. \M-’\J\

1433
\ \t.\JLp. KIKYPA| Z\,g).ﬂi ;\-:\.15
\'é / Sl ) il

Hilbert space

33hal) Ay 20 0€ Nga daaly ) puha 7 AT Cuny

ibpaly ) aud
Szl )l gabiaid (A g polisdl A pa Jall

\ u.dﬂ\t.\;.\]b&l.d\ﬁb.mb‘)b‘g @,

\




(sl ale g J& 3909 cliy o mlaym gosi}

;,_al&ﬂ\ ) (3la

[L-LA\%SJ\WVQ]




slaaYy)

alall yaia . A9 Gl oY) Qi dga g oot oY) <yl Ga )
Joad) Ll yai g
(pleus 4sle &) (Lus) dana Udsua .,
Blaad) (B (gaiuug (98 g danl Jany A8l (I
uaad) gally .,
Sl A oo B1al) Ll g Lgilany (g 58 Ciplial Ga I
duaal) Sally .,
s plaw (A dakalud) uadd) g (A8 slal
Apand) uli) g S 68 .,
e A B3 laallg sl & e 3 S

au) gial) 53g 3 a0 Al

IT




\ “ I
8
f;'] 73 »ﬂ;

. 3% . ) =¥,
ek i i
o 4 2 oo R s b
—_ s e e :
z - Pisd %
) 5 F s 20 )
- & " L
d ¥

g oo DES laes 1y deal (aallall Gy i 2eal)
$Hkae ke fe i 4fle
Sladh 8 5asl Jeill 1) IS A "o el 33003 (3838 &3] of V) e
oy gl sans ¢ lpagdi dns (2e oSl e o Q] 1y
Dalpall o I ling . lsiag AURY lparsily Letniling cleileansiy Leilali )
o5 lallg




ABSTRACT:

Hilbert spaces 43 a3

Jia Al asalial) Gaany ) 5kl a3 Cua

( Inner (Some Basic Proposition) Product spaces)
Hilbert Spaces (& dasw dadia J5¥) Juaidl) (raaly

el g ale JSl

Hilbert spaces dJa ) ¢ Ay dadia JU) Juadl) Gaully g
adc 4d) g dlada Alia) ) ALY

Recommendations ¢ &aull 4l ey g

Call A Glald) L) Jua g A

VI




INTRODICTION

So far, in increasing order of specialization, we have studied topological spaces, metric
spaces, normed linear spaces, and Banach spaces. Hilbert spaces are Banach spaces with
a norm that is derived from an inner product, so they have an extra feature in
comparison with arbitrary Banach spaces, which makes them still more special. We can
use the inner product to introduce the notion of orthogonality in a Hilbert space, and the
geometry of Hilbert spaces is in almost complete agreement with our intuition of linear
spaces with an arbitrary (finite or infinite) number of orthogonal coordinate axes. By
contrast, the geometry of infinite-dimensional Banach spaces can be surprisingly
complicated and quite different from what naive extrapolations of the finite-dimensional

situation would suggest.
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Definition 1.1.1: An inner product on a complex linear spacX is a map

(' ): XXX->C
such that, for all x,y,z € X and A, u € C:
(@) (z, Ay + uz) = A(x,y) + u(x, z) (linear in the second argumerti:
(b) (v,2) = |z, y| (Hermitian symmetric);
(¢) (x,x) = 0 (nonnegative):
(d) (x,x) = 0if and only if x = L (positive definite).
We call a linere space with an inner product an inner product spece or a pre-Helbirt
space.
From (a) and (b) it follows that (-,-) is antilenear, or conjugate linear, in the first
argurnert, meaning that
(Ax + uy.z) = A(x,z) + i(y - 2).
If X is real, then (-,-) is bilinear, meanirg that it is a linear function of each argument.
If X is complex, then (:,) is said to be sesquilinear, a name that literally means "one-
and-half" linear.There are two conventions for the linearity of the inner product. In
most of the mathematically oriented literature (-,-) is linear in the first argument. We
adopt the convention that the inner product is linear in the second argument, which is
more common in applied mathematics and physics. If X is a linear space with an inner

product (+,-), then we can define a norm on X by

I x lI=+/(x, x).

Thus, any inner product space is a normed linear space. We will always use the norm
defined in (1.2) on an inner product space.
Definition 1.1.2: A Hilbert space is a complete inner product space.

In particular, every Hilbert space is a Banach space with respect to the norm in (1.2).




Propertyl.2

The following fundamental inequality on an inner product space is called the Cauchy-
Schwarz inequality.

Theorem 1.2.1 (Cauchy-Schwarz) If x,y € X, where X is an inner product space,then
|G, ) <l x 1llEy I,

where the norm ||-|| is defined in (6.1).

Proof. By the nonnegativity of the inner product, we have

0 < (Ax — puy, Ax — uy)

for all x,y € X and A, u € C. Expansion of the inner product, and use of (1.2), implies
that

Au(x, y) + Ay, x) < (AP 1 x 12+ |ul® 1y 1%

If (x,y) = re'?, where r = |(x, y)| and ¢ = arg(x, y), then we choose
A=llylle?® u=lxl.

