lake. The most 

general definition unifies several concepts in mathematics such as ordinary 

differential equations and ergodic theory by allowing different choices of the 

space and how time is measured. Time can be measured by integers, 

by real or complex numbers or can be a more general algebraic object, losing the 

memory of its physical origin, and the space may be a manifold or simply a set, 

without the need of a smooth space-time structure defined on it. 

At any given time, a dynamical system has a state representing a point in an 

appropriate state space. This state is often given by a tuple of real numbers or by 

a vector in a geometrical manifold. The evolution rule of the dynamical system is 

a function that describes what future states follow from the current state. Often 

the function is deterministic, that is, for a given time interval only one future state 

follows from the current state.[1][2] However, some systems are stochastic, in that 

random events also affect the evolution of the state variables. 

In physics, a dynamical system is described as a "particle or ensemble of 

particles whose state varies over time and thus obeys differential 

equations involving time derivatives".[3] In order to make a prediction about the 

system's future behavior, an analytical solution of such equations or their 

integration over time through computer simulation is realized. 

The study of dynamical systems is the focus of dynamical systems theory, which 

has applications to a wide variety of fields such as mathematics, 

physics,[4][5] biology,[6] chemistry, engineering,[7] economics,[8] history, 

and medicine. Dynamical systems are a fundamental part of chaos theory, logistic 

map dynamics, bifurcation theory, the self-assembly and self-

organization processes, and the edge of chaos concept. 

The concept of a dynamical system has its origins in Newtonian mechanics. 

There, as in other natural sciences and engineering disciplines, the evolution rule 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Time
https://en.wikipedia.org/wiki/Point_(geometry)
https://en.wikipedia.org/wiki/Space
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Pendulum
https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Population_dynamics
https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Ergodic_theory
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Manifold
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Differentiability
https://en.wikipedia.org/wiki/State_(controls)
https://en.wikipedia.org/wiki/State_space
https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Real_numbers
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Deterministic_system_(mathematics)
https://en.wikipedia.org/wiki/Dynamical_system#cite_note-1
https://en.wikipedia.org/wiki/Dynamical_system#cite_note-2
https://en.wikipedia.org/wiki/Stochastic_system
https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Dynamical_system#cite_note-3
https://en.wikipedia.org/wiki/Dynamical_systems_theory
https://en.wikipedia.org/wiki/Dynamical_system#cite_note-4
https://en.wikipedia.org/wiki/Dynamical_system#cite_note-5
https://en.wikipedia.org/wiki/Biology
https://en.wikipedia.org/wiki/Dynamical_system#cite_note-6
https://en.wikipedia.org/wiki/Chemistry
https://en.wikipedia.org/wiki/Engineering
https://en.wikipedia.org/wiki/Dynamical_system#cite_note-7
https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Dynamical_system#cite_note-8
https://en.wikipedia.org/wiki/Cliodynamics
https://en.wikipedia.org/wiki/Medicine
https://en.wikipedia.org/wiki/Chaos_theory
https://en.wikipedia.org/wiki/Logistic_map
https://en.wikipedia.org/wiki/Logistic_map
https://en.wikipedia.org/wiki/Bifurcation_theory
https://en.wikipedia.org/wiki/Self-assembly
https://en.wikipedia.org/wiki/Self-organization
https://en.wikipedia.org/wiki/Self-organization
https://en.wikipedia.org/wiki/Edge_of_chaos
https://en.wikipedia.org/wiki/Newtonian_mechanics
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of dynamical systems is an implicit relation that gives the state of the system for 

only a short time into the future. (The relation is either a differential 

equation, difference equation or other time scale.) To determine the state for all 

future times requires iterating the relation many times—each advancing time a 

small step. The iteration procedure is referred to as solving the 

system or integrating the system. If the system can be solved, given an initial point 

it is possible to determine all its future positions, a collection of points known as 

a trajectory or orbit. 

Before the advent of computers, finding an orbit required sophisticated 

mathematical techniques and could be accomplished only for a small class of 

dynamical systems. Numerical methods implemented on electronic computing 

machines have simplified the task of determining the orbits of a dynamical 

system. 

