&

coalall i g el aalaill 51 5
o s
Sl 3 4K
Clnly ) o

(IMPROPER IENTEGRAL)

Cilaaly ) acd 3akal) A ) AS ) adha duay

udaly ) (8 g sl Balgeds Jull




=
a ® \ = £\ g
e AN o Z_ N
E = e e -‘,: |
. B \ TS B = B * £ *ﬂ“‘
p. - g = Y & E [z:! ? A ;= 3
o ’ - i N },; - \ . - i
. . \ "AL A L 3
> /."' Y o > . - L.f"l S » A /T ’ .
/ H A AN A Ve L S0
X L g ' . 9 — @
3 "4 < & S

F2 b caslly ol 332 Vi B 55 155 5l oo uadh Jas s B

g

43,&@;»@\3.;@@@&3 2

[ s ]

adaall &) 3aa




¢laall

sepell il o lassgg Lagass wons &l @llegg aslagu @lgall gang o @l
(asasall al)
seadl s 10395 @ ay ookt al @il atll sey la¥llids @I &salhll dggall lly @l
(el @yl) @l dnleally




edly S8l

orbably ot 03,30 o p3adly 53Uy orblall oy AUl
et 4y T oy u# s
s Ll
3 U oty Kol Ol g 2 Jasdl in il Jo Sty by olSCall oty A1 ST 3
o &l 65 By o oS0 oo Sy el i Jo 28,240 (g b)) 330!
Jo 0 Lty Jadl b ol o scludd 3 1 ST ol i (3 ol Lty gl
D e Lol ol edl
ool g LS 5 08 3 1 ot gl ey i) bt ) ol gt g o) 0 Y S
o8 Ioles
Gl g 3 (38931 Wb Lo Jaall i ol Jurn (3
AWl Gy 4 adt o bges 5T,




CONTENTS

Page Tittle

| Al @l 4,1

I claay

1] sl 5 S

IV Gl giall

1 Introdiction
Chapter one

2 Improper Integrals

11 Beta Function

15 Cauchy's Tests
Chapter tow

27 Gamma Function

31 Abel's Test

38 Abstract

39 Sloa gl

40 REFERNCES

V.




Introdiction:

The discussion of the definite integral in elementary calculus commonly starts from
an area problem. Given a region under a function graph, how can its area be
calculated? The sum of the areas of slender rectangles is a fairly natural
approximation. A limit of such sums yields the exact area. When this process is
stripped to its essentials the Riemann integral of a function over a given interval
stands revealed.

Other geometric and physical quantities, such as volume and work, fit easily into
the framework supplied by the concept of the Riemann integral. Moreover the link
between the integral and the antiderivative is not hard to make. Thus students can
be brought quickly to the evaluation of specific integrals in the context of
interesting natural problems. These are among the reasons why the Riemann
integral gets first attention when the integral concept is needed.

The Riemann integral has limitations, however. It applies only to bounded
functions. The definition does not make sense on unbounded intervals either.
Moreover a function which possesses a Riemann integral must exhibit a great deal
of regularity. The need for regularity means that the convergence theorems for the
Riemann integral are severely restricted. That is, the opportunity to integrate the
limit of a sequence by calculating the limit of the sequence of integrals is scant.
Improper integrals are an elementary way to allow for the integration of some

unbounded functions and for integration over unbounded intervals.




Chapter one

1-1 Improper Integrals

1-2 Beta Function

1-3 Cauchy's Tests




Improper Integrals.1.1

The concept of Riemann integrals as developed in previous chapter requires that the range of
integration is finite and the integrand remains bounded on that domain. if either (or both) of
these assumptions is not satisfied it is necessary to attach a new interpretation to the integral
Definition1.1.1. In case the integrand f becomes infinite in the interval a < x < b,

That is f has points of infinite discontinuity (singular points) in [a, b] or the limits of

integration a or b (or both becomes infinite, the symbol f(ffdx is called an improper(or

infinite or generalised ) integral.
Thus,

j°°dx j"o dx jl dx j"o dx
1 x2 )14+ x% )y x(1—x)" ) x(1 —x)

are examples of improper integrals.

The integrals which are not improper are called proper integral, thus

sinx | ,
2 dx 1s a proper integral.
0

Integration of Unbounded Function with finite limits of integration.

Definition 1.1.2. Let a function f be defined in a interval [a, b] everywhere except possible at
finite number of points.

(i) Convergence at left-end. Let a be the only points of infinite discontinuity of f so that
according to assumption made in the

last section, the integral

b

fdx exists V4,0 <A < b —a.
a+i

The improper integral f:fdx is defined as the

b

lim fdx so that,

A-0% a+1

f fdx = llm fdx
a+A

If this Limit exists and is finite, the improper integral f:fdx Is said to converge at (a) if

otherwise, it is called divergent.




Note. Forany c,a <c <b

jbfdx=.fcfdx+fbfdx

Then,

b c
jfdxandj fdx
a a

converges and diverges together and | Cb fdx is proper.

(i1) Convergence at right-end. Let b be the only point of infinite discontinuity the improper

integral is then defined by the relation

b b—u
jfdleim fdx0<u<b-—a.
a

p—ot Jo
If the limit exists, the improper integral is said to be convergent at b. Otherwise is called
divergent.

Note : For the same reason as above,

b b .
J. fdxand [ fdx converges and diverges together Vc,a < ¢ < b.

(iii) Convergence at both the end points. If the end points a and b are the only points of infinite

discontinuity of £, then for any pointc,a < c < b,

]bfdxzjcfdx+jbfdx

If both the integrals are convergent as by case (i) and (ii), then

Il f fdx is convergent, otherwise it is divergent. The improper integral is also defined as:
b b—u
L fdx = AILI(I)L fdx.

a+l
u—-0+

The improper integral exists if the limit exists.
(iv) Convergence at Interior points. If an interior point ¢, a < ¢ < b, is the only point of infinite

discontinuity of f, we get

jbfdx=jcfdx+fbfdx




the improper integral fabfdx exists of the both integral on R.H.S of

(1) are exists.

