alad) Gl g Alad) andail) 3) 3 g
A daala
3)a8al) Ay il Aulg

C\l" . lﬁJ-“ 3 UNIVERSITY OF DIYALA

Cijatal) dud A8y g aladiods Y Jad) sl

Al daalay — dlalal) 4 Y 48 — cludly) and (ulaa)
g IS Balgd Jd clallaia (e £ 3 92

Gl 2o o8 s

1443

S5 Omes Jadl

il

G i) aa

2022

(L ydiall 1,81)

o s sall & 5 piall 2 dlac) (L agd)
Caaiall 4d 43 Hha alaaindy o El Jall alay)
Al Jé e axdl

CLsll ae o5 o5 - b Omes ol

s 0n by ol dmala /) Ay) A/ laaly Sl il b al sl 5 8
Sl)l / a0 IS 3alel o e

;8 gl

it Agalall A)

: C._1 “JUM

aasass

1, atlly
$ asliss
ayla s ZH
Al 3l ¢
ol Gyl pia
)

palinl) A} 3
dM

(11) 4 dalsal
ol

claaYyl

Al e Juday iy Watadsh o cdgla @I gag (3l sall (e LS iyl 5 jhald e
4dag

¢ i) KAl g 3 laadl B pud) caala)
(Aol aslail) & oh A S Juall) A (S e
b oS (A Al JUaf ¢(quadl sallg)
cotlad) Bl lilaa g Blall Gk o g e Mg
1S Cpa (i Aoy
W15 Al qula ¢(4ad))

(Crmn iyl) BILYY il L yia N g

o Ol & e) gl g Al Caa sal SN AL e
i oS4l

g HSCadI

Jasadl SSAN An ot L (all 588 Y (e AL S8 Y 4 Tase (s BRI
L il g o) 138 Sl L e (B LiBE)) o3 (Gun Gyl B3LS
(o dSY) ac Al g Belial) Lgilalaii) g Lgilgaa o8 DA (e daudal g Clanay
Al LDl S Las
syl Sdig Banayl gran o acall G Sl L g Uina cilealip & yua
s sinall gl galall ac) Lal a8 (ra JS g <la¥ g

(ol pasle)

@amd) Jaladll B (((Gsrew) o) ciadal) 4pd) A8y jhay alaiaY) A3 Gl 1da B
Cilalag) Ad8la 2 Ena 1Al dadia Jal<S AL Sl B qu 83N (3 (pe 48 pha L i)
il B adiiud g £ gl g (33) (1985 A% sl 028) Liaa g a8 5 48y phal) b g
¢ qalal) Jlaa (A 4y) guall Clallaal)

L ARy yhal) oda gl ALLGY) (g Ja Al) ALY

g 325l Aadall
sl I
osasill 5 SN i
Introduction
Chapter one 1
Numerical algorithms 1-5
Advanced numerical methods 6-7
Numerical stability and well-posed problems 8-11
Chapter Two 12
Trapezoidal Rule 13-19
Absolute and Relative Error 19-21
Numerical implementation 21-22
Error analysis 22-23
Trapezoidal Rule Formula 24 -26
Periodic and peak functions 27
Trapezoid Laws 28-30
Al 31
REFERENCES 32

Vi

Introduction

Numerical analysis and mathematical modelling have become essential
in many areas of modern life. Sophisticated numerical analysis software
is being embedded in popular software packages, e.g. spreadsheet
programs, allowing many people to perform modelling even when they
are unaware of the mathematics involved in the process. This requires
creating reliable, efficient, and accurate numerical analysis software;
and it requires designing problem solving environments (PSE) in which
it is relatively easy to model a given situation. The PSE for a given
problem area is usually based on excellent theoretical mathematical
models, made available to the user through a convenient graphical user
interface. Such software tools are well-advanced in some areas, e.g.
computer aided design of structures, while other areas are still
grappling with the more basic problems of creating accurate
mathematical models and accompanying tools for their solution, e.g.
atmospheric modelling.

Computer aided design (CAD) and computer aided manufacturing
(CAM) are important areas within engineering, and some quite
sophisticated PSEs have been developed for CAD/CAM. A wide variety
of numerical analysis is involved in the mathematical models that must
be solved. The models are based on the basic Newtonian laws of
mechanics; there are a variety of possible models, and research
continues on designing such models. An important CAD topic is that of
modelling the dynamics of moving mechanical systems. The
mathematical model involves systems of both ordinary differential
equations and algebraic equations (generally nonlinear. Building
simulators for cars, planes, and other vehicles requires solving
differential-algebraic systems in real-time.