For simple dynamical systems, knowing the trajectory is often sufficient, but most 

dynamical systems are too complicated to be understood in terms of individual 

trajectories. The difficulties arise because: 

• The systems studied may only be known approximately—the parameters 

of the system may not be known precisely or terms may be missing from 

the equations. The approximations used bring into question the validity or 

relevance of numerical solutions. To address these questions several 

notions of stability have been introduced in the study of dynamical 

systems, such as Lyapunov stability or structural stability. The stability of 

the dynamical system implies that there is a class of models or initial 

conditions for which the trajectories would be equivalent. The operation 

for comparing orbits to establish their equivalence changes with the 

different notions of stability. 

• The type of trajectory may be more important than one particular 

trajectory. Some trajectories may be periodic, whereas others may wander 

through many different states of the system. Applications often require 

enumerating these classes or maintaining the system within one class. 

Classifying all possible trajectories has led to the qualitative study of 

dynamical systems, that is, properties that do not change under coordinate 

https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Recurrence_relation
https://en.wikipedia.org/wiki/Time_scale_calculus
https://en.wikipedia.org/wiki/Trajectory
https://en.wikipedia.org/wiki/Orbit_(dynamics)
https://en.wikipedia.org/wiki/Computers
https://en.wikipedia.org/wiki/Lyapunov_stability
https://en.wikipedia.org/wiki/Structural_stability
https://en.wikipedia.org/wiki/Equivalence_relation
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changes. Linear dynamical systems and systems that have two numbers 

describing a state are examples of dynamical systems where the possible 

classes of orbits are understood. 

• The behavior of trajectories as a function of a parameter may be what is 

needed for an application. As a parameter is varied, the dynamical 

systems may have bifurcation points where the qualitative behavior of the 

dynamical system changes. For example, it may go from having only 

periodic motions to apparently erratic behavior, as in the transition to 

turbulence of a fluid. 

• The trajectories of the system may appear erratic, as if random. In these 

cases, it may be necessary to compute averages using one very long 

trajectory or many different trajectories. The averages are well defined 

for ergodic systems and a more detailed understanding has been worked 

out for hyperbolic systems. Understanding the probabilistic aspects of 

dynamical systems has helped establish the foundations of statistical 

mechanics and of chaos. 

 

 

  

https://en.wikipedia.org/wiki/Linear_dynamical_system
https://en.wikipedia.org/wiki/Poincar%C3%A9%E2%80%93Bendixson_theorem
https://en.wikipedia.org/wiki/Poincar%C3%A9%E2%80%93Bendixson_theorem
https://en.wikipedia.org/wiki/Bifurcation_theory
https://en.wikipedia.org/wiki/Turbulence
https://en.wikipedia.org/wiki/Turbulence
https://en.wikipedia.org/wiki/Ergodic_theory
https://en.wikipedia.org/wiki/Anosov_diffeomorphism
https://en.wikipedia.org/wiki/Statistical_mechanics
https://en.wikipedia.org/wiki/Statistical_mechanics
https://en.wikipedia.org/wiki/Chaos_theory
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Chapter One 

 
Dynamical Systems 

 
 

A dynamical system is defined simply by: 

x˙ = f(x), x, f vectors in RN 

N is called the number of degrees of freedom of the system. 

Here are some examples of dynamical systems. 

-Normal form of a saddle-node bifurcation (N = 1) 

(1) 

x˙ = µ − x2 

–Lorenz model (N = 3) 

(2) 

  (3) 

–Navier-Stokes equations (N ≫ 1) 

 u (4) 

For the Navier-Stokes equations, u(x) = (u (x, y, z), v (x, y, z), w (x, y, z)) and N = ∞. N = 3 × 

1003 = 3×106. In a typical three-dimensional numerical simulation, one uses a spatial discretization of 

NXR = Ny = Nzo = 100, leading to N = 3 × 1003 = 3 × 106. 

