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INTRODICTION:

Since the time of Newton, differential equations are still used in the
understanding of the physical, engineering, and biological sciences, as
well as their contribution to the study of mathematical analysis. Hence,
it can be said without going beyond or exaggerating that the differential
equations extend their influence to include many medical and social
sciences such as psychology, economics and sociology, as most of the
relationships and laws governing the variables of any engineering or
physical issue appear in the form of differential equations. To
understand these problems it was necessary to solve these differential
equations, The Laplace transform is one of the ways to solve these
equations The Laplace transform is a process that takes place on the
mathematical functions to convert them from one field to another,
usually the conversion from the time domain to the frequency domain,
which is similar to the Fourier transform, but it is developed
independently. The Laplace transform is useful in analyzing linear
systems (unlike the Fourier transform, which is usually used in signal
analysis), and it is also used to solve differential equations because it
transforms them into algebraic equations. The transformation is called
by this name in relation to the French scientist Pierre Laplace, who lived

in the nineteenth century, who was the first to “study the properties of

the Laplace equation, which takes the following form[1] V2 s =0

Where V2 An effective Laplace symbol for any scalar mathematical
function When solving many applied engineering problems, some types
of boundary or initial .value problems sometimes appear For example,
some differential equations appear in which the non-homogeneous
term, G(x) is in the form of impulses, or | In the form of continuous
functions (Pieswise - Continuous), which cannot be used with traditional




methods to solve these types of problems. Thus we have to look for
other mathematical methods and methods to deal with such equations.
One of these methods uses what is known as the "Laplace transform
After the French mathematician Pierre-Simon Laplace (1827 -
1749,Laplace, P. c).

Transformation in general is a tool (Devise) for converting functions and
equations from their original form to another simpler form, or at least to
another form that is known to us. These and transformations are usually
integral transformations, such as Laplace transforms, Fourier transforms,
Laguerre transforms, and many others. The Laplace transform is an
integral transformation that when it affects the function turns it into
another function completely different from the original function As the
independent variable of the original function is converted to another
variable, the scope and extent of the original function change. Thus, he
transforms marginal or elementary problems into algebraic equations,
and the transformations are usually integrative transformations, .such as
Laplace transforms, Fourier transforms, and Laguerre transforms And
many more. The Laplace transform is an integral transformation that
when it affects the function turns it into another function completely

different from the original function, where the independent variable of

the original function is converted to another | variable, and thus the

scope and extent of the original function changes. Thus, we can convert
the function we are dealing with from its complex form to another form,
perhaps simpler and easier to deal with than the original function. For

example, the function f(t) = cos(at) Where the range is R by the effect of

the Laplace transform on it .".is transformed into the rational function

[2]




F(S) =

S2 + a2

However, the greatest benefit of the Laplace transform lies in its ability
to solve marginal or elementary problems associated with any type of
differential equation, where the effect of the Laplace transform on the
differential equation can be transformed into an algebraic equation in
which the unknown is the Laplace transform while he is holding the
solution of the equation under his grip and influence, and by solving This
algebraic equation can get an explicit Laplace transform. Then by finding
| The inverse Laplace transform We can free the solution from the grip
of the Laplace The equation transform and get the solution of the

original differential equation
Research problem

Sometimes we find that there are some problems in differential
equations that are difficult to solve by known methods, so we resort to
other ways to solve these .equations, including solving the differential

equation using the Laplace transform [3]
Research importance

Laplace transform helps to solve continuous functions at intervals

whose solutions can | be obtained using traditional methods
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When changing the form of the original complex function to another
form that is easier and simpler to deal with by converting the differential

equation into an algebraic equation that can be solved, and by finding

the inverse Laplace transform, we get the | .solution of the original

differential equation[2]
.research aims
1- Learn about Laplace and Laplace Transforms

2-Solving differential equations that are difficult to solve by ordinary

methods

3- Laplace transform in solving initial value problems given by linear

differential equations with constant coefficients [4]
Research Methodology

. In this research, researchers use the descriptive method and the

experimental method[4]
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Chapter One Laplace Transform

