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i ABSTRACT i
i .
i In this research, attention was paid to the trapezoidal or .
. Simpson method in numerical analysis as one of the methods !
i of determination in finding the integration of the function .
’ curve, where the pros and cons of the method were 1
i discussed, and we found that this method is more accurate .
and faster and is used in applications of image processors in .
i the field of medicine. In addition, it was solved Some !
i examples to illustrate this method
' I
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i methods for these equations are primarily of two types. The first :

type approximates the unknown function in the equation by a .
i simpler function, often a polynomial or piecewise polynomial !
’ function, choosing it to satisfy the original equation i
. approximately. Among the best known of such methods is the 1
i finite element method for solving partial differential equations; .
) see [8]. The second type of numerical method approximates the .
i derivatives or integrals in the equation of interest, generally .
i solving approximately for the solution function at a discrete set !
C of points. Most initial value problems for ordinary differential !
i equations and partial differential equations are solved in this .
’ way, and the numerical procedures are often called finite i
i difference methods, primarily for historical reasons. Most .
: numerical methods for solving differential and integral .
i equations involve both approximation theory and the solution of C
i quite large linear and nonlinear systems. For an introduction to !
. the numerical analysis of differential equations. !
i Virtually all numerical computation is carried out on digital .

computers, and their structure and properties affect the structure !
i of numerical algorithms, especially when solving large linear !
i systems. First and foremost, the computer arithmetic must be i
* understood. Historically, computer arithmetic varied greatly I
i between different computer manufacturers, and this was a .
) source of many problems when attempting to write software .
i which could be easily ported between different computers. This .
i has been lessoned significantly with the development of the !
. IEEE (Institute for Electrical and Electronic Engineering) !
i standard for computer floating-point arithmetic. All small .
’ computers have adopted this standard, and most larger computer .
i manufacturers have done so as well. For a discussion of the .
i standard and of computer floating-point arithmetic in general,. !
. For large scale problems, especially in numerical linear !
i algebra, it is important to know how the elements of an array A .
) or a vector x are stored in memory. Knowing this can lead to .
i much faster transfer of numbers from the memory into the .
i arithmetic registers of the computer, thus leading to faster !
C programs. A somewhat related topic is that of pipelining. This is !
i A °
i .
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.
i a widely used technique whereby the execution of computer :
operations are overlapped, leading to faster execution. Machines .
i with the same basic clock speed can have very different program !
’ execution times due to differences in pipelining and differences i
. in the way memory is accessed .
i Most present-day computers are sequential in their operation, .
i but parallel computers are being used ever more widely. Some !
. parallel computers have independent processors that all access !
i the same computer memory (shared memory parallel .
’ computers), whereas other parallel computers have separate .
i memory for each processor (distributed memory parallel .
computers). Another form of parallelism is the use of pipelining .
i of vector arithmetic operations. Some parallel machines are a !
j combination of some or all of these patterns of memory storage
e and pipelining. With all parallel machines, the form of a !
i numerical algorithm must be changed in order to make best use .
) of the parallelism. For examples of this in numerical linear i
i algebra. !
i .
i Numerical analysis is the area of mathematics and computer !
i science that creates, analyzes, and implements algorithms for !
i solving numerically the problems of continuous mathematics.
. Such problems originate generally from real-world applications !
i of algebra, geometry and calculus, and they involve variables .
) which vary continuously; these problems occur throughout the i
i natural sciences, social sciences, engineering, medicine, and .
business. During the past half-century, the growth in power and !
i availability of digital computers has led to an increasing use of !
i realistic mathematical models in science and engineering, and i
* numerical analysis of increasing sophistication has been needed .
i to solve these more detailed mathematical models of the world. .
) The formal academic area of numerical analysis varies from .
i quite theoretical mathematical studies (e.g. see [5]) to computer .
i science issues. With the growth in importance of using !
. computers to carry out numerical procedures in solving !
i mathematical models of the world, an area known as scientific .
' .
i 7 °
i .
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.