It follows that

20x My Gy IS 20 x 120y 1%,

which proves the result.

An inner product space is a normed space with respect to the norm defined in (1.2).
The converse question of when a norm is derived from an inner product in this way is
answered by the following theorem.

Theorem 1.2.2 A normed linear space X is an inner product space with a norm
derived from the inner product by (1.2) if and only if

Ix+y 12 +lx—yII?=21xI?+2ylI*? forallx,y € X.




Fig 1.2 the geometric interpretation of the paralleelogram law(1.2)

Proof. Use of (1.2) to write norms in terms of inner products, and expansion of the
result, implies that (1.4) holds for any norm that is derived from an inner product.

Conversely, if a norm satisfies (6.4), then the equation

1
(x,¥) =Z{” x+yIZ=llx—ylIP—illx+iyI>+illx—iyl?*}

defines an inner product on X. We leave a detailed verification of this fact to the reade
The relation (1.4) is called the parallelogram law. Its geometrical interpretation is that
the sum of the squares of the sides of a parallelogram is equal to the sum of the
squares of the diagonals (see Figure 1.2). As the polarization formula (1.5) shows, an
inner product is uniquely determined by its values on the diagonal, that is, by its
values when the first and second arguments are equal. Let (X, (+,-)x) and (Y, (:,-)y) be
two inner product spaces. Then there is a natural inner product on the Cartesian
product space
XXY={(x,y)|IxeX,yeY}

given by

((x1»3’1); (x2;Y2))XXY = (x1,x)x + 1, Y2y

The associated normon X X Y is

I Coy) =1 x 12 +1y 112

Unless stated otherwise, we will use this inner product and norm on the Cartesian

product of two inner product spaces.




Theorem1.2.3 Let X be an inner product space. The inner product is a continuous
map from X X X — C.

Proof. For all x4, x5, y1, V2 € X, the Cauchy-Schwarz inequality implies that

|(x1, 1) — (2, ¥2) = (1 — x2,¥1) + (X2, 71 — ¥2)|
< ||x1 - x2||||)/1|| = ||x2"||)’1 — Y2 .

This estimate implies the continuity of the inner product.
Some Examples 1.3:
Examples 1.3.1: let L = R?, and let X = (xq,x,)

Y = (1, y2)

<, >:R? X R? - F is defined as
(X,Y)=x1y1 + x,7, VX, Y € R%.z = (2,2,)
X =(x1,%2),Y = (1, 52)

show that <, > 1s [.LP.S. ?

Example 1.3.2 Let C([a, b]) denote the space of all complex-valued continuous

functions defined on the interval [a, b]. We define an inner product on C([a, b]) by

b —_—
(f.g) = j Fg(0)dx,

where f, g: [a, b] = C are continuous functions. This space is not complete, so it is

not a Hilbert space. The completion of C([a, b]) with respect to the associated norm,

" 1/2
I f = (f |f(x)|2dx> |

is denoted by L2([a, b]). The spaces LP([a, b]), defined in Example 2.1, are Banach
spaces but they are not Hilbert spaces when p # 2.
Similarly, if T is the circle, then L?(T) is the Hilbert space of square-integrable

functions f: T — C with the inner product

(f.g) = jT Fg()dx.




Example 1.3.3 We define the Hilbert space £?(Z) of bi-infinite complex sequences
by

oo

2.

n=—0oo

< 0

£2(2) =4 (Zn)n=-oo Zn

The space £?(Z) is a complex linear space, with the obvious operations of addition

and multiplication by a scalar. An inner product on it is given by

(0.0]

(x,y) = Z XnYn-

n=—oo
The name " £2" is pronounced "little ell two" to distinguish it from L? or "ell two" in
the previous example. The space £%(N) of square-summable sequences (z,,) 5 is
defined in an analogous way.

Example 1.3.4 Let C"™*"™ denote the space of all m X n matrices with complex
entries. We define an inner product on C™*" by

(A,B) = tr(A*B),

where tr denotes the trace and * denotes the Hermitian conjugate of a matrix - that is,

the complex-conjugate transpose. In components, if A = (ai j) and B = (bi j), then

(4,B) = i i a;by.

i=1 j=1

This inner product is equal to the one obtained by identification of a matrix in C™*"

with a vector in C"™". The corresponding norm,

1/2

m n
tat=(> > layl

i=1 j=1

1s called the Hilbert-Schmidt norm.




Example 1.3.5 Let C*([a, b]) be the space of functions with k continuous

derivatives on [a, b]. We define an inner product on C*([a, b]) by
k

b______ .
o=y | FOEgPwadx

j=0
where fU) denotes the j th derivative of f. The corresponding norm is

1
2

5. b
I fll= ZJ |f(j)(x)|2dx (1.2)
j=0 "%

The space C*([a, b]) is an inner product space, but it is not complete. The Hilbert
space obtained by completion of C*([a, b]) with respect to the norm ||-|| is a Sobolev
space, denoted by H*((a, b)). In the notation of Example 3.4, we have

H*((a,b)) = W*?((a, b))

1.4.orthogonality

Let H be a Hilbert space. We denote its inner product by (., . ), which is another
common notation for inner products that is often reserved for Hilbert spaces. The
inner product structure of a Hilbert space allows us to introduce the concept of
orthogonality, which makes it possible to visualize vectors and linear subspaces of a
Hilbert space in a geometric way.