1.1.LAPLACE TRANSFORM

The Laplace transform can be used to solve differential equations.
Besides being a different and efficient alternative to variation of
parameters and undetermined coefficients, the Laplace method is
particularly advantageous for input terms that are piecewise-defined,
periodic or impulsive. The direct Laplace transform or the Laplace
integral of a function f(t) defined for 0 < t < oois the ordinary calculus

integration problem

foof(t)e‘“dt v (1.1)
0

succinctly denoted L(f(t)) in science and engineering literature. The L -

notation recognizes that integration always proceeds over t = 0 to

t = oo and that the integral involves an integrator e ~Stdt instead of the
usual dt. These minor differences | distinguish Laplace integrals from the

ordinary integrals found on the inside covers of calculus texts. [6]

The foundation of Laplace theory is Lerch's cancellation
Jy y®e™tdt = [ f(t)e™s* implies y(©) = f(D) ..o (1.2)
Or

L (y(t)=L(f(1)) implies y(t) = f(¢)
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In differential equation applications, y(t) is the sought-after unknown
while f(t) is an explicit expression taken from integral tables. Below, we

illustrate Laplace's method by solving the initial value problem
y'=-1,y(0)=0 (1.3)

The method obtains a relation £ (y(t)) = (£ -t), whence Lerch's

cancellation law implies the solution is y(t) = -t.

Chapter tow Laplace method 2.1 is advertised as a table lookup method,

in which the solution y(t) to a differential equation is found by looking

up the answer in a special integral table.

Laplace method L -notation details for y' =-1, y(0) = 0 translated from

—st
’

L(y' (t)) = L(-1) Apply Lacross y' =-1, or multiplyy'=-1by e
integratet=0tot= > L(y' (t))=-1/s

S L (y(t)) —y(0) = -1/s Integrate by parts on the left .
L (y(t)) =-1/s2 Use y(0) = 0 and divide.
L(y(t)) = L(-t) Apply Table 1.

y(t) = -t Invoke Lerch's cancellation law

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)




Example..1.1 (Laplace method) Solve by Laplace's method the initial

value problem
y'=5-2t,y(0)=1.....(1.4)
Solution:

Laplace's method is outlined in . The £ -notation of will be used to find

the solution
y(t) = 1 +5t — t°.

L (y'(t)) =L (5-2t) Apply £ acrossy'=5-2t

[(y (t)) =§ — Siz Use Table 1.

S L (y(t)) —y(0) === — = AppIy the t -derivative rule .

L (y(t) ==+ Si 2 Use y(0) = 1 and divide.

3
L(y(t))=L(1)+5 L (t)-LL(t2) Apply Table 1, backwards.
= L (1 +5t-12) Linearity .

y(t) = 1 + 5t — t* Invoke Lerch's cancellation law

Example.1.2
(Laplace method) Solve by Laplace's method the initial value problem
y" =10,y(0) =y'(0) = 0......... (1.5)

Solution:
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The L -notation of will be used to find the solution
y(t) = 5t% L (y"(t)) = £ (10) Apply £ across y' = 10

S L (y'(t)) —y'(0) = L(10) Apply the t-derivative rule to y', that is, replace
ybyy".

s[s £ (y(t)) —y(0)] —y'(0) = £ (10) Repeat the t -derivative rule, onyy.
s L (y(t)) = £ (10) Use y(0) = y'(0) = 0.
L (y(t)) =g. Use Table 1. Then divide.

L (y(t)) = £ (5t°). Apply Table 1, backwards

y(t) = 5t* Invoke Lerch's cancellation law.

1.2.Laplace Integral.

The integral fooo g(t)e st dt is called the Laplace integral of the function

g(t). Itis defined bylimy_, fONg(t)e‘St dt and depends on variable s.