i computing or computational science has taken shape during the :
1980s and 1990s. This area looks at the use of numerical !
i analysis from a computer science perspective; see [20], [16]. It !
’ Is concerned with using the most powerful tools of numerical i
. analysis, computer graphics, symbolic  mathematical 1
i computations, and graphical user interfaces to make it easier for .
) a user to set up, solve, and interpret complicated mathematical .
i models of the real world. !
i With the growth in importance of using computers to carry .
’ out numerical procedures in solving mathematical models of the .
i world, an area known as scientific computing or computational .
science has taken shape during the 1980s and 1990s. This area !
i looks at the use of numerical analysis from a computer science !
j perspective. It is concerned with using the most powerful tools
e of numerical analysis, computer graphics, symbolic !
i mathematical computations, and graphical user interfaces to .
) make it easier for a user to set up, solve, and interpret i
i complicated mathematical models of the real world !
i .
i Numerical analysisis the study of algorithms that use !
i numerical approximation (as opposed to symbolic !
i manipulations) for the problems of mathematical analysis (as
. distinguished from discrete mathematics). Numerical analysis !
i finds application in all fields of engineering and the physical .
) sciences, and in the 21st century also the life and social i
i sciences, medicine, business and even the arts. Current growth .
in computing power has enabled the use of more complex !
i numerical analysis, providing detailed and realistic !
i mathematical models in science and engineering. Examples of i
] numerical analysis include: ordinary differential equations as 1
i found in celestial mechanics (predicting the motions of planets, .
) stars and galaxies), numerical linear algebrain data .
i analysis and stochastic differential  equations and Markov .
i chains for simulating living cells in medicine and biology. !
’ Before modern computers, numerical methods often relied on i
i hand interpolation formulas, using data from large printed !
. :
| .
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J
i tables. Since the mid 20th century, computers calculate the :
i required functions instead, but many of the same formulas .
- continue to be used in software algorithms. !
i The numerical point of view goes back to the earliest .
mathematical writings. A tablet from the Yale Babylonian .
i Collection (YBC  7289), gives asexagesimal numerical !
i approximation of thesquare root of 2, the length of
. the diagonal in a unit square. !
i 1.3 Advanced numerical methods .
i .
i Numerical analysis continues this long tradition: rather than i
* giving exact symbolic answers translated into digits and 1
i applicable only to real-world measurements, approximate .
i solutions within specified error bounds are used. .
- The overall goal of the field of numerical analysis is the design !
i and gnalysis of techniques to gi\{e approxi_mat_e but accurate .
solutions to hard problems, the variety of which is suggested by i
i the following: !
. vance numerica methods are  essentia in .
i Advanced | thod tial
i making numerical weather prediction feasible. !
C . Computing the trajectory of a spacecraft requires the accurate i
C ting the t t f ft th t y
i numerical solution of a system of ordinary differential .
’ equations. R
. Car companies can improve the crash safety of their vehicles o
i C D prove th h safety of th hicl
i by using computer simulations of car crashes. Such .
- simulations essentially consist of solving partial differentia :
lat tially t of solving partial differential i
i equations numerically. i
; . Hedge funds (private investment funds) use tools from all 1
i fields of numerical analysis to attempt to calculate the value .
i of stocks and derivatives more precisely than other market .
. participants. .
i . Airlines use sophisticated optimization algorithms to decide !
- ticket prices, airplane and crew assignments and fuel needs. !
i Historically, such algorithms were developed within the .
i overlapping field of operations research. A
- i
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i computational effort, one may use Monte Carlo or quasi-Monte :
Carlo_methods (see Monte Carlo integration), or, in modestly !

i large dimensions, the method of sparse grids. !
i .
: Since the late twentieth century, most algorithms are !
: implemented in a variety of programming languages. !
i The Netlib repository contains various collections of software .
) routines for numerical problems, mostly in Fortran and C. A
i Commercial products implementing many different numerical o
algorithms  include the IMSL and NAG libraries;  a free- .

i software alternative is the GNU Scientific Library. !
i Over the years the Royal Statistical Society published numerous .
i algorithms in its Applied Statistics (code for these "AS" .
i functions is here); ACM similarly, in its Transactions on .
i Mathematical Software ("TOMS" code ishere). The Naval !
. Surface Warfare Center several times published its Library of !
i Mathematics Subroutines . .
There are several popular numerical computing applications .