Definition 1.4.1 If x, y are vectors in a Hilbert space ', then we say that x and y are
orthogonal, written x L y, if (x,y) = 0. We say that subsets A and B are orthogonal,
written A 1 B, if x 1 y for every x € A and y € B. The orthogonal complement A+
of a subset A is the set of vectors orthogonal to A,

At ={x€eH |x Lyforally € A}.




Theorem 1.4.1 The orthogonal complement of a subset of a Hilbert space is a closed
linear subspace.

Proof. Let 7 be a Hilbert space and A a subset of H.If y,z € AL and A, u € C, then
the linearity of the inner product implies that

(x, Ay + uz) = A{x,y) + u{x,z) = 0 forall x € A.

Therefore, Ay + uz € A*, so At is a linear subspace.

To show that A is closed, we show that if (y,,) is a convergent sequence in A%, then
the limit y also belongs to A*. Let x € A. From Theorem 6.10, the inner product is

continuous and therefore
(x,y) = <x, lim yn> = lim (x,y,,) =0,
n—>0o n—-o0o
since (x, y,,) = 0 for every x € A and y,, € A*+. Hence, y € At.
The following theorem expresses one of the fundamental geometrical properties of
Hilbert spaces. While the result may appear obvious (see Figure 6.2), the proof is not

trivial.

Theorem 1.4.2 (Projection) Let M be a closed linear subspace of a Hilbert space H

Fig.1.4 y is the point in M closest. to x.




(a) For each x € H there is a unique closest point y € M such that

|l x—yll=min |l x —z |
ZEM

(b) The point y € M closest to x € H 1is the unique element of M with the property
that (x —y) L M.

Proof. Let d be the distance of x from M,

d=i{llx—2zllzeM}

First, we prove that there is a closest point y € M at which this infimum is attained,
meaning that || x — y [|= d. From the definition of d, there is a sequence of elements
Yn € M such that

lim flx =y, || = d.

Thus, for all € > 0, there is an N such that

lx —y,ll <d+ € whenn = N.

We show that the sequence (y,,) is Cauchy. From the parallelogram law, we have
1ym = Yall* + 12 = Y = ¥ull® = 211x = yll* + 2l1x — y,1I°.

Since (¥, + ¥n)/2 € M, equation (6.7) implies that

lx = m + ¥)/21 = d.

Combining these equations, we find that for all m,n = N,

1ym — Yull®> = 201X = Y lI? + 21l — yll2 = 12 = ypy — Y lI?
< 4(d + €)% — 4d?
< 4e(2d + ¢€).

Therefore, (y,,) is Cauchy. Since a Hilbert space is complete, there is a y such that
Yo = ¥, and, since M is closed, we have y € M. The norm is continuous, SO

Il x —y lI=limy_ o llx — y,ll = d.

Second, we prove the uniqueness of a vector y € M that minimizes || x — y |l.
Suppose y and y’ both minimize the distance to x, meaning that

lx—yl=d, lIx =yl =d.




Then the parallelogram law implies that
20 x =y 1P+ 2lx = y'I* = 12x —y = y'I* + ly = y'I”
Hence, since (y + y')/2 € M,
ly —y'lI* = 4d? — 4llx — (y + ¥") /21> < 0.
Therefore, [y — y'|l = 0 so that y = y’.
Third, we show that the unique y € M found above satisfies the condition that the
"error" vector x — y is orthogonal to M. Since y minimizes the distance to x, we
have for every A € C and z € M that
Ix—yIP<llx—y+ 2z I
Expanding the right-hand side of this equation, we obtain that
2Re Mx —y,z) < |A)? 1l z 112
Suppose that (x — y,z) = |{(x — y, z)|e*®. Choosing 1 = ee~'?, where € > 0, and
dividing by €, we get
2lx —y,z)| <€l z %
Taking the limit as € - 0%, we find that (x — y,z) = 0,s0 (x —y) L M.
Finally, we show that y is the only element in M such that x —y 1 M. Suppose that
y' is another such element in M. Then y — y' € M, and, for any z € M, we have
(z,y—y)=(zx-y)—(zx—y)=0.
In particular, we may take z = y — y’, and therefore we must have y = y'.
The proof of part (a) applies if M is any closed convex subset of H (see Exercise 6.1)
Theorem 1.4.2 can also be stated in terms of the decomposition of H into an
orthogonal direct sum of closed subspaces.
Definition 1.4.2 If M and )V are orthogonal closed linear subspaces of a Hilbert
space, then we define the orthogonal direct sum, or simply the direct sum, M @ N of
M and N by
MON={y+z|lyeEMandz e N}




We may also define the orthogonal direct sum of two Hilbert spaces that are not
subspaces of the same space (see Exercisel.4).

Theorem 1. 4. 3 states that if M is a closed subspace, then any x € H may be
uniquely represented as x = y + z, where y € M is the best approximation to x, and

z 1 M. We therefore have the following corollary

Corollary 1.4.4 If M is a closed subspace of a Hilbert space H,

then = M @ M.