The ideas will be illustrated for g(t)= 1, g(t)= tand g(t)=t> producing

the integral formulas in Table 1.
fooo(l)e'“ =-(1/s)e™ 1'Z7 Laplace integral of g(t)=1.

=1/s Assumeds >0

fooo(t)e‘“ dt = fooo —% (e) ™5t dt Laplace integral of g(t) =t.

==L [P(De~tdt Use [Sf(t,5)dt="[f(t,5) dt
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d
=—— (1/s) UseL(1)=1/s
= 1/s° Differentiate .

fooo(tz)e_“ dt=fO°° — % (te™St) dt Laplace integral of g(t) = t°

d poo —
=_Ef0 (t)e st dt

=-(1/s%) Use L (t) = 1/s*
=2/s’

Remark.1.

The Laplace integral fooo g(t)e stdt for g(t)=1, t and t’.

0 _ 1 ~00 _ 1 ro0 _ 2
J, e Stdt=;f0 (t)e Stdt=s—2f0 (t2)e st dt = = In summary

n!
sl+n

L(t") =

An lllustration. The ideas of the Laplace method will be illustrated for the
solution y(t) = -t of the problem y' = -1, y(0) = 0. The method, entirely
different from variation of parameters or undetermined coefficients,

uses basic calculus and college algebra.
Remark.2.

Laplace method details for the illustration
y'=-1,y(0)=0.

y'(t)e™ = -e* Multiply y' = -1 by e™.

fooo y (1,‘)¢3_S"'Ldt=f()00 —e St dt Integratet =0to t = oo,
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fooo y'(t)e Stdt =-1/s Use Table 1

s fooo y(t)e stdt —y(0) = -1/s Integrate by parts on the left .
fooo y(t) e Stdt = -1/s* Use y(0) = 0 and divide.

[ y(t) e stdt = [ (—t)e " dt Use Table 1.

y(t) = —t Apply Lerch's cancellation law.

Existence of the Transform. The Laplace integral fooo e Stf(t)dt is known

to exist in the sense of the improper integral definition

fooog(t)dt = limy_ fONg(t) dt .....(1.6)

provided f(t) belongs to a class of functions known in the literature as

functions of exponential order. For this class of functions the relation [8]

: f@®)
(2) llmt_m F =0

is required to hold for some real number a, or equivalently, for some

constants M and a,
(3) [f(t) < Me™

In addition, f (t) is required to be piecewise continuous on each finite

subinterval of0 < t < o0, a term defined as follows.
Definition 1.1

(piecewise continuous) A function f(t)is piecewise continuous on a
finite interval [a, b] provided there exists a partitiona = t0 <...<
tn = b of the interval [a, b] and functions f1, f2 fn continuous on

(—o0, 00) such that for t not a partition point
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(f1(t) to <t<ty

f6) = i . .
f(n).(t) tn-1 <t < tn

Example 1.3

(Exponential order) Show that f(t)= e’ cos t + t is of exponential
order, that is, show that f(t) is piecewise continuous and find a > 0 such

that lim,_,, f(t)/e* =0

Solution: Already, f (t)is continuous, hence piecewise continuous.

From L'Hospital's rule in calculus, lim,_,, p(t)/e%t= 0 for any

polynomial p and any a > 0. Choose a = 2, then

li lim <L 4 Jim — = 0
1m-——= 1m 1m-—-—-—=
t—oo @2t t t—o0 @2t

Theorem 1.1

Let f(t) be piecewise continuous on every finite interval int >0 and

satisfy f(t)< Me™ for some constants M and a. Then £ (f (t)) exists for

s > aandlimg_,, L(f(t) =0
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Proof: It has to be shown that the Laplace integral of fis finite
fors > a Advanced calculus implies that it is sufficient to
show that the integrand is absolutely bounded above by an
integrable function

fooog(t) dt = —

S—a

Inequality |f(t)| < Me®® implies the absolute value of the

Laplace transform integrand  f(t)e ~Stis estimated by

If(H)e st | < Me*e™St = g(t).