i such as MATLAB, TK Solver, S-PLUS, and IDL as well as free !
i and open source alternatives such as FreeMat, Scilab, GNU i
; Octave (similar to Matlab), and IT++ (a C++ library). There are I
i also programming languages such asR (similar to S- .
. PLUS), Julia, and Python with libraries such .
i as NumPy, SciPy and SymPy. Performance varies widely: while .
i vector and matrix operations are usually fast, scalar loops may !
C vary in speed by more than an order of magnitude. !
i Many computer algebra systems such as Mathematica also -
benefit  from  the  availability  of arbitrary-precision .

i arithmetic which can provide more accurate results. !
i Also, any spreadsheet software can be used to solve simple .
) problems relating to numerical analysis. Excel, for example, has .
i hundreds of available functions, including for matrices, which .
i may be used in conjunction with its built in "solver". !
’ Over the years, we have been taught on how to solve equations !
i using various algebraic methods. These methods include the !
I i
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i substitution method and the elimination method. Other algebraic .
methods that can be executed include the quadratic formula and .
i factorization. In Linear Algebra, we learned that solving systems !
’ of linear equations can be implemented by using row reduction i
. as an algorithm. However, when these methods are not 1
i successful, we use the concept of numerical methods. Numerical .
) methods are used to approximate solutions of equations when .
i exact solutions cannot be determined via algebraic methods. .
i They construct successive approximations that converge to the !
C exact solution of an equation or system of equations. In Math !
i 3351, we focused on solving nonlinear equations involving only .
’ a single variable. We used methods such as Newton’s method, i
i the Secant method, and the Bisection method. We also .
examined numerical methods such as the Runge-Kutta methods, .
i that are used to solve initial-value problems for ordinary !
differential equations. However these problems only focused on
i solving nonlinear equations with only one variable, rather than !
i nonlinear equations with several variables. The goal of this .
i paper is to examine three different numerical methods that are i
] used to solve systems of nonlinear equations in several .
variables. The first method we will look at 1s Newton’s method. !
i This will be followed by Broyden’s method, which is sometimes !
i called a Quasi-Newton method; it is derived from Newton’s i
. method. Lastly, we will study the Finite Difference method that 1
i Is used to solve boundary value problems of nonlinear ordinary .
) differential equations. For each method, a breakdown of each .
i numerical procedure will be provided. In addition, there will be .
i some discussion of the convergence of the numerical methods, !
. as well as the advantages and disadvantages of each method. !
i After a discussion of each of the three methods, we will use the .
* computer program Matlab to solve an example of a nonlinear 1
i ordinary differential equation using both the Finite Diffference .
i method and Newton’s method . .
' .
’ .
' !
’ .
' .
i 12 °
i .
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Chapter Two