Other systems can be re-written as dynamical systems, by writing additional variables, in particular, a 

non-autonomous system: 

  (5) 

or a system of higher temporal order: 

  (6) 
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1.2 One-dimensional systems 

1.2.1 Fixed points and linear stability 

We begin with a dynamical system: 

 

x˙ = f(x) 

A fixed-point x¯ is a solution to: 

(7) 

0 = f(¯x) (8) 

Fixed points x¯, also called steady states, are thus roots of the function f. The linear stability of x¯ can be 

 

 

Figure 1: Unstable (left) and stable (right) fixed points. A fixed point of x˙ = f(x) is a solution to f(¯x) = 

0. The dynamics causes x to increase (decrease) where f is positive (negative). If f′(¯x) > 0, neighboring 

points evolve by leaving x¯, which is thus unstable (left). If f′(¯x) < 0, neighboring points evolve by 

approaching x¯, which is thus stable (right). 

studied by writing: 

(9a)(9b) 

A perturbation ǫ will grow exponentially in 

time f′(¯x) > 0, i.e., if x¯ is unstable. In contrast, if f′(¯x) < 0, then ǫ decreases exponentially in time and 

x¯ is stable, as shown in figure 1. 

In what follows, we will assume that f depends on a parameter µ, for example a Reynolds or Rayleigh 

number measuring a velocity or temperature gradient imposed on a fluid. A steady bifurcation is defined 

as a change in the number of fixed points (roots of f). We will see that this is closely connected to 

stability. 
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1.3 Saddle-node bifurcations 

A linear function cannot change its number of roots. The simplest function that can change the number 

of its roots as µ is varied is a quadratic polynomial, like that shown in figure 2. 

 f (x, µ) = c00 + c10x + c01µ + c20x2 (10) 

is assumed to represent the first terms of a Taylor expansion of a general function. We re-write (10) as: 

  (11) 

If c20 < 0 and c01 > 0, we can define 

 

 

  (12) 

 

 

Figure 2: The function f = µ − x2 has 0, 1, or 2 roots, if µ < 0, µ = 0, or µ > 0. 

and write 

 

 

 f = µ˜ − x˜2 (13) 

or, re-defining µ˜ → µ, x˜ → x, 

 f (x, µ) = µ − x2 (14) 

We call (14) the normal form of the saddle-node bifurcation. Let us study the behavior of (14). The 

fixed points of (14) are 

 x¯± = ±√µ (15) 
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which exist only for µ > 0. Their stability is determined by f′(¯x±) = −2¯x± = −2(±√µ) = ∓2√µ

 (16) 

By looking at the sign of f′(¯x), we see that x¯+ = √µ is stable, whereas x¯− = −√µ is unstable. 

If c20 > 0 or c01 < 0, we deduce one of the following forms: 

(17a) 

 (17b) 

(17c) 

In each case, there is a transition at µ = 0 between no fixed points and two fixed points, one stable and 

one unstable. Figure 3 summarizes this information for each case on what is called its bifurcation 

diagram. 
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f (x, m) = c00 + c10x + c01µ + c20x2 

 

f (-4,0) = 1+(-4) +(0) +(−4)2      

       =13 

 

f (-3,0) = 1+(-3) +(0) +(−3)2 

       =7 

 

f (-2,0) = 1+(-2) +(0) +(−2)2 

      =3 

 

f (-1,0) = 1+(-1) +(0) +(−1)2 

 =1 

f (0,0) = 1+(0) +(0) +(0)2 

 =1 

f (1,0) = 1+(1) +(0) +(1)2 

=3 

f (2,0) = 1+(2) +(0) +(2)2 

  =7 

f (3,0) = 1+(3) +(0) +(9)2 

  =13 

f (4,0) = 1+(4) +(0) +(16)2 

   =2 
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µ=0 

X= -4, -3, -2, -1 

f (x, m) = c00 + c10x + c01µ + c20x2 

f (0, -4) = 1+(0) +(-4) +(𝑋)2 

 = -3 

f (0, -3) = 1+(0) +(-3) +(𝑋)2 

= -2  

f (0, -2) = 1+(0) +(-2) +(𝑋)2 

  = -1 

f (0, -1) = 1+(0) +(-1) +(𝑋)2 

= 1 

f (0,0) = 1+(0) +(0) +(𝑋)2 

= 1 

f (0, 1) = 1+(0) +(1) +(𝑋)2 

= 2 

f (0,2) = 1+(0) +(2) +(𝑋)2 

= 3 

f (0,3) = 1+(0) +(3) +(𝑋)2 

= 4 

f (0,4) = 1+(0) +(4) +(𝑋)2 

= 5  
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1.4 Pitchfork bifurcations 