The limit statement follows from|£ (f ()| < fooo gt)dt =

o because the right side of this inequality has limit zero at

s = oo, The proof is complete.[9]
Theorem 1.2

(Lerch) If f;(t) and f,(t) are continuous, of exponential order
andfooo fi(®)e st dt = fooo f>()e st dt foralls > s, then =

£,() = fo(t).Fort = 0.

Theorem 1.3
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(t-Derivative Rule) If f(t) is continuous lim,_, f(t)e 5t =0

for all large values of s and f'(t) is piecewise continuous, then

L(f'(t)) exists for all large s and L(f'(t)) = sL(f(t)) — f(0)

1.3.Laplace Integral

© _ n
jo (te stdt = oI L") = ——

°° 1
j (e™e Stdt = —— L(e) =
0 s—a s—a

L(cos bt) =

s2 + b2 s2 + b2

f (cos bt)e st dt =
0

f (sin bt)e St dt = L(sin bt) =
0

s2 4+ b2 s2 + b2

L(H(t—a)) = %as (a > 0) Heaviside unit step, defined

1 for t=0

b H® =
4 2 {0 otherwise
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L(&(t—a)) =e 2 Dirac delt a §(t) = dh(t)
special usage rules apply

e—as

L(floor (t/a> = i) Staircase function,

floor(x) = greatest integer < x.

1
Lisqwl/y) = ;tanh(as /2) Square wave,

sqw(x) — (_ l)floor(x).

1
Liatrw(l/y)) = = tanh(?S/,) Triangular wave,

X

trw(x) = j sqw(r)dr.
0

1+ a)

L(ta) - slta

Generalized power function,

(0.0)

rd+a) = j e *x%dx
0

L(t1/2) = \/g Because'(1/2) =m




Examples 1.4.1

Let f(t) = t(t — 1) — sin 2t + €3t . ComputeL (f(t)) using

the basic Laplace table and transform linearity properties

Solution :
L(f@®) = £ (t* — 5t —sin2t + e3) Expand t(t — 5)
= (Lt? — L5t — L(sin 2t) + L(e3!) Linearity applied.

2 5 2 1
=3 32 3212 s_3 Table lookup.

Examplel.4.2
(Inverse Laplace transform ) Use the basic Laplace table
backwards plus transform linearity properties to solve
for f(t)inthe equation

2 s+1

L) = et

Solution:

L(f®) =

Convert to tabie entries

L (cos 4t) + 2L(e3) + L(t?)

Laplace table (backwards)
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1
=£(cos4t+263t+t+2t2)

Linearity applied

f(t) = cos 4t + 23t + t+%t2

Lerch $ Cancellation law

Example 1.4.3
(Heaviside)find the Laplace transform of f(t) in figure 1.1

5.:‘

figure 1.1 A piecewise defined function
f(Hon0 <t < oo:f(t) =0except for1<t<2and

3<t<4

Solution :
The details require The use ofthe Heaviside function

formula

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)




1 a<t<b
0 otherwise

H(t—a)—H(t—b)={

The formula for f(t):
1 1<t<?2
f(t)={5 3<t<4 ={

1 1<t<?2 {1 3<t<4
0 otherwise

0 otherwise 0 otherwise

Then f(t) = f;(t) + 5f,(t) where
fi®) =H(t—-1)—H(t - 2) and

fo(t) = H(t —3) — H(t — 4) .The extended table gives

L(f(@)) = L) + 5L (f2() Linearity.

=L(H(t—1))—LH(Et—2))+5L(f,(t)) substitute

-S —2S

e e
for fi = . + 5L (f,(t)) Extended table user

e—s _ e—ZS + Se—3s _ Se—4s o
= . Similarly for f, .
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Example 1.4.4

A machine shop tool that repeatedly hammers a die is modeled

N
by the Dirac impulse model f(t) = Z 6(t — n).
n=1

show that L(f(t)) = zN e s,
n=1

Solution:

Example 1.4.5

(Square wave) Aperiodic camshaft force f(t) applied to
a mechanical system has the idealized graph shown in

figure 1.2.show that f(t) =1+ sqw(t) and

1
L(f()) = . (1 + tanh(S/,)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)




Figure 1.2 Aperiodic force f(t) applied to a mechanical
system

Solution:

1+12n<t<?2n+1 ,n=0,12.....
1-12n+1<t<2n+2 ,n=0,1,2,....