Thus, every closed subspace M of a Hilbert space has a closed complementary
subspace M. If M is not closed, then we may still decompose H as H = M D
M. In a general Banach space, there may be no element of a closed subspace that is
closest to a given element of the Banach space (see Exercise 6.2), and a closed linear
subspace of a Banach space may have no closed complementary subspace. These
facts are one indication of the much murkier geometrical properties of

infinitedimensional Banach spaces in comparison with Hilbert spaces.

10.
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2.1 Orthonormal bases

A subset U of nonzero vectors in a Hilbert space H is orthogonal if any two distinct
elements in U are orthogonal. A set of vectors U is orthonormal if it is orthogonal and
| u |lI= 1 for all u € U, in which case the vectors u are said to be normalized. An
orthonormal basis of a Hilbert space is an orthonormal set such that every vector in
the space can be expanded in terms of the basis, in a way that we make precise below.
In this section, we show that every Hilbert space has an orthonormal basis, which may
be finite, countably infinite, or uncountable. Two Hilbert spaces whose orthonormal
bases have the same cardinality are isomorphic - any linear map that identifies basis
elements is an isomorphism - but many different concrete realizations of a given
abstract Hilbert space arise in applications. The most important case in practice is that
of a separable Hilbert space, which has a finite or countably infinite orthonormal
basis. As shown in Exercise 1.4, this condition is equivalent to the separability of the
Hilbert space as a metric space, meaning that it contains a countable dense subset.

Before studying orthonormal bases in general Hilbert spaces, we give some examples.

Example 2.1.1 A set of vectors {ey, ..., e, } is an orthonormal basis of the
finitedimensional Hilbert spaces C™ if:
(a) (ej,ek) =g forl <j,k <mn;

(b) for all x € C™ there are unique coordinates xj, € C such that

n

X = z Xk€k,

k=1
where §jy is the Kronecker delta defined in (5.25). The orthonormality of the basis
implies that x;, = (e, x). For example, the standard orthonormal basis of C" consists
of the vectors

e; = (1,0,..,0), e, = (0,1, ...,0), ..., e, = (0,0, ..., 1).

11.




2.2.Some property
Definition 2.2.1 Let {x, € X | a € I} bee an indexed set in a Banach space X, where
the index set I may be countable or uncountable. For each finite subset J of I, we
define the partial sum S; by
Sy = Z X

a€j
The unordered sum of the indexed set {x, | @ € I} converges to x € X, written

a€l

if for every € > 0 there is a finite subset J* of I such that ||S; — x|| < € for all finite
subsets J of I that contain J¢. An unordered sum is said to converge unconditionally.
All the sums in this chapter are to be interpreted as unordered sums. The convergence
of finite partial sums §;, indexed by finite subsets J of I, is a special case of the
convergence of nets [12]. It is easy to see that an unordered sum converges if and
only if any permutation of its terms converges, and the sum is independent of the
ordering of its terms. A sum ), ,¢; X, 18 said to converge absolutely if the sum

Y zer llxq || of nonnegative numbers converges unconditionally. The unordered sum of
a sequence of real or complex numbers exists if and only if the corresponding series is
absolutely convergent. An absolutely convergent sum in an infinite-dimensional
Banach space converges unconditionally, but an unconditionally convergent sum need
not converge absolutely (see Exercise 6.8 for an example). If an unordered sum

Y ae1 Xq converges to x, then for each n € N, there is a finite J,, € I such that for all J
containing J,,, one has ||S; — x|| < 1/n. It follows that x, = 0 if & & U,en/p, S0 a
convergent unordered sum has only countably many nonzero terms. Moreover, there
1S a sequence (S ]n) of finite partial sums that converges to x as n — oo. The

continuity of the inner product implies that

12.




Z xa,Z Yp| = Z (xa vp)-

a€l BEJ (a,B)EIX]
There is a generalization of the Cauchy criterion for the convergence of series to
unordered sums.
Definition 2.2.2 An unordered sum ) ,¢;x, is Cauchy if for every € > 0 there is a
finite set J¢ I such that ||Sk|| < € for every finite set K < I \ J€.
Proposition 2.2.3 An unordered sum in a Banach space converges if and only if it is
Cauchy
Proof. First, suppose that the unordered sum )’ ,¢;x, converges to x. Let € > 0. By
the definition of convergence, there is a finite set J* such that ||S; — x|| < /2 for all
finite sets J that contain J. If K is any finite subset of I \ J¢, then we let ] = J° U K.
Since | contains /¢, we have

ISkl = ”S] - S]*

< ISy —xll + llx = S

<E.

Hence, the sequence is Cauchy.

Conversely, suppose that an unordered sum is Cauchy. Let J,, be finite subsets of |
such that ||Sk|l < 1/n forevery K c I \ J,,. Without loss of generality, we may
assume that J,, € Jp, ;4 for all n. It follows that for all n < m we have ||S; — 5, || <
1/n, which shows that the sequence (S ]n) 1s Cauchy; hence, since a Banach space is

complete, it converges to a point x. To complete the proof, we show that the
unordered sum converges to x. Given € > 0, we pick n such that 1/n < €/2 and put
J€ = J,,. If ] is a finite set that contains ¢, then the Cauchy criterion for the set J,, and

the convergence of the sequence (S ]n) to x imply that

2
I1S; — x| < IS, =S, | + [IS), — x[| < ~<e

We may use the Cauchy criterion to give a simple necessary and sufficient condition

for the unconditional convergence of a sum of orthogonal terms in a Hilbert space.