((Chapter one))

1.1 Numerical algorithms
1.2 Advanced numerical methods

1.3 Numerical stability and well-posed problems

Chapter one

1.1 Numerical algorithms

Numerical algorithms are almost as old as human civilization. The Rhind
Papyrus (71650 BC) of ancient Egypt describes a root finding method for
solving a simple equation;. Archimedes of Syracuse (287-212 BC) created
much new mathematics, including the “method of exhaustion” for
calculating lengths, areas, and volumes of geometric figures .

When used as a method to find approximations, it is in much the spirit of
modern numerical integration; and it was an important precursor to the
development of the calculus by Isaac Newton and Gottfried Leibnitz. A
major impetus to developing numerical procedures was the invention of
the calculus by Newton and Leibnitz, as this led to accurate mathematical
models for physical reality, first in the physical sciences and eventually in
the other sciences, engineering, medicine, and business. These
mathematical models cannot usually be solved explicitly, and numerical
methods to obtain approximate solutions are needed. Another
important aspect of the development of numerical methods was the
creation of logarithms by Napier (1614) and others, giving a much
simpler manner of carrying out the arithmetic operations of
multiplication, division, and exponentiation. Newton created a number
of numerical methods for solving a variety of problems, and his name is
attached today to generalizations of his original ideas. Of special note is
his work on root finding and polynomial interpolation. Following
Newton, many of the giants of mathematics of the 18th and 19th
centuries made major contributions to the numerical solution of
mathematical problems. Foremost among these are Leonhard Euler
(1707-1783), Joseph-Louis Lagrange (1736-1813), and Karl Friedrich

Gauss (1777-1855). Up to the late 1800’s, it appears that most
mathematicians were quite

Most mathematical modelsused in the natural sciences and engineering
are based on ordinary differential equations, partial differential
equations, and integral equations. The numerical methods for these
equations are primarily of two types. The first type approximates the
unknown function in the equation by a simpler function, often a
polynomial or piecewise polynomial function, choosing it to satisfy the
original equation approximately. Among the best known of such
methods is the finite element method for solving partial differential
equations; see [8]. The second type of numerical method approximates
the derivatives or integrals in the equation of interest, generally solving
approximately for the solution function at a discrete set of points. Most
initial value problems for ordinary differential equations and partial
differential equations are solved in this way, and the numerical
procedures are often called finite difference methods, primarily for
historical reasons. Most numerical methods for solving differential and
integral equations involve both approximation theory and the solution
of quite large linear and nonlinear systems. For an introduction to the
numerical analysis of differential equations.

Virtually all numerical computation is carried out on digital computers,
and their structure and properties affect the structure of numerical
algorithms, especially when solving large linear systems. First and
foremost, the computer arithmetic must be understood. Historically,
computer arithmetic varied greatly between different computer
manufacturers, and this was a source of many problems when
attempting to write software which could be easily ported between
different computers. This has been lessoned significantly with the
development of the IEEE (Institute for Electrical and Electronic
Engineering) standard for computer floating-point arithmetic. All small

-2-

computers have adopted this standard, and most larger computer
manufacturers have done so as well. For a discussion of the standard and
of computer floating-point arithmetic in general,.

For large scale problems, especially in numerical linear algebra, it is
important to know how the elements of an array A or a vector x are
stored in memory. Knowing this can lead to much faster transfer of
numbers from the memory into the arithmetic registers of the computer,
thus leading to faster programs. A somewhat related topic is that of
pipelining. This is a widely used technique whereby the execution of
computer operations are overlapped, leading to faster execution.
Machines with the same basic clock speed can have very different
program execution times due to differences in pipelining and differences
in the way memory is accessed

Most present-day computers are sequential in their operation, but
parallel computers are being used ever more widely. Some parallel
computers have independent processors that all access the same
computer memory (shared memory parallel computers), whereas other
parallel computers have separate memory for each processor
(distributed memory parallel computers). Another form of parallelism is
the use of pipelining of vector arithmetic operations. Some parallel
machines are a combination of some or all of these patterns of memory
storage and pipelining. With all parallel machines, the form of a
numerical algorithm must be changed in order to make best use of the
parallelism. For examples of this in numerical linear algebra.

Numerical analysis is the area of mathematics and computer science that
creates, analyzes, and implements algorithms for solving numerically the
problems of continuous mathematics. Such problems originate generally
from real-world applications of algebra, geometry and calculus, and they

-3-

involve variables which vary continuously; these problems occur
throughout the natural sciences, social sciences, engineering, medicine,
and business. During the past half-century, the growth in power and
availability of digital computers has led to an increasing use of realistic
mathematical models in science and engineering, and numerical analysis
of increasing sophistication has been needed to solve these more
detailed mathematical models of the world. The formal academic area
of numerical analysis varies from quite theoretical mathematical studies
(e.g. see [5]) to computer science issues. With the growth in importance
of using computers to carry out numerical procedures in solving
mathematical models of the world, an area known as scientific
computing or computational science has taken shape during the 1980s
and 1990s. This area looks at the use of numerical analysis from a
computer science perspective; see [20], [16]. It is concerned with using
the most powerful tools of numerical analysis, computer graphics,
symbolic mathematical computations, and graphical user interfaces to
make it easier for a user to set up, solve, and interpret complicated
mathematical models of the real world.