1+ sqw(t) = {

2n<t<2n+1 ,n=0,1,2,...
otherwise

= f®.

By the extended Laplace tabe

tanh(°/,)

L(f®) = LD + L(sqw(®) = <+ ——
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Example 1.4.6

(sawtooth wave ) Express the P — periodic sawtooth
wave represented in figurel.3 as

f(t) =ct/P — cfloor (t/P) and obtain the formula

Ce—PS

L (f(t)) = pZZ -

s —sePs

/I

figure 1.3 AP — periodic sawtooth wave

&

f(t) of height ¢ >0
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Solution:

The representation originates from geometry, because the
periodic function f can be viewed as derived from ct/P by

subtracting the correct constant from each of intervals

[P, 2P], [2P, 3P|, etc. The technique used to verify the
identity is to define g(t) = ct/P - c floor (t/P) and then show
that g is P -periodic and f (t) = g(t) on0 <t<P. Two P
periodic functions equal on the base interval 0 <t < P have
to be identical, hence the representation follows. The fine
details: for 0< t< P, floor (t/P) = 0 and floor (t/P+ k) = k.
Henceg(t + kP) = ct/P + ck - c floor (k) =ct/P=g(t),
which implies that g is P -periodic and g (t) = 1(t) for 0
<t<P.

L(f) = gL(t) —cL (floor (t/p)> linearity.

C ce P

ps? s—se7Ps

Basic and extended table applied.
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Example 1.4.7

(Triangular wave) Express the triangular wave f of Figure 4 in

terms of the square wave sqw and obtain

5
L(f(©®) = Ftanh( ns/2).

Figure 1.4.

A 2m — periodic triangular wave f(t)of height 5.
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Solution:

The representation of f in terms of sqw is
f@) = SfOt/n sqw(x)dx.

Details: A 2-periodic triangular wave of height 1 is obtained by
integrating the square wave of period 2. A wave of height c and

period 2 is given by

t
ctrw (t) = Cj sqw(x)dx.
0

2t 2t/P
Then f(t) = ctrw (F) =C j sqw(x)dx

0

wherec = 5and P = 2m
Laplace transform details:
Use the extended Laplace table as follows.

t 5 TS

L(f©) = gL <n trw (E)) = —; tanh (7)
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ﬁ Chapter two Laplace Transform Rules

2.1 Laplace Transform Rules
L)+ gt) = L) + L(g(t)) Linearity.
The Laplace of a sum of the Laplaces .
L(cf(t)) = cL(f(t)) Linearity.
Constans move through the L — —symbol. .
L (y’(t)) =s L(y(t)) — y(0) The t — derivative rule .

derivatives L (y') are replaced In transfomed equations.

t
1
L (f g(x) dx) = ;L (g(t)) The — integral rule.
0

L(tf () = —%L (f(t)) The s differentiation rule.

d
Multiplylng f by t applies — s to the transform of f

first shifting rule.
L(e¥f@))=L(fO)ls - (s—a) Multiplying f
by e% replaces s by s —a Second shifting rule

L(f(t—a)H(t—a)=e % L (f(t)) , Second shifting rule
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L(g®)H(t—a)=e % L (g(t + a)) First and scond forms

L(f®) =

P —st
fO (1f£t))_e at Rule for

ePs

P — periodic functions Assumed there Is f(t + P) = f(t)

L (f(t))L (g(t) =L(f * g)(t)) Convolution rule

Define (f . 9)(t) = j FGOg(t — x)dx.
0

2.2 .Some Examples of Laplace Transform Rules

Example.2.2.1 (Harmonic oscillator) Solve by Laplace's
method the initial value problem x"+x =0, x(0) =0, x'(0)
=1

Solution: The solution is x(t) = sin t. The details:
L&")+L(x)=L(0) Apply L across the equation
SL (x')-x'(0)+L (x) =0

sfsL (x)-x(0)]-x(0) +L (x) =0 Use again the

t- derivative rule.