Examplel.1.1. Examine the convergence of:

1 dx

(i) f, &

1 dx

(i) [, =
(iii) [
(1) O is the point of infinite discontinuity of integrand [0,1].
Thus,

Ldx Ldx

— = lim —
2 2
o X A-0+ 1 X

2 dx
6 2x—x2

1
= lim (——1)=oo 0<ik1
1-0+ \A

Thus the proper integral is divergent.
(i) Home Assignment.

Home Assignment

Comparison Tests for Convergence At ' a ' of f:fdx.

Theorem1.1.1. A necessary and sufficient condition for the convergence of the improper

integral fabfdx at' a 'where f is positive in [a, b]. This is, 3 a psoitive number M,

independent of A, such that

b
fdx <M, 0<A<b—a.

at+i

Proof. We know that the improper integral f:fdx convergesat'a'iffor00 <A< b —

b .. ..
a, [ ., ,fdx tends to finite limitas 2 — 0*.

Since f is positive in [a + A, b], the positive function of A, faﬂfdx IS monotonic incereasing

as A, decreases and will therefore tend to a finite limit iff it is bounded above, This is, 3 a

positive number M independent of A, such that

b
f fdx <M, 0<A<b—a.
at+i




Hence the theorem is proved.

Note. If no such number M exists, the monotonic increasing function ff+/1fdx IS not bounded

above and therefore tend to +c0 as 1 — 0%, and hence the improper integral fffdx diverges to
400,
Comparison Test.
Theorem 1.1.2: If f and g are two positive functions and ' a ' is only singular point of f and g
on [a. b], such that

f(x) < g(x), for all x € [a, b]

() [ ” fdx converges, if [ gdx converges.
a g a g g

(ii) ffgdx diverges, if fffdx converges.
Proof. Since f and g are two positive functions on [a, b] and ' a " is only singular point of f and
g. Therefore f and g are bound in [a + A4, b], forall 0 < A < b — a.

Also Since, f(x) < g(x), for all x € [a, b], implies

b b

fdxsf gdx

a+i at+i

(1) Suppose ffgdx be convergent, so that 3m > 0, such thatforall 4,0 < A < b —a,

b

fdx <m.
a+l

From (i) we have

b
fdx <m, forall,0<A<b—a.

at+i

Hence f;fdx IS convergent.

(2) Now suppose fabfdx Is divergent then the positive function f:Hfdx IS not bounded
above.
Therefore from (i) it follows that the positive function [ ; ., 9dx is not bounded above.

Hence f:Hgdx is divergent. This completes the Theorem.

Comparison Test (limit form).




Theorem 1.1.3. If f and g are two positive functions [a, b] and ' a ' is the only singular point of
f and g in [a, b], such that
f(x)

+
X2aT g(x)

lim = ] where ' I' is a non — zero finite number.

Then, the two integrals [ : fdxand [ : gdx converges and diverges together at ' a .

Proof. Evidently, 1 > 0. Let ¢ be positive number such that 1 — & > 0. Since,

£ _
g(x)

Therefore there exists a nbd of ]a, c[,a < ¢ < b, such that for all x €]a, c[

fx )_l|
g(x)
or (l=8)gx)<f(x) <+ ¢e)g(x).

This implies that

lim,_,,+

(l=8)g(x) < f(x)

and

f) <({+e)gk)
Vx € [a,c]

If [ ; fdx converges, then from (i)
J f g(x)dx also converges at a.

If f;fdx diverges, then from (ii)
[ fdx diverges at a.

fx)

If in the above Theorem, Lim,,_, ,+ ot 0and [ f gdx converges, then

fffdx converges and if

f)

x=a® g0

Lim

Useful Comparison Integral.

Theorem 1.1.4. The improper integral f: C C_l’;)n Converges if and only if n < 1.

Proof. It is proper integral if n < 0 and improper for all other values of n, a’ being only
singular point of the integrand.

Now forn # 1




jb dx _ fb dx
., (x—a)n = oo+ gaq (x—a)™’

. _ -n+1 _ 7—n+1
= Jim = (G- —a
! [(b—a)™1, ifn<1
=\1-—n+1 ’
00 ifn> 1.
Also forn =1
Li f T im los(h log A
= —_ —_ = 0
Masor | =g = A llog(b —a)—log] = co.

b dx
Thus, [ ¢ converges forn < 1.
.. b
Note. A similar result holds for convergence of fa % atb.

Examplel.1.2. Test the convergence of

O N—

(i)
[ n/2 SInXx
0 xP

Solution. Let f(x) =

X

1

V1-x3

1

:\/(1—x)(1+x+x2)
1 . 1

1 1
1+x+x%)2 (1—x)2
Clearly, ;1 is a bounded function.
(1+x+x2)2
Let M be its upper bound, then,
1 1 M

1 1= 1
I+x+x2)2 1—x)2 (A—x)2

x € [1,0].

mdx

. 1 . 1
Also since | is convergentasn = - < 1.

T
(1-x)2

1 .
Therefore, N convergent.




(i) For p < 1, itis a proper integral for p > 1, it is an improper integral O being the point of

infinite discontinuity
Now sinx= 1 (sinx)

xP xP~1\ x
The function % is bounded and Slzx <1.
sin x 1
Therefore, — < o3
/2 dx .
Also fo ——1 converges onlyifp—1<1lorp<?2.

Therefore by comparison test fog ~ dx converges for p < 2 and diverges for p > 2.

sin
xP

Note. If lim,_q, [(x — a)™f (x)] exists and is non-zero finite, then, the integral f;fdx

convergs iff n < 1.
Examplel.1.3. Find the values of m and n for which the following

integrals converges.

(1) fole‘mxx"dx.

o 1 1\™

(i) fo (log;) dx.