13.




Lemma 2.2.1 Let U = {u, | @ € I} be an indexed, orthogonal subset of a Hilbert

space H'. The sum ) ,¢;u, converges unconditionally if and only if ) ¢, lugll* < oo,

and, in that case,

5

a€El

Proof. For any finite set /] we have
2

Dt = ) (tatg) = ) (atigd = ) gl

a€j a,BE] acj acj

It follows that the Cauchy criterion is satisfied for ) ,¢;u, if and only if it is satisfied

for Y. ,erllug, ||2. Thus, one of the sums converges unconditionally if and only if the
other does. Equation (6.12) follows because the sum is the limit of a sequence of
finite partial sums and the norm is a continuous function. When combined with the
following basic estimate, this lemma will imply that every element of a Hilbert space
can be expanded with respect to an orthonormal basis.

Theorem 2. 2.2 (Bessel's inequality) Let U = {u, | @ € I} be an orthonormal set in a
Hilbert space H and x € H'. Then:

(@) Taer I{ua, )1° <Il x 117

(b) xy = X ger(Ug, X)U, is a convergent sum;

(c)x —xy € UL,

Proof. We begin by computing [|x — Y4, (uq, x)1u, || for any finite subset J < I
2

x—z (Ug, XUyl = x—z (Ug, XUy |, x—z (uﬂ,x)uﬁ

Q€] a€Ej pE]
_ P (Ug, x)(uﬁ, x)(ua, uﬁ)
= x)= Yy (up ) ug) = Y G D)+ Y
BEJ a€j a,pe]

=1 x 17— Xae; Kug, X))

14.




Hence

2
<Il x II?

z [(ug, x)|? =Il x 1*—

ac]

I

ae]j

Since Y 4e; [{ug, x)|? is a sum of nonnegative numbers that is bounded from above by
Il x II?, it is Cauchy. Therefore the sum converges and satisfies (a). The convergence
claimed in (b) follows from an application of Lemma 2.2.1.

In order to prove (c), we consider any u,, € U. Using the orthonormality of U and the

continuity of the inner product, we find that

<x - z (Ug, x)ua»ua0> = (X, ua(,) - Z <u0-"x><u0—”uao)

a€l a€l
= (x,uao) — (x,uao) = 0.
Hence, x — Y 4 (Ug, X)uy € UL,

Given a subset U of H', we define the closed linear span [U] of U by

[U] = {z cyulcy, € Cand z c, u converges unconditionally }

ueu ueu

Equivalently, [U] is the smallest closed linear subspace that contains U. We leave the
proof of the following lemma to the reader.

Lemma 2.2.3 If U = {u, | a € I} is an orthonormal set in a Hilbert space ', then

[U] = {Z Calg | ¢4 € Csuch that z lcg|? < 00}

a€el a€El

By combining Theorem 1.2.1 and Theorem 6.24 we see that x;;, defined in part
(b) of Theorem 2.2.2, is the unique element of [U] satisfying

X—Xxpll=min || x—ull.
I = xyll = min 1lx =

In particular, if [U] = H, then xy = x, and every x € { may be expanded in terms

of elements of U.

15.




The following theorem gives equivalent conditions for this property of U, called
completeness.

Theorem 2.2.4 If U = {u, | @ € I} is an orthonormal subset of a Hilbert space
then the following conditions are equivalent:

(a) (uy, x) = 0 forall @ € I implies x = 0;

(b) x = Y 4er{uy, x)u, forall x € H;

©) Il x 1= Y ger [{ug, x)|? for all x € H;

(d) [U] = 7

(e) U 1s a maximal orthonormal set.

Proof. We prove that (a) implies (b), (b) implies (c), (c) implies (d), (d) implies (e),
and (e) implies (a). The condition in (a) states that U+ = {0}. Part (c) of Theorem
2.2.2 then implies (b). The fact that (b) implies (c) follows from Lemma 2.2.1. To
prove that (c) implies (d), we observe that (c) implies that U+ = {0}, which implies
that [U]* = {0}, so [U] = H. Condition (¢) means that if V is a subset of J{ that
contains U and is strictly larger than U, then V is not orthonormal. To prove that (d)
implies (e), we note from (d) that any v € H is of the form v = ), ,¢; C,U,, Where
Cq = (Ug, V). Therefore, if v L U then ¢, = 0 for all @, and hence v = 0, so U U {v}
is not orthonormal. Finally, (e) implies (a), since (a) is just a reformulation of (e).
In view of this theorem, we can make the following definition

Definition 2. 2.3 An orthonormal subset U = {u, | a € I} of a Hilbert space H is
complete if it satisfies any of the equivalent conditions (a)-(e) in Theorem 6.26. A
complete orthonormal subset of HH is called an orthonormal basis of H .