(s? + DL(x) =1 Use x(0) = 0,x'(0) = 1
1
5241

L (x) Divide.

L (sint) Basic Laplace table
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x(t) = sint Invoke Lerch's cancellation law.

Example2.2.2

(s — dif ferentiation rule) Show the steps forL (t%e>t) =

2
(s—5)3

Solution:

L(t%e%) = (— %) (— %) L(e>Y) Basic Laplace table

d -1
= ((s — 5)2) Calculus power rule.

2
Identity verified.

T (5+3)°

Example2.2.3

2

(First shifting rule)Show the steps forL(t?e 3!) =
g p (s+3)3

Solution:

L(t?e™3Y) = L([tD)|s—s—(—3) First shifting rule.

= ((S2 n 1))[5 —s—(-3) Basic Laplace table.

2

= G137 Identity verified.




Example2.2.4. (Second shifting rule) Show the steps for

—TtS

L(sintH(t —m)) = 7T

Solution: The second shifting rule is applied as follows.

L(sintH(t-m)) = L(g(t)H(t - a) Choose
gt) = sint,a = = e ¥L(g(t + a) Second form
, second shifting theorem.
=e L (sin(t + a) Substitutea = m.= e ™ L(—sint)
Sumrule sin(a + b) = sinacosb +

sinbcosaplussinmt = 0,cosm

Basic Laplace table. ldentity verified.

Example2.2.5

(Trigonometric formulas)Show the steps used to obtain

these Laplace identities:

s* —a* . 2sa
(a) L(tcosat) = 2+ a2 (b)L (tsinat) (s2 + a?)?

6s2a—a3

(s2+a?)3

2(s3-3sa?
(s2+a?)3

(c) L(t? cosat) =

(d)L(t?sinat) =

Solution: The details for (a):

e b > B £ £ 5 5> 5> £5° £° 5> £° 5> 56°5 56O 4




L (tcos at) = —(d/ds)L(cosat) Uses — dif ferentiation.

S
) Basic Laplace table.

- Calculus quotient rule.
(s? + a?)? 1

The details for (c)

L (t*cosat) = —(d/ds)L ((—t) cosat) Uses

— dif ferentiation

d s? —a?
= % —m Result Of ds

B 2s3 — 6sa?
~ (s2 4 a?)3

Calculus quotient ruleThe similar details

for (b) and (d) are left as exercises.

Example.2.2.6
(Exponentials)Show the steps used to obtain these
Laplace identities:

s—a
(s —a)? + b?

(a)L (e* cosbt) =

b

(b)L(e* sinbt) = G112

e b > B £ £ 5 5> 5> £5° £° 5> £° 5> 56°5 56O 4




(s —a)? — b?

(c)L(te? cos bt) = (G =) £ b2)?

2b(s —a)

(d)L(e* sinbt) = (G =2+ b))

Solution: Details for (a):
L (e% cos bt))

= L (cosbt)|s—s—a First shifting rule.

s
o (52+b2

s—a o
= G a2 +b? Verified

Details for (c¢):

L (te? cos bt) = L (tcos bt)|s —s — a First shifting rule.

d
= (— gﬁ(cos bt)|s—s—a Apply s — dif ferentiation.

—d(s)[ Basic Laplace tabl
= ( Is )s—s—a asic Laplace table.

s2 + b2

b2
2 1 b2)2> |s—s—a Calculus quotient rule.

_ (s—a)*—b?
~ ((s —a)? + b?)?