Solution (i) Let k be positive number greater than 1,
Then, e™™*x™ < kx™, Vx € [0,1] and m;

Also folx" = [

dx
o =n converges for -n <1,

that is, n > —1 only.

1
Thus, fo e ™ x"dx converges only forn > —1 and vm.

1\™m
(iii) Let (x) = (log;) converges at x = 0 and

1 m
fOZ (log%) dx is proper integral if m < 0. Also’ 0 is the only singular point if m > 0.
Form > 0,

Take g(x) = % 0 <p < 1,sothat

m G lim xP <log%)m

x—07t g(x)  x-0t
=0,for0<p<1.




1 1\
Therefore, [ & (log;) dx converges for all m.

Convergenceatx = 1

m
ff (logi) is proper integral for m > 0 and ' 1 "is singular point, if m < 0.
2

Form < 0, take g(x) = so that lim,,_,, [ g_]

) -m’
Since ff g dx converges for -m < 1 that is for m >—1.
2
1 1\™M
Thus, fo (log;) dx converges for > —1.

m
Hence fol (logi) dx converges for 0 > m > —1.
Example 1.1.4. Show that

@/, ! log dx is convergent.

(2) f dx is divergent.

Solution. (1) Since - W Z is negative on [0,1].

Therefore we take f(x) = — 2%

Vx

_logx™ log1/x

Voo Vx

0 "is the only singular point.
Let

We have

im 2% imxdlogt = 0
xl—%@_x%x 08, T

Since [ 1g(x)dx converges.

Therefore, f f (x)dx converges implies that f dx converges.




2 \x
1 logx

(2 Letf(x) = [
Here x = 1 is only singular point.

Take g(x) = % then

) (- Dvx
lim = lim
1g(x) x-1 logx
3 1
X2 —x2

= lim
x-1 logx

Thus, flzfdx and flzgdx behave same.
Since flzgdx is divergent.

Hence flzfdx is divergent.

Examplel.1.5. Show that [ 2 (Sir;r:x) dx exists iffn <m + 1

Solution. Let f(x) = (S‘“ 5)

sinx\™ 1
:( x ) xnm
Hereasx - o+, f(x) 2 0ifn—m < 0,and f(x) 2 0ifn—m >0

Thus it is proper integral if n < m and improper if n > m.

0’ being the only point of infinite discontinuity.

When m > n,

Let g(x) = =5 so that

- fO) . sinxy™
lim = lim ( ) =
x—0 g(x) x—0 X

10.




T

Also, fOEgdx = fOE

1_m dx converges, Iffn —m < 1.

x‘)’l
Thatis,n<m+1.

sin™ x
x

Therefore [ 2 ( )dx also converges iffn < m + 1

n

(Beta Function)1.2. Show that folxm‘l(l — x)" 1dx exists iff m, n are both positive.

Proof. It is a proper integral form > 1,n > 1,0 and 1 are the only points of infinite
discontinuity; Owhenm < 1and 1.

When n < 1, we have

1

1 = 1
j x™ 11— x)"ldx = JZ x™ 11— x)" dx + J x™ 11— x)" ldx
0

0 1
convergence at' 0', when m < 1.
Let f(x) = x™ (1 —x)" !

(1—x)n1
xl—m '

1

Take g(x) = =

1-m!
: fx) _
Then lex—>0 ﬁ =1
1
Since fozgdx converges ifandonly if, 1 —m < 1 orm > 0.
1
Thus, [Z2x™*(1 — x)"*dx converges for m > 0.

Convergence at x = 1,

Whenn < 1,
Let f(x) = x™ (1 —x)"!
(1—x)m1
7 ,in
Take g(x) = xll_n , then
Lim _f(x)
hg(x)

Also, [+ gdx = [+ ﬁdx converges ifand onlyif 1 —n < 1 orn > 0.
2 2

11.




Thus, [+ x™ (1 — x)"1dx converges if n > 0.
2

y —t _1 .

Hence fo x™ (1 —x)"* “dx converges if m > 0,n > 0.

Example 1.2.1. For what values of m and n is the integral

folxm‘l(l — x)" log xdx convergent.

Solution . The integrand is negative in [0,1], therefore we shall test for the convergence of

fol —x™ (1 - x)" togxdx

1 m-1 1
= 1—x)log—d
J Lxm1 (1 = Dlog dx

Since 0 and 1 are only possible singular points of integrand. We have

1 1
j x™ 11— x)" log—dx
0 x
1

2 1
= j x™ 11— x)" og—dx + j
0 X E

1 1
x™ 11— x)”‘llog; dx.

Convergence at 0.
It is proper integral for m — 1 > 0 and improper for m < 1.0’ being the only point of infinite
discontinuity.
Then, form <1
Let f(x) = x™1(1 — x)""log~
1

= (1 - X)n_llnglL_m

Take g(x) =

f(x)

Also, llmx_,0+ %

= lim, o, xPT™"1(1 — x)"‘llog%
=0
Ifp+m—-1>0rm>1-—np.
1
Also [ 2 xipdx converges for 1 — p > 0.

Thus

12.




N| R

1
f x™ 11— x)n‘llog; dx convergesform >1—p >0
0

converges at x = 1

Forn <0,

Let f(x) = x™ (1 — x)"log~

x™ og=
- (1 — x)—n+1
Take g(x) = T
Therefore ffg(x) converges forg — 1 < 0.
2
Also li 16 _ " og, _
SO lim,. 1 % = x—1_ W =]

where | is infiniteif 1 —n—q < 1.

Thatisifn > —q > —1.
Thus, [1 fdx convergesifn > —1.
2

Hence the given integral is convergent when m > 0,n > —1.

Example 1.2.2. Show that [ 0’% log sin xdx converges and also evaluate it.
Solution. Let f(x) = logsin x, then f is negative in [0, /2].

Therefore we consider - f instead of f.