With the growth in importance of using computers to carry out
numerical procedures in solving mathematical models of the world, an
area known as scientific computing or computational science has taken
shape during the 1980s and 1990s. This area looks at the use of
numerical analysis from a computer science perspective. It is concerned
with using the most powerful tools of numerical analysis, computer
graphics, symbolic mathematical computations, and graphical user
interfaces to make it easier for a user to set up, solve, and interpret
complicated mathematical models of the real world

Numerical analysis is the study of algorithms that use numerical
approximation (as opposed to symbolic manipulations) for the problems
of mathematical analysis (as distinguished from discrete mathematics).
Numerical analysis finds application in all fields of engineering and the
physical sciences, and in the 21st century also the life and social sciences,
medicine, business and even the arts. Current growth in computing
power has enabled the use of more complex numerical analysis,
providing detailed and realistic mathematical models in science and
engineering.

Examples of numerical analysis include: ordinary differential equations
as found in celestial mechanics (predicting the motions of planets, stars
and galaxies), numerical linear algebra in data analysis and stochastic
differential equations and Markov chains for simulating living cells in
medicine and biology.

Before modern computers, numerical methods often relied on hand
interpolation formulas, using data from large printed tables. Since the
mid 20th century, computers calculate the required functions instead,
but many of the same formulas continue to be used in software
algorithms.

The numerical point of view goes back to the earliest mathematical
writings. A tablet from the Yale Babylonian Collection (YBC 7289), gives
a sexagesimal numerical approximation of the square root of 2, the
length of the diagonal in a unit square.

1.2 Advanced numerical methods

Numerical analysis continues this long tradition: rather than giving exact
symbolic answers translated into digits and applicable only to real-world
measurements, approximate solutions within specified error bounds are
used.

The overall goal of the field of numerical analysis is the design and
analysis of techniques to give approximate but accurate solutions to hard
problems, the variety of which is suggested by the following:

e Advanced numerical methods are essential in making numerical
weather prediction feasible.

e Computing the trajectory of a spacecraft requires the accurate
numerical solution of a system of ordinary differential equations.

e Car companies can improve the crash safety of their vehicles by using
computer simulations of car crashes. Such simulations essentially consist
of solving partial differential equations numerically.

e Hedge funds (private investment funds) use tools from all fields of
numerical analysis to attempt to calculate the value of stocks and
derivatives more precisely than other market participants.

e Airlines use sophisticated optimization algorithms to decide ticket
prices, airplane and crew assignments and fuel needs. Historically, such
algorithms were developed within the overlapping field of operations
research.

* Insurance companies use numerical programs for actuarial analysis.

The rest of this section outlines several important themes of numerical
analysis.

History.

The field of numerical analysis predates the invention of modern
computers by many centuries. Linear interpolation was already in use
more than 2000 years ago. Many great mathematicians of the past were
preoccupied by numerical analysis as is obvious from the names of
important algorithms like Newton's method, Lagrange interpolation
polynomial, Gaussian elimination, or Euler's method.

To facilitate computations by hand, large books were produced with
formulas and tables of data such as interpolation points and function
coefficients. Using these tables, often calculated out to 16 decimal places
or more for some functions, one could look up values to plug into the
formulas given and achieve very good numerical estimates of some
functions. The canonical work in the field is the NIST publication edited
by Abramowitz and Stegun, a 1000-plus page book of a very large
number of commonly used formulas and functions and their values at
many points. The function values are no longer very useful when a
computer is available, but the large listing of formulas can still be very
handy.

The mechanical calculator was also developed as a tool for hand
computation. These calculators evolved into electronic computers in the
1940s, and it was then found that these computers were also useful for
administrative purposes. But the invention of the computer also
influenced the field of numerical analysis,[5] since now longer and more
complicated calculations could be done.

1.3 Numerical stability and well-posed problems

Numerical stability is a notion in numerical analysis. An algorithm is
called 'numerically stable' if an error, whatever its cause, does not grow
to be much larger during the calculation. This happens if the problem is
'well-conditioned', meaning that the solution changes by only a small
amount if the problem data are changed by a small amount. To the
contrary, if a problem is 'ill-conditioned’, then any small error in the data
will grow to be a large error.

Both the original problem and the algorithm used to solve that problem
can be 'well-conditioned' or 'ill-conditioned', and any combination is
possible.