Verified

)s—s—a Basic Laplace table.

e b > B £ £ 5 5> 5> £5° £° 5> £° 5> 56°5 56O 4




Example.2.2.7. (Hyperbolic functions) Establish these
Laplace transform facts aboutcoshu = (e“*+e™ ™)/
2and sinhu = (e* —e™%)/2.

s s?2+a?
(a) L (cosh at) = 5— (c)L (tcosh at) = 2?2

(b) L (sinhat) = "= (d) L (tsinh at) = ——

(SZ_aZ)Z

Solution: The details for (a):

L (cosh at) = % (£ (%) + L(e™%))

Definition plus linearity of L.

Basic Laplace table.

2 _ 2 Identity (a) verified.

The details for (d):

L (sinh at) = —i( :

ds ‘“s2—q?

) Apply the s -differentiation rule.

a(2s) s
= m Calculus power rule; (d) verified.




Example2.2.8

(s — dif ferentiation)Solve L(f (t)) = (522_|_—51)2 for f(t).

Solution: The solution is f(t) = tsint.The details:
2S
L(f ()=
(f ( )) (52 + 1)2

d 1 | |
- _£(52 + 1) Calculus power rule (u™)" = nu™ — lu’.

d
=- (L(tsin t) Basic Laplace table.

= L(tsint) Apply the s — dif ferentiation rule.

f(t) = tsint Lerch's cancellation law.

Example2.2.9.

for f(1).

(First shift rule) Solve L(f(t)) = 22+ 25 + 2

Solution:
The answer is f(t) = e ‘cost + e tsint.The details:

s+ 2
L(f (t)) =71 72557 Signal for this method:

the denom — inator has complex roots.

_ s+ 2
S (s+1)2+1




s+1

> Substitute S for s + 1.
s°+1

S 1
T s2+41 0 5241

Split into Laplace table entries.

= L(cost) + L(sint)|s - S =s+1 Basic Laplace table.
== L(e tcost) + L(e tsint) First shift rule.
f(t) = e tcost + e tsint

Invoke Lerch's cancellation law.
Example.2.2.10

(Damped oscillator) Solve by Laplace's method the initial
value problem x" + 2x"+ 2x = 0,x(0) = 1, x'(0) = -1
Solution: The solution is x(t) = et cost.The details:

L(x") + 2L(x") + 2L(x) = L(0)
ApplyL across the equation.

SL(x")- x"(0) + 2L(x")+ 2L(x) = O

The t - derivative rule on x'.

S[SL(x)— x(O)]— x'(0) The t — derivative rule on

x +2[L(x)- x(0)] + 2L(x) =0

(s?+4 25+ 2)L(x) = 1+sUsex(0) = 1,x'(0) = —1

Divide.

e b > B £ £ 5 5> 5> £5° £° 5> £° 5> 56°5 56O 4



s+1

= Complete th in the d nator.
(S + 1)2 +1 omplete e square in e de nomwnator

= L(cost)|s—s+1 Basic Laplace table.
= L(e tcost) First shifting rule.
x(t) = e tcost Invoke Lerch's cancellation law.

Example2.2.11

(Rectified sine wave) Compute the Laplace transform of the

rectified sine wave f(t) = |sin wt|and show it can be
expressed in the form

w coth(%)

sZ 4+ w2

L(|sinwt|) =

Solution:
The periodic function formula will be applied with

period P = 2m/w. The calculation reduces to the evaluation
of ] = fop f(t)e 5t dt.Because sinwt < 0onm/W <t <

2 /w, integral | can be writtenas) = |J; + J,,where

L= fon/w sinwte St dt, ], = fﬂz;rmfw — sinwte St dt
Integral tables give the result

we St cos(wt)  we ™St sin(wt)
s? + w? s? + w?

j sin wte™ St = —

Then




W(e—n*s/w + 1) W(e—27t*s/w 4+ e—TL’*S/W)

J2 =
s2 4+ w2 ’ s2 4+ w2

1=

w(e ™SIV 4+ 1)2
s2 4+ w2

] =
The remaining challenge is to write the answer for

L(f (t))in terms of coth.The details: L(f (t))

=T o7 Periodic function formula.
—e

J
= o5~ Apply 1- x* = (1- x)(1 +x),

(1-e )1 +e2)

bs

W(1+€_7) —PS/Z

55 Cancel factor 1 + e
(1—e 2)(s%2+w?)

ps
w
5 Factor out e
e 4-e 4 s2+w?