Clearly ' 0" is only point of infinite discontinuity.

Let g(x) = o, m <1,

Then,

—f(x) e
= lim —x™logsinx =0,m<1
x—-0t g(x) x—0+
Since [ 2 ximdx converges for m < 1, thus

T

foz log sin xdx converges.

T

Let I = fglogsinxdx.

13.




We know that, sin 2x = 2sin xcos x.
Therefore, log sin 2x = log 2 + log sin x + log cos x.
This implies that

s

Y i T

2 2 2 2
j log sin 2xdx =f log2dx+J logsinxdx+f log cos xdx
0 0 0 0

T 7
:Elog2+1+f log cos xdx
0

Put 2x = t.

In the Ist integral and x = %— y in the last integral, therefoe we get

1 (" s 0
—j logsintdt = =log2 + 1 + f logsin y(—dy)
2 J, 2 ™

= %logZ+I+f05 logsinxdx .
1.z _ n _ ([
Efozlogsmxdx + [ log sin xdx = ~log2 +21.
2
This implies % [I + fglogsin (y + g) dy] = %logZ + 21,
Thus, %[1 + fglog cos xdx] = %logZ + 21

_1 I+1="log2 + 21
—2[ ]—2 og

/[
= ElogZ + 21

hhhhh - I = %logZ 42

This Implies that I = —~log 2.

T

Hence fglog sinxdx = fozlog cosxdx = —glog 2.

Exercises.

1 dx

@) [, 2= dx

0 1+x
(3) fol sinix dx
x2

14.




3x+1

@/

(5)'[0 su1x
(6) f 1x logx

0 (1+4x )2

Answer (1) divergent (2) convergent for n > —1 (3) convergent (4) divergent

(5) divergent (6) convergent for n > —1

General Test for Convergence. (Integrand May Change Sign).

We now discuss a general test for convergence of an improper integral (finite limits of
integration, but discontinuous integrand) which holds whether or not integrand keeps the same
sign.

Theorem 1.3 (Cauchy's Tests).

The improper integral fffdx converges at a iff to every € > 0, there corresponds § > 0, such

that

< < Uy <6. <¢g

at+u;
j fdx
a

+Uq

Proof. The improper integral fffdx Is said to be exists.

When, lim,,_,q+ fabﬂtfdx exists finitely.

b
Let F(u) = [, fdx.
So F(u) is a function of u.
According to Cauchy's Criterion for finite limits F(u) tends to a finite limitas 4 — 0. If and

only if to every € > 0, there corresponds 6 > 0, such that for all possible uq, u, < 6;

| F(uy) —up) 1< €
b b

f fdx — j fdx
a+pq a+p;
a+p;

f fdx

a+pq

<&

That is,

Absolute Convergence.

15.




Definition 1.3.1 . The improper integral fba fdx is said to be absolutely
convergent if [ f |f|dx is convergent.

Theorem 3.6. Every absolutely convergent integral is convergent.

That is, f(ffdx exist if f(f |f|dx exist.

Proof. Since [ |f]dx exist.
Therefore by Cauchy's test, to every e > 03 § > 0, such that

l[a+ﬂz
atp,

fldx| <e O0<puy, <py, <6

(4)
. a+
Since |[ o1t fdx | < [t fldx
a+ a+
and |[,,.° =S g | fldxl.
Therefore (4) and (5) gives
a+p;
j fdx| <e, Ve>00<pu; <p, <6.
a+pq

Thus, [ f fdx is convergent.
Alternative Method 3.6.

Since f < |f| implies that |f| — f = 0.
Also, |f| = f = 2|f]

Thus, |f| — f is a non- negative function on [a, b] and satisfying (6).
Also [ abZ| f|dx is convergent. Therefore by (1) and comparison test, we get

ff (f — |fDdx is convergent.
This gives that fba{(f —|f]) + |f|} dx is convergent

b .
Hence [ fdx is convergent.

Example 1.3.1. Show thatf xdx p > 0 converges absolutely for p < 1.
. sini
Solution. Let f(x) = — P> 0;
"0 "is the only point of infinite discontinuity and f does not keeps the same sign in [0,1].
16.




|Sl7’l—|
< —

feol="pE < o

Also, fol xipdx converges for p < 1.

1
—=%| dx converges if and only if p > 0.

1
Hence f —Z%| dx is absolutely convergent if and only if p < 1.

Infinite range of integration.
We shall now consider the convergence of improper integral of bounded integrable function
with infinite range of integration ( a or b both infinite).

Definition 1.3.2. (Convergence at oo ).
The symbol faoofdx, x=>a

is defined as limit of f:fdx when X — oo, s0 that

j fdx = lim fdx

X—00

If the limit exists and is finite then the improper mtegral (8) is said to be divergent.
Note. For a, > a, [, fdx = [." fdx + [, fdx
which implies that the integrals faoofdx and f:fdx are either both convergent or both

divergent.

Exercises.

Q) [~ ==

0 1+x2
(i) [, F
(iii) fa sin xdx.

Solution. (i) For x > 0, we have

fX xdx _1jX 2xdx
0 14+x2 2 o 1+ x?

[log(1 + x?)]&

[log(1 + x2)]

17.
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. X xdx
Clearly, llmx_m fO ToxZ = 00

xdx
1+x2

Hence fooo is divergent.

Solution (iii) We have

X
J sinxdx = (—cosx)XX >a
a

= cosa — cos X
Clearly, limy_, (cos a — cos X) exists finitely but not uniquely.

Thus, lim,_,, | ; sin xdx does not exit.

oo .
Hence [ sinxdx diverges.

Convergence at —co.

b
j fdx, x < b

is defined by equation

X——00

b b
j fdx, = lim fdx
— o0 X

If the limit exists and is finite the integral (9) converges otherwise it diverges.

Convergence at both ends.

] fdx,Vx

Is understood to mean

j_coofdx+joofdx

where c is any real number.