Condition (a) is often the easiest condition to verify. Condition (b) is the property that
1s used most often. Condition (c) is called Parseval's identity. Condition (d) simply
expresses completeness of the basis, and condition (e) will be used in the proof of the

existence of an orthonormal basis in an arbitrary Hilbert space (see Theorem 2.2.6)
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The following generalization of Parseval's identity shows that a Hilbert space H with
orthonormal basis {u, | @ € I} is isomorphic to the sequence space £2(I).

Theorem 2.2.5 (Parseval's identity) Suppose that U = {u, | @ € I} is an orthonormal
basis of a Hilbert space H . If x = ) ,c;aqUq and y = Y g1 baly,

where a, = (uy, x) and b, = (u,,y), then

(%)= ) by

a€l

To show that every Hilbert space has an orthonormal basis, we use Zorn's lemma,
which states that a nonempty partially ordered set with the property that every totally
ordered subset has an upper bound has a maximal element [49].

Theorem 2.2.6 Every Hilbert space H has an orthonormal basis. If U is an
orthonormal set, then H{ has an orthonormal basis containing U.

Proof. If H = {0}, then the statement is trivially true with U = @, so we assume that
H + {0}. We introduce a partial ordering < on orthonormal subsets of H by
inclusion, so that U < Vifandonly if U c V. If {U, | @ € A} is a totally ordered
family of orthonormal sets, meaning that for any a, 8 € A we have either U, < Up or
Up < Uy, then Ugye 4 Uy is an orthonormal set and is an upper bound, in the sense of
inclusion, of the family {U, | @« € A}. Zorn's Lemma implies that the family of all
orthonormal sets in H has a maximal element. This element satisfies (e) in Theorem
2.2.3, and hence is a basis. To prove that any orthonormal set U can be extended to an
orthonormal basis of H, we apply the same argument to the family of all orthonormal
sets containing U. The existence of orthonormal bases would not be useful if we did
not have a means of constructing them. The Gram-Schmidt orthonormalization
procedure is an algorithm for the construction of an orthonormal basis from any
countable linearly independent set whose linear span is dense in H'. Let V be a

countable set of linearly independent vectors in a Hilbert space H .
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The Gram-Schmidt orthonormalization procedure is a method of constructing an
orthonormal set U such that [U] = [V], where the closed linear span [V] of V is
defined in (6.13). We denote the elements of VV by v,,. The orthonormal set U = {u,,}

is then constructed inductively by setting u; = v /llv4|l, and

n
Up+1 = Cn+1 (vn+1 - z (uk:vn+1)uk>

k=1
for all n = 1. Here ¢,,;1 € Cis chosen so that [[u, .|l = 1. It is straightforward to
check that [{vy, ..., v, }] = [{uy, ..., u,}] for all n > 1, and hence that

1= vt = ) = 1,

n

2.3.Some Examples

Example 2.3.1 Consider the Hilbert space £?(Z) defined in Example 6.5. An
orthonormal basis of £%(Z) is the set of coordinate basis vectors {e, | n € Z} given
by

en = (Orn)k=—co-

For example,

e, =(.,0,100,0,..),¢e, =(...,0,01,0,0,...),e; = (...,0,0,0,1,0, ...).

Example 2.3.2 The set of functions {e,,(x) | n € Z}, given by

en(x) = Ee' ,

is an orthonormal basis of the space L?(T) of 2m-periodic functions, called the
Fourier basis. We will study it in detail in the next chapter. As we will see, the inverse

Fourier transform F ~1: £2(Z) - L?(T), defined by
1 .
F e = —= z cre',
2
is a Hilbert space isomorphism between £2(Z) and L*(T).
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Both Hilbert spaces are separable with a countably infinite basis.

Example 2.3.3 A function that is a sum of finitely many periodic functions is said to
be quasiperiodic. If the ratios of the periods of the terms in the sum are rational, then
the sum is itself periodic, but if at least one of the ratios is irrational, then the sum is
not periodic. For example,

f(t) — eit + eint

1s quasiperiodic but not periodic. Let X be the space of quasiperiodic functions

f:R — C of the form

n

FO) =) ageiont

k=1
where n € N, g, € C, and w; € R are arbitrary constants. We may think of ¢ as a
time variable, in which case f is a sum of time-harmonic functions with amplitudes
|a, |, phases arg ay, and frequencies wj,. When some of the frequencies are
incommensurable, the function f "almost" repeats itself, but it is not periodic with
any period, although it is bounded.

We define an inner product on X by means of the time average,

1 (T ____
(f.0) = Jim 7 | F@g (et

If £ (¢) = Ypqare' < and g(t) = Yp_; bre'kt, where w; # wy, for j # k, then

n

(f.9)=) by

k=1
The inner product may also be written as

toHT

(frgy=1lim | fOg(®)de

to
where t; is any fixed time independent of T. The set of functions

{ei‘”t | w € ]R}
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1s an orthonormal set in X. The space X is an inner product space, but it is not
complete. We call the completion of X the space of L?-almost periodic functions. This

space consists of equivalence classes of functions of the form

(00)

FO) =) apeiv

k=1

where Y5, |ax|? < o. The sum converges in norm, meaning that for any t, € R,

FEO) =) ageint
k=1

The set in (6.9) is an uncountable orthonormal basis of this Hilbert space, so the

2
T

lim — dt - 0 asn — oo,

T—oo 2T _r

space is not separable.