—Ps/4

,then cance

2cosh(%) w
"~ 2sinh(ps/4) s2+w?

Apply cosh, sinh identities.

w cosh(%) coshu

Use cothu = )
sZ24w?2 sinhu

W cosh (%)

sZ 4 w2

Identity verified.

e b > B £ £ 5 5> 5> £5° £° 5> £° 5> 56°5 56O 4




Example2.2.12
(Half — wave rectification)Compute the Laplace

transform of the half — wave rectification of sin wt,
denoted g(t),in which the negative cycles of sin wt have

been canceled to create g(t).Show in particular that

1

w TS
L(g(t)) =512 (1+ coth(ﬁ))

Solution:
The half — wave rectification of sinwtis g(t) =

(sinwt + |sin wt|)/2.
Therefore, the basic Laplace table plus the result of Example
21 give

L(2g(t)) = L(sinwt) + L(sin wt]|)

TS
ow w cosh(m))

= +
s2 + w2 s2 + w2

- Y 1+ coth(=
_52+W2( €0 (ZW))

Dividing by 2 produces the identity.

e b > B £ £ 5 5> 5> £5° £° 5> £° 5> 56°5 56O 4




Example2.2.13

S2425+2

(Shifting rules) Solve L(f(t)) = e for f(t).

Solution:
The answer is f(t) = e3 tcos(t - 3)H(t - 3).The details:

S+1

Lf®)= e S+1)2+1

Complete the square.

e=35 > Replaces + 1byS.

sZ2+1
e 35t3(L(cost)|s>s=s+1 Basic Laplace table.

= e3(e 35(L(cost))|s » s = s+ 1 Regroup factor e™35

= e3 (L(cos(t - 3)H(t - 3))) s—S=s+1

second shifting rule.
e3L(e"t cos(t - 3) H(t - 3)) First shifting rule.

f(t) = e3tcos(t- 3)H(t - 3) Lerch's cancellation law




s+7
s24+45+8

Example2.2.14 Solve L(f(t) =

Solution:

5
The answer is f(t) = e %t (cos2t + Esin 2t).

+ 7
(s+2)>+4

The details: L (f(t) = Complete the square.

= 2 Replaces + 2 by S.

T s244

S 5 2
T s244  252+4

Split into table entries.

S 5 2

_52+4+§SZ+4lS_)S:S+2

Prepare for shifting rule.

5
L(cos 2t) + EL( sin2t)|s > s=s+ 2

Basic Laplace table.

L(e *t(cos 2t + gsinZt First shifting rule.

5
f(t) = e ?(cos 2t + EsinZt ) Lerch's cancellation law.

e b > B £ £ 5 5> 5> £5° £° 5> £° 5> 56°5 56O 4




Conclusion

The use of Laplace transforms to solve some serious value
problems in differential equations is an important topic that is
no less important than the rest of the topics related to
mathematics as it specializes in the problems that have been
solved by the Laplace transform. Laplace came up with the

.possibility of solving boundary value problems in one step

This does not mean that using normal methods is not useful,

but in order to reach the solution in an easier way

And faster, in addition to the stressful fatty processes, and as
you know perfectly well that mathematics is a cumulative

science that depends on

What was previously reached, without reaching the normal

method, we would not have reached other methods such as

Laplace transform and other methods, leave the topic of
research development and come up with easier methods and

shorten it

Laplace’s field for future generations, God willing

researcher

e b > B £ £ 5 5> 5> £5° £° 5> £° 5> 56°5 56O 4
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