For reasons of symmetry, to which we shall return later, it may be that f(x) is restricted to be an odd 

function of x. (x is to be considered as a deviation from some special state, called a base state, rather 

than the distance from zero.) There is then no constant or quadratic term in x, and a cubic term must be 

included, as in figure 4, for a bifurcation to take place. We can reduce a cubic polynomial to four cases: 

f (x, µ) 

 f (x, µ) 

= 

=  

(18a) 

(18b) 

f (x, µ)  

 f (x, µ) 

= 

= 

−µx + x3
3 

−µx − x 

(18c) 

(18d) 
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Figure 3: Saddle-node bifurcation diagrams. In each case, there exist two branches of fixed points, one 

stable and one unstable, on one side of µ = 0, and no fixed points on the other side. 
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The four corresponding bifurcation diagrams are given in figure 1.3. Equation (18a) is called the normal 

form of a supercritical pitchfork bifurcation. Its fixed points are calculated by: 

                                                           0 = 𝑥(𝜇 −  𝑥
2

) ⇒ {
𝑥  =  0             𝑓𝑜𝑟 𝑎𝑙𝑙 𝜇

𝑥  = ± √𝜇    𝑓𝑜𝑟 𝜇 > 0 
               (19) 

We now determine the stability of these fixed points. 

                                           𝑓′(𝑥) =  𝜇 − 3 𝑥
2 

=

 {
𝜇                                    𝑓𝑜𝑟 𝑥  =  0

𝜇 −  3𝜇 =  −2𝜇           𝑓𝑜𝑟 𝑥 =  ±√𝜇
                     (20) 

The fixed-point x¯ = 0 is therefore stable for µ < 0 and becomes unstable at µ = 0, where the new branches 

of fixed points x¯ = ±√µ are created. These new fixed points are stable. We now repeat the calculation 

for (18b), which is the normal form of a subcritical pitchfork bifurcation. 

  (21) 

for x¯ = 0 

(22) 

for x¯ = ±√µ 

As in the supercritical case, the fixed-point x¯ = 0 is stable for µ < 0 and becomes unstable at µ = 0. But, 

contrary to the supercritical case, the other fixed points ±√µ exist in the region where´ x¯ = 0 is stable; 

the other fixed points are unstable. 
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Figure 4: The function f = µx − x2 has 1 or 3 roots, according to whether µ < 0, µ = 0, or µ > 0. 

 

Figure 5: Pitchfork bifurcation diagrams. A branch of fixed points gives rise to two new branches 

when a critical value of µ is crossed. The bifurcation is called a supercritical (subcritical) pitchfork if 

the new branches are stable (unstable). 

 

Figure 6: Left: bifurcation diagram for x˙ = µx + x3 − x5/10. The fifth-order term stabilizes the trajectories 

near a subcritical pitchfork bifurcation. This term causes two saddle-node bifurcations. As µ is increased, 

there is first one fixed point, then five, then finally three fixed points. Right: Diagram for an imperfect 
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pitchfork bifurcation x˙ = 1/27 + µx − x3. The constant term represents an imperfection, that causes the 

system to prefer one of the two branches. The pitchfork bifurcation has been transformed into a saddle-

node bifurcation. 

Note that most trajectories in the subcritical case evolve towards infinity. When we know that trajectories 

in a physical system do not behave in this way but remain bounded, we sometimes add to (18b) a 

stabilizing term of higher order, illustrated in figure 6. 

The fixed points of (23) are: 
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Chapter two 

2 Systems with two or more dimensions 

2.1 From one-to-many dimensions 

As before, we consider a dynamical system: 

 x˙ = f(x), ft ∈ RN (23) 

whose fixed points are solutions of: 

 0 = f(¯x) (24) 

To study the stability of x¯, we perturb it by ǫ(t) ∈ RN. 