2.1 Simpson’s Rule

2.2 Recommended articles
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i 2.1 Simpson’s Rule !
i With the midpoint rule, we estimated areas of regions under .
i curves by using rectangles. In a sense, we approximated the !
. curve with piecewise constant functions. With the trapezoidal !
i rule, we approximated the curve by using piecewise linear .
i functions. What if we were, instead, to approximate a curve !
. using piecewise quadratic functions? With Simpson’s rule, we !
i do just this. We partition the interval into an even number of .
i subintervals, each of equal width. Over the first pair of !
. subintervals we approximate. !
i 2 2 =
i f;} f(x)dx with f;} p(x)dx,where p(x) = Ax* + Bx + C .
* IS the quadratic function passing through !
i (xo,f(xo)),(xl,f(xl)),and (xz,f (xz)) (Figure 2.5.4). !
i Over the next pair of subintervals we approximate. f;: f(x)dx .
j with the integral of another quadratic function passing through !
) (x2,f (x2)) ,(x3,f (x3)),and (x4, f (x4)). This process A
i Is continued with each successive pair of subintervals. !
i Figure 2.5.4 : With Simpson’s rule, we approximate a definite !
integral by integrating a piecewise quadratic function.
i (]
i To understand the formula that we obtain for Simpson’s rule, we !
) begin by deriving a formula for this approximation over the first i
i two subintervals. As we go through the derivation, we need to !
i keep in mind the following relationships:
i f (x0) = p(xp) = Ax§ + Bxy + C (2.5.6) !
’ .
i f (x) =p(xy) = Ax? + Bxy + C (2.5.7) i
i f (xy) =p(x,) = Ax5 + Bx, + C (2.5.8) !
X, —Xog = 2A x ,where A x is the length of a, subinterval. !
i (]
’ .
i 15 °
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i X, +xo = 2A x1, since x; = (xz;rx(’) i
i Thus, |
i X2 X2 -
: | redx = [ p@ax !
. X0 X0 i
i xz (]
: =f (Ax? + Bx + C) dx A
i %o i
Av3z | By2 X2
i (5x3+Zx2+cx) |72 i
i Find the antiderivative. .
i .
A B
i =§(x§’—x8’)+ ;(x%— !
i x5) + C(x, — x,) Evaluate the antiderivative. i
’ A 5 . B !
. =§(x2—xo)(x2+x2x0+x0)+5(x2—x0)(x2+ Xo) !
i +C (x, — xp) !
’ = Z2250 (2A(X2 2,20 + X2 ) + 3B ( x; + x0)6C) i
i Factor out L;‘o ;
! = A?X(Axg + BX, + C) + (Ax3 + BXy + C)A(x3 + 2x,xy + i
i x%) + 2B(x, + x,) + 4C) Rearrange the terms. Note: Ax = !
X2— X
! 2 i
i = Z(F(X) + F(Xo) + AKX, + Xo)? + 2B( x, + Xo) + 4C) i
i Factor and substitute:f(x,) = Ax5 + BX, + C and f(x,) = .
i Ax3 + Bxy + C. !
i = A?X (F(X,) + F(X,) + A(2X,)? + 2B(2X,) + 4C ) Substitute !
i X, + xo = 2X,. Note : X; = 2220 the midpoint. !
‘ I
i 1A °
i .
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i = A?X (F(XZ) + 4F (X, + F(XO)) Expand and : !
i substitute f(x;) = AX? + BX; + C. i
i If we approximate f;i“F(X)dX using the same method, we see !
’ that we have .
i X AX !
| | FO0dx = S5 (£Ouw) +4£ (1) + F()), i
XO (]
i .
i Combining these two approximations, we get .
; 2 j
: f F(X)dX i
i XO (]
* AX 1
i =?(f(xo)+4f(x1)+2f(x2) .
; 4 f (x)f(x0)). :
i .
i The pattern continues as we add pairs of subintervals to our .
i approximation. The general rule may be stated as follows. A
’ Simpson’s Rule !
i Assume that f(X) is continuous over [a,b]. Let n be a positive .
: even integer !
. and Ax = !
i b%a Let [a, b] be divided into n subintervals, each of length Ax, with enipoi
i {x0,x1,x2, ...,xn}. P = {Xq, X4, X3, ..., X, }. Set. .
; Sn = 2 (F(x0) + 4f(x1) + 2f(x2) + 4£(x3) + 2f(x4) + -+ + !
. 2f(xn — 2) + 4f(xn — 1) + f(xn)). (2.5.9) |
i Then , !
i b (]
i lim Sn = f f(x)dx. A
a °
i !
i .
i 17 °
i .
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i Just as the trapezoidal rule is the average of the left-hand and !
i right-hand rules for estimating definite integrals, Simpson’s rule
i may be obtained from the midpoint and trapezoidal rules by i
. using a weighted average. It can be shown that S2n= (g) M, + !
i 1 .
: (5™ !
i It is also possible to put a bound on the error when using !
i Simpson’s rule to approximate a definite integral. The bound in !
i the error is given by the following rule:
i Rule: Error Bound for Simpson’s Rule !
i Let f(x)be a continuous function over [a, b] having a fourth derivative, f(4)
i .
i |f(4)(x)| over [a, b], then the upper bound for the error in .
i using Sn to estimate .
. b i
i j f(x)dx is given by !
a

i (]
0 _ 5

Errorin§, < G a4) .
i 180n .
i .
i - Trapezoidal rule )
i .
i Tn:A?x (f(x0)+2f(x1)+2f(x2)+---+2f(xn—1)+f(xn)) !
i . Simpson’s rule !
i
0 AX °
i Sn = 3 (f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + 4f(x5) !
: + -+ 2f(xn — 2) + 4f(xn — 1) + f(xn)) |
i (]
i . Error bound for midpoint rule A
(] _ 3 (]