If both integrals in (12) converges according to definition (I) and (I1), then, the integral
J = fdx also converges, otherwise it diverges.

Exercises.

Examine for convergence the integrals

() fooo sin xdx

a7,

dx
1+x2

18.




o 2x%dx

(i [,
(V) f_oo tns
(V) fooox3e‘x2dx

Solution ®I) try yourself (limit does not exist)
Solution®II)

j‘x’ dx _ j‘X dx
w14z xote ), T2

Y—o>—o

X
— 1 -1
= lim (tan™" x)

Y—>—00
= lim (tan !X —tan"1Y)
Y—o>—o
T N T
202
= TI.

Thus the integral converges and is equal to II.

amJ,

002x dx

limX_mf 2x%dx

= i [t tan-12 4+ Slog X% 4+ Lioe3
lim an~!x — tan 5log——+5log

= tan 12 + =log 3
=5 an 2og

Thus the integral converges.

o) dx o dx
V) J (x2+1)2 2fO (x2+1)2

= 21; zjx dx
a x1—>r2> 0 (x2+1)2

li [t Tx+ a ]
= lim |[tan™1x .
X—00 1+ x2

By Putting x = tan 6
= 11/2
V) fooox3e‘x2dx = 1/2, converges.

Comparison test for convergence at co.

19.




Theorem 1.3.2. A necessary and sufficient condition for the convergence of [ a°° fdx, where f

IS positive in [a, c0), that there exists a positive number M, independent of X, such that
X

j fdx < M,vX = a.
a

Proof. The integral f:fdx Is said to be convergent if fffdx tends to a finite limit as X — oo.
Since f is positive in [a, x], VX = a and fffdx IS monotonic increasing function on X i.e.

1] f fdx increases as X increases.

Also since fadex < M, forsomem > 0 and VX > a.

That is, fcffdx is bounded above.

Therefore, lim,_, [ ;C fdx exist finitely.

Conversely, suppose [ aoo fdx is convergent, then limy_,o, | f fdx exists finitely.

Therefore, IM > 0, such that Vx > a

jxfdx<M

A
X . .
as [ 4 fdx increases as X increases.

Hence the theorem is proved completely.
Comparison Test I.

Theorem 1.3.3. If f and g are positive and f(x) < g(x), for all x € [a, b].
Then, (1) [ aoo fdx converges if [ aoo gdx converges.

() [.” gdx diverges if [ fdx diverges.

Proof. Suppose [ aoo gdx converges.

Therefore 3M > 0 such that VX > q,
X

j gdx < M.
a

This gives [, fdx < M

(0]
Hence [~ fdx converges.
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(I1) Suppose [~ fdx diverges then 3X;, such that

X1
f fdx > M,vM > 0

a
This implies that fflgdx > M,VM > 0
This gives [, gdx diverges.

Note. Since f and g are bounded in [a, X].
Therefore, f(x) < g(x).

This implies that fffdx < ffgdx VX > a.
Comparison Test —II.

Theorem 3.9. If f and g are positive functions in [a, X] and

- f(0)
lim =1(#0
gt - O
then two integrals converges or diverges together.
Also if lim,,_, g = 0 and faoogdx converges, then faoofdx converges and if lim,_, o, % =

and faoogdx diverges, then faoofdx also diverges.

Proof. Evidently [ > 0 choose > 0, suchthatl —& > 0

) _
gx)

Therefore Ve > 0,3k > 0 such that
f(x)

Since lim,,_,

l|whenever x| > k.

That is l—e<f

(=-8)gx) < f(x)
fO) <(+e)gx)
forx > k and Ve > 0.

E;<l+eve>0,withx>k

Clearly I — ¢ > 0, by choosing & so small.

Therefore by comparison test and (13) and (14) we get | g(x)dx divergesiif [ fdx

converges.
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implies that f(x) < g(x), Vx > k
Therefore if [ aoo fdx is divergent, then [ aoo gdx is convergent and if [ aoo gdx is convergent then

1) aoo fdx is convergent.

. ] fx)
Also if, lim,._ =%
This implies 22 > M, vx > k
g(x)

Therefore f(x) > Mg(x), Vx >k

Hence if faoogdx is divergent, then faoofdx is divergent.

Useful Comparison Integral.

Theorem 1.3.4. Show that the improper integral [ fdx = [ xindx, a > 0wherecisa

positive constant, converges if and only if n > 1.

Proof. We have

x —
o C cloga n=1
Jo mdx= 1 71 1
1—n[x”‘1_an‘1]'n¢1
v c 0 ifn<1
lim,_.. | —dx= c : .
X fa xn m if n>1

Thus, [ xindx converges if and only if n > 1.

From this useful integral and comparison test, the improper integral [ aoo fdx converges if there

exists a positive number n > 1 such that f(x) < J’:’—n for some M > 0 and for some all x > a.

Also if, lim,_,,, x™ f (x) exists and is non-zero, then integral faoofdx converges if and only if

n>1.
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Exercises.

(1) fl xV__+1

© x%dx

amJf, N
[, e * dx

(V) f, =Ed

(V) fl x"e *dx

and

Solution :- (1) Take f(x) = ———

1
gx) = )
: fe) _
Then lim, ., © === 1(+ 0)
Thus

o ®  dx
fdx = j ———— converges.
jl 1 xVx?+1

_x%dx
(1) Let f(x) =511
1
Take g (x =5

Then lim,_ % =1(+0)

Thus f dlverges

(IV) Let f(x) = &

Take g(x) = x5,

Then lim,,_, x? = lim,, 10%
X2
1
— 1 x
BT 1
)
1

23.




. 0 dx .
Since [, =5 is convergent.
2

X

oo |
Therefore [, —o

— - dx Is convergent.
(V) Let f(x) = x"e *dx

Take g(x) = x2.

Then, lim,_,x? - x"e™ = lim,,,(n +2)!e ™ =0 and

© 1 .
/; —dx is convergent.