  (25a) 

Since quadratic terms in ǫ are infinitesimally smaller than linear ones, (25a) is reduced to the linear 

differential system: 

 ǫ˙ = Df(¯x) ǫ (26) 

In (32a) -(33), Df(¯x) is the Jacobian off, i.e., the matrix of partial derivatives, evaluated at the fixed-

point x¯. (When x is infinite dimensional rather than a vector in RN, the operator analogous to the Jacobian 

matrix is called the Fréchet derivative´.) To clarify the meaning of (25a) -(26), we rewrite these equations 

explicitly for each component: 

  (27a) 

The solution to (26) is 

 ǫ(t) = def.(¯x) to (0) (28) 

We define the exponential of a matrix via its Taylor series, as we can do for any analytic function f(A): 

  (29) 

The behavior of (29) depends on the spectrum of the matrix, i.e., its set of eigenvalues. Let A have the 

eigenvector-eigenvalue decomposition A = V ΛV −1. According to (29), 
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  (30a) 

Thus, we only need to know how to take exponentials of the matrix of ea. 

For a matrix with real eigenvalues, we have, for the 2 × 2 case: 

(31a) 

(31b) 

leading to 

  (32) 

The question “stable or unstable?” becomes “stable or unstable in which directions?” The fixed-point x¯ 

is considered to be linearly stable if the real parts of all of the eigenvalues of Df(¯x) are negative, and 

unstable if even one of the eigenvalues has a positive real part. The reasoning behind this is that initial 

random perturbations will contain components in all directions. If there is instability in one direction, 

then this component will grow and we will diverge away from x¯, initially in the unstable direction. 

In the simplest situation, we have 0 > λ2 > λ3 ..., and λ1 changes sign at a bifurcation. By projecting onto 

the eigenvector v1 corresponding to λ1, i.e., by taking the scalar product with the adjoint eigenvector 

satisfying: 

  (33) 

we obtain a one-dimensional equation. (In the other directions, the behavior is uninteresting: there is 

only contraction along these directions towards the fixed point.) The first terms in the Taylor series of 

this equation correspond to a saddle-node, pitchfork, or trans critical bifurcation. It is in this way that 

we obtain bifurcations in physical systems with a large number of degrees of freedom, such as thermal 

convection. We emphasize the correspondence between realistic physical systems and the simple 

polynomial equations that we have just written down: 

• Complicated equations in N ≫ 1 variables. 

Calculate fixed points x¯, their Jacobians Df(¯x) and their spectra {λ1, λ2,}. Bifurcation if 

the real part of one of them changes sign. 

• Project onto the corresponding adjoint eigenvector =⇒ Function of one variable. • Taylor 

expands about the fixed point. 

Minimal truncation giving observed behavior =⇒ Normal form of the bifurcation. 
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2.2 Linear systems with complex eigenvalues 

We have become familiar with the situations which are one-dimensional or reducible to one dimension. 

We now discuss the more complicated situations which can occur in two dimensions, in particular when 

λ1 and λ2 are part of a complex conjugate pair. We consider the 2 × 2 matrix corresponding to an 

imaginary pair of eigenvalues ±in, which is skew-symmetric anti-diagonal, i.e. 

(34a) (34b) 

(34c) 

 

Figure 11: Eigenvalues of a Jacobian having two real eigenvalues and a pair of complex conjugate 

eigenvalues, with 0 > Re(λ1) > Re(λ2) = Re(λ3) > Re(λ4). 