ErrorinT,, < Mo 621) .
i 24n !
i 1R °
i .
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'
. Error bound for trapezoidal rule !
. M(b—a)3 °
ErrorinT,, < Ton? 1
« Error bound for Simpson’s rule !
) M(b-a)® I
Errorin §,, < sont !
EX\\ Find the value of the integral using simpson's ruie .
when n=6 i
! J
fe‘/z dx !
0
B = b—a 1-0 1 !
S on 6 |
1 1 !
VEgy_ B 1 z
eV¥dx =—3f(0)+4f(0+=)+2f {0+ :
3 6 6 i
0
3 4 5 .
+4f(0+€)+2f(0+g)+4f(o+g)+f(1)} I
'
1
1 1 1 1 2 5 .
Je‘/}dxEE{ew+4e\£+26\g+4e\g+2e\g+4eﬁ i
O (]
. i
+ eVl .
.
1 .
ZE(1+4+1'5042+2X1'7813+4X2'0281+2 .
X 2.2626 + !
4 %X 2.4915 + 2.7183 = 1.9945 !
!
.
.
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i EX\\ Find the value of the integral using simpson's ruie .
i when n=6 .
i 1- [ e’ dx  2-[[Sd !
i 1- fol e*” dx !
O b-a 1-0 .
i h=="="=3 !
° 1 1 !
: gy = 8[p0)+af (0 42) +2f (0+2) +af (042 '
! e dx = 2|f(0) +4f (0+2) +2f (0+2) +4f (04 J
0 °

. 4 5 .
i +2f(0+g>+4f(0+g)+f(1)] i
i fol exz dx = 1_18{60 + 46(0.1667)2+26(0.3333)2+4e(0.5)2 + !
i 26(0.6667)2 + 26(0.6667)2_'_48(0.1667)2 + el !
i =1—18{1+4*1.0282+2*1.1175+4*1.2840+2* !
i 1.5597 + 4 % 2.0025 + 2.7183 !
1 (]

i 5{1 + 4.1128 + 2.235 + 5.136 + 3.1194 + 8.01 + 2.718 I
i = 1.4629 !
i 2 eX 0
i 2- fl 7 dx !
) h_2—1_1 i
! 6 6 i
i (]
i .
! \
i (]
i .
i (]
i .
i (]
i .
i 20 °
i .
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2
ex
j—dx
X
1
1
~3[ (1)+4f(1+1>+2f<1+2)
=3 6 6
+4 (1+3)+2 (1+4)+4 (1+5)
f{ltg)rertte) t ¥ 1t
+£)]
2 ex 1 el 61'1667 31'8333 eZ
dx=—|—+4 2 —
jxdx 18[1+ 11667 T *1.8333+2]
1

1
18 [2.7183 + 4 % 2.7525 + 2 * 2.8452 + 4 % 2.9878
+ 2% 3.1767 + 4 * 3.4116 + 3.6945]

1
18 [2.7183 + 11.01 + 5.6904 + 11.9512 + 6.3534
+ 13.6464 + 3.6945 = 3.0591]

-
i
i
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i 2.2 Recommended articles i
i 1. 5.3: Riemann SumsA fundamental calculus technique is to .
first answer a given problem with an approximation, then !
i refine that approximation to make it better, then use ... !
i 2. 1.11: Numerical Integrationln this section we turn to the i
g problem of how to find (approximate) numerical values for I
i integrals, without having to evaluate them algebraically. !
To ...
i 3. 5.5: Numerical IntegrationThe Fundamental Theorem of .
i Calculus gives a concrete technique for finding the exact !
. value of a definite integral. That technique is based on !
i computin... i
j 4. Simpson's RuleThe Trapezoidal and Midpoint estimates .
i provided better accuracy than the Left and Right endpoint .
estimates. It turns out that a certain combination of... .
i 5. 7.6: Numerical IntegrationThe antiderivatives of many !
§ functions either cannot be expressed or cannot be
0 expressed easily in closed form (that is, in terms of known !
i functions). ... !
i .
i .
i .
i .
i .
i .
i .
i .
i .
i .
i .
i .
i .
’ .
’ .
’ !
’ .
’ .
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