Therefore [ 1°°°°x"e‘xdx IS convergent.
(M) Let f(x) = [, e *dx.

Clearly 0 is not point of infinite discontinuity, we may write
@ 2 1 2 ® 2

j e‘xdx=j e‘xdx+J e Xdx =1 +I.
0 0 1

Clearly I, is proper and I, is improper integral.
We testfor [, = [, e~ dx.
We have
e~ > x2
Vx €R
1 1

e "2

Vx €R

This implies that e ™" < =
X
Vx € R.
Again, [ 100 x—lz dx is convergent.
Therefore, [ 100 e *"dx is convergent.

oo .
Hence [, e~ dx is convergent.

o sin? x

v/,

dx is convergent because sin? x < 1, Vx € R.

x2
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Exercises.

xtan
M f (1+x4)3
(1) fez xloglogx
(1) fO (E B sinlhx)'
Solution (1). Let f(x) = (’f;;j; (~ x‘%)
Take g(x) = %, then lim,._, o % =1/2.

X3

Since [, = dx is divergent.
x3

Therefore [, fdx is divergent.
(1) Put log x = t, we get

j‘” dx dt
g2 Xloglogx J, logt
_j°° dx

, logx

1
Letf(X) =@

Take g(x) = xim then

m

x .
9113.10@ = )}1_{1010@ by takingm =1

Therefore lim,._, ., = lim,_,,X = 00

x
logx

Slncef = is divergent, so thatf — |s also divergent.

Hence f:; is divergent.

xloglogx

(I) f(x) - (i B sinlhx) /x

Clearly 0 is not point of infinite discontinuity, because

lim, o+ f(x) = % (By L Hospital's rule)
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We have f(x) = G— : )%

sinf x

1 1

=F_xsinhx
B 1 1y

=7
~x2 xlex—ex/2
1 17 2 ]

T x2 xlex—ex
1 11 2e7* ]
x2 xl1—e2x]"

Take g(x) = xiz then

X
lim ——==1(#0
L Te R

Thus, f,” fdx is convergent.

. ICONT 2[1 _ 1 2e™ ]

Note. llmx_wo 90 = hmx—>oox X2 x1—e—2%
y [1 2xe™™ ]

= m 1—e~2x]

. — . X
We have lim,_,,xe™ = lim,_, g

1
= lim —=0.
X—>00 ex
Therefore lim,_, [1 — ff:__:x] =1- 1%0 = 1(# 0).
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D Chapter tow 7

2-1 Gamma Function

2-2 Abel's Test




. (Gamma Function)2.1.

The integral f x™ 1e~*dx is convergent if and only if m > 0.
Solution. Let f(x) = x™ 1e™*,

If m < 1, the ' 0" infinite discontinuity.

So we must examine the convergence of above improper integral at both 0 and co.

(00]

[es) 1
j xm‘le‘xdxzf xm‘le‘xdx+J xM™m le=Xdx
0

0 1

Convergence atOform < 1:

Let g(x) =

x1-m’

fx)

Then, lim,_,y,y — 7om

= lim,_ o, e ™ = 1(# 0).

since [, —

Therefore folxm‘le‘xdx converges if and only if m > 0.

Converges at oo,

Letg(x)— , SO that
&) e
PR At /¢
- (m+1)!
= |lim —— =
X—00 e

Since [, xiz dx is convergent.

Thus, J, x™e~*dx is convergent Vm.

Hence flooxm‘le‘xdx is convergent if and only if m > 0 and is denoted by < m ).
Thus, T'(m) = foooxm‘le‘xdx,m > 0.

Thus I'(0),I'(—1), etc. are not exists .

Example 2.1.1. Examine for the convergence off and G(x) = —2, then

. f(x) . x2
lim,, g lim,, o0 xX2+x-2
li !
= 11m
1+ Ex
=1.
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X

dis
x2+x

Thus, [ 300

-2

convergent.

Again let us decompose the integrand into partial fraction.

1
We have "

1 1

24x-2 3(x-1)

3(x+2)"

. . o 1 0 1 .

It is obvious |, o= dxand [, o) dx are both divergent .
o dx 0o 1 ©  —dx .
Thus, [, == /s PYER=Y dx + [, SGra 1S Not correct
Now we evaluate above improper integral.
o dx . x dx

We have [, ——— = lim, o, [, 75—

y fx dx J" dx
= lim — | —

x—oo | ) 3(x—1) 3 3(x+2)

1
= lim [§ {log(x — 1) — log(x + 2}3]
X—00

g
= Jim =]

Ay
= Jim =]

(

x—1

|
x + 2)] a log(

5(x—1)
2(x+2)

5

o
log[

1
= lim =

X—00

I 5
log 53]
4
| 2t %
= 1/3log5/2.
General test for convergence at co (Integrand may change sign).

Theorem 2.1.1. (Cauchy's Test).

The integral [ ; fdx converges at oo if and only if to every > 0, 3X,, such that

X2
fdx

X1

<eVXy, Xy, > X,.

Proof. The improper integrand faoofdx exists if lim,,_, f;fdx exists finitely Let F(X) =

J . fdx, afunction of X.

According to Cauchy's criterion for finite limits, F(x) tends to a finite limits as x - c if to a
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finite e > 03X,, such that VX, X, > X,
|F(X1) —F(X;)| <€

. X,
Thatis |[,*fdx| <e.

sin x

Example 2.1.1. Show that fooo dx is convergent.