Using 

  (35) 

we have 

  (36) 

We can combine (39) with (43) to obtain 

  (37) 

If a perturbation (ox, you) of a fixed point with complex eigenvalues µ ± in is governed by: 
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  (38) 

then it evolves according to: 

(39a) 

(39b) 

More generally, for a mixture of real and complex eigenvalues, as in figure 11, we have: 

 

 

2.3 Jordan blocks and transient growth 

We now consider two 2 × 2 matrices which have only λ as an eigenvalue, but which behave quite 

differently. The matrix 

  (41) 

is a multiple of the identity. We calculate its eigenvectors:  

 λx1 + 0x2 = λx1 =⇒ x1 arbitrary (42a) 

 0x1 + λx2 = λx2 =⇒ x2 arbitrary (42b) 

All vectors (x1, x2) T are eigenvectors and the eigenspace corresponding to the double eigenvalue λ is 

two-dimensional. In contrast, the matrix 

  (43) 

is called a Jordan block. We calculate its eigenvectors:   

 λx1 + x2 = λx1 =⇒ x2 = 0 (44a) 

 0x1 + λx2 = λx2 =⇒ x1 arbitrary (44b) 

The eigenspace is thus one-dimensional and consists of all multiples of (1,0) T, as shown on the left 

portion of figure 12. For most matrices A, whether or not the eigenvalues are multiple, there exist N 

linear independent eigenvectors, which are solutions to 

 (A − I) x = 0 (45) 

Any vector in RN can thus be written as a sum of eigenvectors. This is not the case for a Jordan block. 

Where is the missing dimension? The Jordan block (43) also has a generalized eigenvector, which is a 

solution to 
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(A − I) v = x, 

where x is an eigenvector. We calculate the generalized eigenvector of (43) as follows: 

(46) 

 λv1 + 1v2 − λv1 = c =⇒ v2 = c = 06 (46a) 

 0v1 + λv2 − λv2 = 0 =⇒ v1 arbitrary (46b) 

Thus, any vector v satisfying v2 = 06 is a generalized eigenvector of (43), as shown in the right portion 

of figure 12. A generalized eigenvector is determined, like an ordinary eigenvector, up to an arbitrary 

multiplicative constant, as is shown by (47a), but also up to an arbitrary additive constant, since we can 

add any multiple of the eigenvector, as is shown by (47b). This non-uniqueness can be eliminated using 

a scalar product, by requiring that the eigenvector be normalized, and that the scalar product of the 

generalized eigenvector with the eigenvector be zero. The eigenvector and generalized eigenvector of 

(43) selected by these criteria are then: 

  (47) 

The behavior of a system near a degenerate node is  

 x1(t) = eat(x1(0) + x2(0)t) (48a) 

 x2(t) = eλtx2(0) (48b) 

 

Figure 12: Left: the single eigenvector x of the 2 × 2 Jordan block (43) is directed along the x1 axis and 

determined up to a multiplicative factor. Right: any vector v containing a non-zero x2 component is a 

generalized eigenvector of (50). Wider arrows show x, v satisfying ||x|| = 1, ||v|| = 1 and hx, vi = 0. 

 

Figure 13: Transient growth. When (x1, x2) evolves according to a linear system which is a Jordan block, 

then x1(t) can start to grow, even if the negative eigenvalue of the matrix eventually leads to exponential 

decay. Here λ = −1, x1(0) = 0.01 and x2(0) = 1. 
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The linear term in (48a) can cause the system to display transient growth, even when the eigenvalue λ 

is negative, as shown in figure 13. 

We classify all the possible linear behaviors of a fixed point of a two-dimensional system below: 

 Name and classification Matrix Behavior 

Node: stable (λ2 < λ1 < 0) 

unstable (λ2 > λ1 > 0) 

Star node:x1 = eλtx1(0) 

stable (λ < 0) λtx2(0) 

x2 = e unstable (λ > 0) 

Degenerate node:x1 = eat(x1(0) + tx2(0)) stable (λ < 

0) x2 = e
λtx2(0) unstable (λ > 0) 

Non-isolated fixed points: 

stable (λ < 0) xx21 == exλt1(0)x2(0) unstable (λ > 0) 

Saddle: 

λ2 < 0 < λ1 

Spiral: stable 

 unstable (µ > 0) 2 

 Center: \  
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لتوصيات:ا  

 

ذات ابعاد  ةالديناميكيتوسعة في دراسة الأنظمة لإمكان اليرى الباحثان انه با  - 

 أكبر بالإضافة الى تطبيقات أوسع. 

 

الأنظمة الخطية للمصفوفات المربعة ذات قيم ذاتية الحقيقة. دراسة الخواص     -  
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