Although in the future we will mainly consider separable Hilbert spaces, it is worth
postponing this restriction for a little while. First, we say what we mean by a sum
with a possibly uncountable number of terms. This definition also clarifies the sense
in which our infinite sums converge, which is stronger than the sense in which infinite

series converge.

20.




> CHAPTER THREE <

1-3 Hilbert spaces in applications

2-3 References

3-3 Exercises




3.1 Hilbert spaces in applications

In this section, we describe several applications in which Hilbert spaces arise
naturally. The first is quantum mechanics. The introduction of quantum mechanics in
the 1920 s represents one of the most profound shifts in history of our understanding
of the physical world. The theory developed at a feverish pace, and people hardly had
time to pause to think about the mathematical structures they were inventing and
using. Only later was it realized, by von Neumann, that Hilbert spaces are the natural
setting for quantum mechanics.One of the simplest quantum mechanical systems
consists of a particle, such as an electron, confined to move in a straight line between
two parallel walls: the "particle in a box." Quantum effects are important when the
kinetic energy of the particle is comparable with E = h? /(2mL?), where m is the
mass of the particle, h is Planck's constant, and L is the distance between the walls.
Planck's constant has the dimensions of action, or energy times time, so E has the
dimensions of energy. In quantum mechanics, the state of the particle at each instant
in time t is described by an element ¥ (-, t) € L?([0, L]), that is, a vector in the Hilbert
space of square-integrable, complex-valued functions on the interval [0, L]. The
function v is called the wavefunction of the particle. This description contrasts with
classical, Newtonian mechanics, where the state of the particle is described by just
two numbers: the position 0 < x < L and the velocity v € R. The physical
interpretation of the wavefunction is that ||? is a probability density. If the position
x of the particle is measured at some time ¢, then the probability of observing the
particle

in some interval [a, b], where 0 < a < b < L, is given by

b 2
Pr[ particle is in the interval [a, b] at time t] = f“Lh'b(x't)l g
Jo W Cxt)?dx
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The dynamics of the quantum mechanical particle is described by a partial differential
equation for the wavefunction, called the Schrodinger equation. For the particle in a

box, the Schrédinger equation is
hz
lhlpt = —%l/)xx, X € [O,L],t € R,
with the boundary conditions ¥ (0,t) = ¥ (L,t) = 0 for all t € R.

A second way in which L?-spaces arise naturally is as "energy" spaces. The quantity

| rrerax

often represents the total energy of a physical system, or some other fundamental
quantity, and one often wants to restrict attention to systems for which this quantity is
finite. For example, in fluid mechanics, if u(x) is the velocity of a fluid at the point x,

then
j u(x)[2dx
vV

where | - | denotes the Euclidean norm of a vector, is proportional to the kinetic
energy of the fluid in V. This energy should be finite for any region V with finite
volume. An electromagnetic field is described by two vector fields, the electric field E
and the magnetic field B. In suitable units, the energy of the electromagnetic field in a

region V is given by
| GEGI? + BEOPax
14

The requirement of finite energy leads naturally to the requirement that E and B
belong to appropriate L?-spaces.

A third area in which Hilbert spaces arise naturally is in probability theory. As we
discuss in greater detail , a random experiment is modeled mathematically by a space

(1, called the sample space,
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and a probability measure P on (). Each point w € () corresponds to a possible
outcome of the experiment. An event A is a measurable subset of (). The probability
measure P associates with each event A a probability P(A), where 0 < P(A) < 1 and
P(Q) = 1. A random variable X is a measurable function X: Q) — C, which associates
a number X (w) with each possible outcome w € (). The expected value EX of a
random variable X is the mean, or integral, of the random variable X with respect to

the probability measure P,
EX = J X(w)dP(w).
Q

A random variable X is said to be second-order if E|X|? < oo,

The set of second-order random variables forms a Hilbert space with respect to the
inner product

(X,Y) = E[XY]

where we identify random variables that are equal almost surely. Here, "almost
surely" is the probabilistic terminology for "almost everywhere," so that two random
variables are equal almost surely if they are equal on a subset of () which has
probability one. The space of second-order random variables may be identified with

the space L?(Q, P) of square-integrable functions on (€2, P), with the inner product
(X,Y) = j X()Y(w)dP(w)
Q

The Cauchy-Schwarz inequality and the fact that [E1 = 1 imply that a second-order
random variable has finite mean, since

[EX| = (1, X)| < E[|X|*]"/?

Thus, the Hilbert space of second-order random variables consists of the random
variables with finite mean and finite variance, where the variance Var X of a random
variable X is defined by

VarX = E[|X — EX|?]
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In particular, two random variables with zero mean are uncorrelated if and only if

they are orthogonal.
3.2 References

The material of this chapter's introduction to Hilbert space 1s covered in Chapter 4 of
Rudin [49], and also in Simmons [50]. Halmos [20] contains a large number of
problems on Hilbert spaces, together with hints and solutions. For an introduction to

probability theory, see Grimmett and Stirzaker [17]

3.3 Exercises

Exercise 3.3.1 Prove that a closed, convex subset of a Hilbert space has a unique
point of minimum norm.