X

sinx

Solution. Since lim,,_,, — =1

Therefore ' 0 ' is not infinite discontinuity, we may put

° sinx Lsinx “ sin x
dx = dx + dx.
o X o X 1 X

S si 1 sij
We now test for the convergence of |, %dx as [, 25

" dx is proper integral. For any € > 0,

Let x4, x, be two numbers both greater than %

X2 sinx cos x]*2 X2 COSX
Now [ ? dx=[— . ] —fxlz dx
X1

X1 x x?2
xzsinx x COSX; COSXy X2 cosx |
z < —
so that, |fx1 xdx| < |5 ol S —dx
1 1 *2 dx
<—+—+ —
X1 Xz Jy, X
7 €
= = = €
2

Therefore, by Cauchy's test the improper integral [ Ooosmx gdx IS convergent.
Absolute Convergence.

Definition 2.1.1. The improper integral faoofdx is said to be absolutely convergent if faoo |f|dx
IS convergent.

Theorem 2.1.2.

Absolute convergences of [ aoo fdx implies convergence of [ a°° fdx

ie., [ fdx exists if ["|f|dx exist.

Proof. Suppose [ a°° |f|dx exists, then by Cauchy's Test, Ve > 0,3
X, such that

sz
x1

fldx| < €,xq,%5,> xg.
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We have |fxxlzfdx| < fxxlz |fldx < € xq1,x5 > x,.

Thus by Cauchy’s test [ aoo fdx converges.

sinx

Example 2.1.2. Show that floos dx converges absolutely if p > 1

xP
sinx |sin x| 1
= < x—p,Vx = 1,

Solution. We have
xP

X
and [~ xipdx converges for p > 1.

S;I;x| dx converges for p > 1.

Thus, [,

i

Therefore, [ S‘x% dx converges absolutely for p > 1.

Integrand as a product of functions (convergent at ' oo’ ).

A test for absolutely convergence.

Theorem 2.1.3. If a function ¢ is bounded in [a, o] and integrable in [a, x], Vx = a.

Also if [ aoo fdx is absolutely convergent at oo, then [ aoo fodx is also absolutely convergent at

0.,

Proof. Since f is bounded in [a, o), therefore 3k > 0, such that
lo(x)| < k,Vx € [a, )

Again since |f] is positive in [a, ), and faoooo |f|dx is convergent.

Therefore we can find m, such that
X

j |fldx <m, Vx = a
a

Using (1) we have

Ifel = I1flle]
< k|f|, Vx € [a, ).

Therefore, [ |foldx < k[ |fldx
< kmVx = a.

Thus, [ |foldx < kmvx = a.

Therefore, [ ; |fo|dx is convergent.

Hence [ . fodx is absolutely convergent.
Test for convergence.
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Theorem (Abel’s Test) 2.2. If ¢ is bounded and monotonic in [a, o) and faoofdx IS
convergent at oo, then, [ aoo fodx is convergent at co.

Proof. Since ¢ is monotonic in [a, o0), then is integrable in [a, x], VX = a.

Also since f is integrable in [a, x], we have by 2" mean value theorem

f;izfgodx = (p(Xl)f;lfdx + <p(X2)fyX2fdx fora<X, <Y <X,

Let € > 0 be arbitrary.

Since ¢ is bounded in [a, o), a positive number k exists, such that

lo(x)| <k, VX = a.

In particular,
lp(x)l <k, lo(x)| < k,

Again since faoofdx IS convergent, therefore their exists X, such that

X2
j fdx
X1

Since, X; <Y < X,.

&
< ﬁ ) VX1,X2 > XO

Therefore, |f 7, fdx| < = and

X3

€
fdx| < =—
y 2k
Thus from (17), (18), (19), and (20), we deduce that 3X,, such that for all , X;, X, > X, and
e>0
X, y X2 € €
fodx| < |p(x1)] j fdx|+ |p(x2)] fdx|<k—+k—=¢.
X1 X, y 2k 2k

Hence [ aoo fodx is convergent.
Theorem Drichlet's Test 2.15. If ¢ is bounded and monotonic in [a, o) and tends to 0 as x — o
and f:fdx is bound for X > a, then faooﬂpdx convergent at co.

Proof. Since ¢ is bounded and integrable in [a, x]. Also since fis integrable in [a, x], therefore

by second mean value theorem:

jxfdx

<kVX>a
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Therefore,

y y
.[fdx =jfdx—J fdx
Xq a

< f fdx| + f fdx
a
<2k, forX;, = a
Similarly,

< 2k, for X, = a.

Let € > 0 be arbitrary.

Since ¢ — 0 as — oo, there exists a positive X, such that |p(X;)| < |g0(X2)| < —k where

X, = X, = X,.
Let the numbers X;, X, in (21) be > X, so that from (17), (18), (19) & (20), we get

X3

fodx

X1

<E2k+E2k

ZEVXZ ZX]_ ZXO

Hence by Cauchy’s test [ aoo fodx is convergent at co.

00Sinx x

Example 2.2.1.The improper integral f — dx is divergent for p>O0.

Solution. Take ¢ (x) = xip,p > (0 and

f(x) = sinx.
Then ¢(x) is monotonic decreasing and tends to 0 as x — co.
Also,
X X
j fdx| = j sin xdx
1 1

= |cos 1 — cos x|
< |cos 1| + |cos x|
<1+1=2,VvVX=>1.
Thus, |f1xsinxdx| <2VX >2.
Therefore [ 1x sin xdx is bounded.

sinx
1

Hence by Drichlet's test floo sinxxip = [ —dx is convergent p > 0.
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coosinx xP

Also, we know that f —dx is absolutely convergent ifand only if p > 1

Thus, f —dx Is conditional convergent for 0 < p < 1.
Conditionally Convergent.
An improper integral faoooofdx Is conditionally convergent at oo if faoo fdx is convergent at oo

but faoo |f|dx is not convergent. That is the improper integral is said to be conditionally

convergent if it is convergent but not absolutely.

sinx

Example 2.2.3. Show that f dx is convergent, but not absolutely

Solution. We have |, Smxfd _ fo Si:x dx+ [ Sizxdx

Now, fol :

To examine the convergence of f

X
j sin xdx
1

|/ sin xdx| is bounded above for all X > 1.

SINX 7 at oo, we see that

= |cos1 — cos X| < |cos 1| + |[cos X| < 2, so that

Also, 1/x is a monotonic decreasing function tending to 0 as x—oo.

Therefore by Dirchlet's test [, =

Hencef —dx is convergent. follows:

[ [,

r-nm
Now, Vx € [(r — D, rr]

o |sin x| o |sin x|
dx = dx
r-Dm X r-nm I

Putting, x =(r—Dm+y

" |sin x| Tlsin(r — D + y|dy
Jo =)

( 0

sinx

reyr 1T T

2

1 s
=— | sinydy=—.
T[T'_[O SIyay T

2 . . .
But Y7 —isa divergent series.
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. nw |si
Therefore, lim,,_, [ 2o

dx = lim,_ o Y-y

e

[sin x|

This implies that lim, o, [, - dx is infinite.
Now, let t be a real number, there exists positive integer n, such that

nt<t<(n+ m.

nr |smx|

We have, [, ISlnx'd > [, dx.

Let t — oo, so that n — oo, thus we see that

jt |sin x| dx o o
O x

o |sin x|

This implies [

dx does not converge.

This example show that [, stnx

—dx,0 <p <1, is convergent but not absolutely.

Cos x

Example 2.2.4. Show that f dx Is conditionally convergent.

Solution. Let ¢(x) = @,f(x) = COSX.

= |sinX — sin 2| < |sin X| + |sin 2| < 2, so that

X
f cos xdx
2

J, cos xdx is bounded for all X > 2

Also, p(x) = —— is monotonic decreasing function tending to 0 as x — oo.
log x

Hence by Dirichlet's test [, f;’;i

For absolute convergence consider

=
2

3n 51
2 |cosx| 2 cosx |

X = dx + dx
, logx 3771 log x

(2n+ 1)m |cos x|

CoOS X

log x

+ zlogx 2 dx + -
Therefore,
COS X 37 |cos x CrADT | cos x
_fnl I fzz | |dx+"'_f(2n—21)nu
2 logx log x === logx
2 |cos x|
— | T
72 logx
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2n+)rm

|cos x| 2 |cos x|
=Y - —ax —
Zr‘—lf(ZnZl)TE IOgX % logx
Now,
f (ZTHZ-].)T[ |COSX| 1 —(27' -IZ_ 1)7T
—dx cos xdx
2nt—-1 = —
( = )T Jog x log(2r + V)m/2 | 2r . D

- ! in[(2r + 2] = sin[2r = 1) =
_log[(zr_lz_l)ﬂ]|51n[( r+ )E]—sm[( r— )E]l

12(=Dr|

= o [(Zr -|2- 1)7T]

B 2
log (2r —ZF Dm

2 2
>y £
TherEfOre, I > Zr_l log@ f— log x

|cos x|

'COS;C' dx is proper integral.

But 372, — is divergent and fn

|cos x|
0 logx

Hence I = f

- - [o.]
dx is divergent and so [, fssjz

smx

Example 2.2.5. Using f

] sin? xd T
X =—.

2
0o X 2

Solution. To compute it let us integrate by parts, therefore

© sin? x —sin? x ® sin 2x
> dx = + dx
0 X x ], 0 X

Hence [, sin’ xdx=f0 Slrl'tdf:——

= % show that

Example 2.2.6. The function f is defined on [0, co[byf(x) = (1), forn—1<x<nne€
N, show that the integral [ 0°° f (x)dx does not converge.

Solution. Consider
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2n 1 2

. f(x)dx =j; (—1)0dx+f1 (—1dx +
3 2n
+L (—))"dx + ---Ln_l (—1)* tdx
=1-1+41-14+1-1uuu.+1—1
And
S fodx = [ dx+ [ (—1)dx +- S (1) 2dx
=1-1+41lum..—1+1=1
Myoeo [ f()dx = 0

2n+1

and lim,o [, f(x)dx = 1.

Hence the integral does not exist and therefore it is not convergent.

Example 2.2.7. Test the convergence of

M) Jy
nJfy

Solution. The integral is positive for positive value of x but the tests obtained for the

0 1+x4cos2 x

0 1+x4cos2

convergence of positive integrands so far, are not applicable. In order to show the integral

convergent we proceed as follows:

xdx
Consider f m
xdx
Thereforef m Y= 1f(r DT 1+x4cos2 x'

Now, Vx € [(r — D)m, rm].

We have
X (r—1m
1+ x%*cos?x — 1+ r*cos?x
xdx T (r—-1)mdx
Therefore f(r 1T 1+x4cos? x — f(r—l)n 1+x%cos2 x

puttingx = (r — 1) + y we see that
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fm (r—Dmdx j‘" (r — 1)mdy
(r—1yn 1 + x*cos?x )y 1+r*mtcos?((r— Dm+y)3
B j‘” (r — Dndy
0

1+ r4m*cos?y
s

=2(r—1 F 4y
=2(r=Drm o 1+rimtcos?y
7 sec? ydy
=20 -1 [ e
o 1+ +tan*y +r*m

T

z _ (r—Dn?

2(r—m tan-1 ( tany )
= dan — - T —
o V1+rimt

V14 rint V1 + rimt

> yn (r-nm*
(r-Dm 1+x4cos2 =1 Tirént

Therefore, Y™, [ "

xdx ) n  (-Dm?

) nm
Hence lim,,_o, J 2 limp o0 Yro1 =y

1+x%*cos? x

— 2 - - 1
But Y7, % Is a divergent series (~ Dr=1 %)

o d . .
Therefore [ ;" ————is divergent.

an 7 try yourself

0 1+x4co 2x
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Abstract:

The research can be summarized by my entry in this research by studying the
unusual integrations that need to find integration of functions that are difficult
to integrate to in the usual methods known. In addition to that we presented
some characteristics and features for special functions that need a special

.technology to find their integration, reinforced by theories and examples
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