Exercise 3.3.2 Consider C([0,1]) with the sup-norm. Let

1
N = {f € C([0,1]) | jo fx)dx = o}

be the closed linear subspace of C([0,1]) of functions with zero mean. Let
X ={f eC(0,1])1£(0) =0}
and define M = N N X, meaning that
1
M = {f e C([0,1D | £(0) =0, j f(x)dx = O}.
0
(a) If u € C([0,1]), prove that

d(u,N) = rllrellf] lu—nl=|ul,

where || = [ Olu(x) dx is the mean of u, so the infimum is attained when
n=u—ue€N.

(b) If u(x) = x € X, show that

d(x,M) = nllrelsz lu—ml=1/2,

but that the infimum is not attained for any m € M.
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Exercise 3.3.3 If A is a subset of a Hilbert space, prove that
At = A

where A is the closure of A. If M is a linear subspace of a Hilbert space, prove that

Exercise 3.3.4 Suppose that H; and H, are two Hilbert spaces. We define
Hy @ Hy = {(x1,x2) | X1 € Hy,x; € Hy}
with the inner product
((x1,%2), 1, Y2 e, @30, = X1, V1dae, + (X2, V2) 9,
Prove that H; @ H, is a Hilbert space. Find the orthogonal complement of the
subspace {(x;,0) | x; € H,}.
Exercise 3.3.5 Suppose that {#,, | n € N} is a set of orthogonal closed subspaces of a

Hilbert space H'. We define the infinite direct sum

ED H, = {z %, | x, € H, and z I, I1% < oo}.
n=1 n n=1

=1
Prove that @, H,, is a closed linear subspace of H .

Exercise 3.3.6 Prove that the vectors in an orthogonal set are linearly independent.

Exercise 3.3.7 Let {x, },¢; be a family of nonnegative real numbers. Prove that

z Xz =8 {2 xaljcland]isﬁnite}.

a€l a€j
Exercise 3.3.8 Let {x,, | n € N} be an orthonormal set in a Hilbert space. Show that
the sum Y., —, x,,/n converges unconditionally but not absolutely.

Exercise 3.3.9 Prove Lemma 2.2.2.

Exercise3.3.10 Prove that a Hilbert space is a separable metric space if and only if it

has a countable orthonormal basis.
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Exercise 3.3.11 Prove that if M is a dense linear subspace of a separable Hilbert
space H', then H has an orthonormal basis consisting of elements in M . Does the
same result hold for arbitrary dense subsets of H ?

Exercise 3.3.12 Define the Legendre polynomials P, by

n

d n
o 'd—n(x —1)

(a) Compute the first few Legendre polynomials, and compare with what you get by

P(x) =

Gram-Schmidt orthogonalization of the monomials {1, x, x?, ... } in L?([-1,1]).
(b) Show that the Legendre polynomials are orthogonal in L?([—1,1]), and that they
are obtained by Gram-Schmidt orthogonalization of the monomials.

(c) Show that

1
2 —
—[_1 P, (x)“dx P

(d) Prove that the Legendre polynomials form an orthogonal basis of L?([—1,1]).
Suppose that f € L?([—1,1]) is given by

(00)

FO) =) caPa)

n=0
Compute ¢, and say explicitly in what sense the series converges.

(e) Prove that the Legendre polynomial P, is an eigenfunction of the differential

operator

e d(1 2)d
- dx X dx

with eigenvalue 4,, = n(n + 1), meaning that
LP, = A, P,.
Exercise 3.3.13 Let H be the Hilbert space of functions f:[—1,1] — C such that

iols )I2
\/1—x2

X < oo
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with the inner-product

()9 (x) -
-1 V1 —x?

Show that the Tchebyshev polynomials,

(f,9) =

T,,(x) = cos(nf) where cosd =xand 0 < 0 <,

n = 0,1,2, ..., form an orthogonal set in ', and

IToll = Vm, IT,, II—\/;n>1

Exercise 3.3.14 Define the Hermite polynomials H,, by

Ho(x) = (-1)"e*" ( =
(a) Show that

on(x) = 7 /2 Hy (x)

is an orthogonal set in L?(R).

(b) Show that the nth Hermite function ¢,, is an eigenfunction of the linear operator

d>

H=- Ix? + x?2

with eigenvalue

An=2n+1

HINT: Let

A= 4 +x, A" = — 4 + x
dx dx

Show that

Apn =2n@n_q, A"Qp = Ppy1, H = AA" - 1.
In quantum mechanics, H is the Hamiltonian operator of a simple harmonic oscillator,

and A* and A are called creation and annihilation, or ladder, operators.

27.




Recommendations:

L oo g A Candll | 8 A M asaliall praa g3 5 eUae | 5 Hilbert Spaces sl Y& (e
1_Addressing and working on adding new concepts and expanding the topic of research
2_ The new methods differ from what was mentioned in the research

3_ Find appropriate solutions to such a topic
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