Much effort has been put in the development of methods for solving
systems of linear equations. Standard direct methods, i.e., methods that
use some matrix decomposition are Gaussian elimination, LU
decomposition, Cholesky decomposition for symmetric (or hermitian)
and positive-definite matrix, and QR decomposition for non-square
matrices. Iterative methods such as the Jacobi method, Gauss—Seidel
method, successive over-relaxation and conjugate gradient method[12]
are usually preferred for large systems. General iterative methods can be
developed using a matrix splitting.

Root-finding algorithms are used to solve nonlinear equations (they are
so named since a root of a function is an argument for which the function
yields zero). If the function is differentiable and the derivative is known,
then Newton's method is a popular choice. Linearization is another
technique for solving nonlinear equations.

Numerical integration, in some instances also known as numerical
qguadrature, asks for the value of a definite integral. Popular methods use
one of the Newton—Cotes formulas (like the midpoint rule or Simpson's

rule) or Gaussian quadrature. These methods rely on a "divide and
conqguer" strategy, whereby an integral on a relatively large set is broken
down into integrals on smaller sets. In higher dimensions, where these
methods become prohibitively expensive in terms of computational
effort, one may use Monte Carlo or quasi-Monte Carlo methods (see
Monte Carlo integration), or, in modestly large dimensions, the method
of sparse grids.

Since the late twentieth century, most algorithms are implemented in a
variety of programming languages. The Netlib repository contains
various collections of software routines for numerical problems, mostly
in Fortran and C. Commercial products implementing many different
numerical algorithms include the IMSL and NAG libraries; a free-software
alternative is the GNU Scientific Library.

Over the years the Royal Statistical Society published numerous
algorithms in its Applied Statistics (code for these "AS" functions is here);
ACM similarly, in its Transactions on Mathematical Software ("TOMS"
code is here). The Naval Surface Warfare Center several times published
its Library of Mathematics Subroutines .

There are several popular numerical computing applications such as
MATLAB, TK Solver, S-PLUS, and IDL as well as free and open source
alternatives such as FreeMat, Scilab, GNU Octave (similar to Matlab), and
IT++ (@ C++ library). There are also programming languages such as R
(similar to S-PLUS), Julia, and Python with libraries such as NumPy, SciPy
and SymPy. Performance varies widely: while vector and matrix
operations are usually fast, scalar loops may vary in speed by more than
an order of magnitude.

Many computer algebra systems such as Mathematica also benefit from
the availability of arbitrary-precision arithmetic which can provide more
accurate results.

Also, any spreadsheet software can be used to solve simple problems
relating to numerical analysis. Excel, for example, has hundreds of
available functions, including for matrices, which may be used in
conjunction with its built in "solver".

Over the years, we have been taught on how to solve equations using
various algebraic methods. These methods include the substitution
method and the elimination method. Other algebraic methods that can
be executed include the quadratic formula and factorization. In Linear
Algebra, we learned that solving systems of linear equations can be
implemented by using row reduction as an algorithm. However, when
these methods are not successful, we use the concept of numerical
methods. Numerical methods are used to approximate solutions of
equations when exact solutions cannot be determined via algebraic
methods. They construct successive approximations that converge to the
exact solution of an equation or system of equations. In Math 3351, we
focused on solving nonlinear equations involving only a single variable.
We used methods such as Newton’s method, the Secant method, and
the Bisection method. We also examined numerical methods such as the
Runge-Kutta methods, that are used to solve initial-value problems for
ordinary differential equations. However these problems only focused
on solving nonlinear equations with only one variable, rather than
nonlinear equations with several variables. The goal of this paper is to
examine three different numerical methods that are used to solve
systems of nonlinear equations in several variables. The first method we
will look at is Newton’s method. This will be followed by Broyden’s
method, which is sometimes called a Quasi-Newton method; it is derived
from Newton’s method. Lastly, we will study the Finite Difference

-10-

method that is used to solve boundary value problems of nonlinear
ordinary differential equations. For each method, a breakdown of each
numerical procedure will be provided. In addition, there will be some
discussion of the convergence of the numerical methods, as well as the
advantages and disadvantages of each method. After a discussion of
each of the three methods, we will use the computer program Matlab to
solve an example of a nonlinear ordinary differential equation using both
the Finite Diffference method and Newton’s method .

-11-

((Chapter Two))

Trapezoidal Rule

2.1 Trapezoidal Rule

2.2 Absolute and Relative Error
2.3 Numerical implementation
2.4 Error analysis

2.5 Trapezoidal Rule Formula
2.6 Periodic and peak functions

2.7 Trapezoid Laws

-12 -

2.1 Trapezoidal Rule

We can also approximate the value of a definite integral by using
trapezoids rather than rectangles. In Figure 2.1 , the area beneath the
curve is approximated by trapezoids rather than by rectangles.

f(x)

-~

+
-
T

Figure: 2.1 Trapezoids may be used to
approximate the area under a curve, hence
approximating the definite integral.

-13-

for estimating definite integrals uses trapezoids rather than rectangles
to approximate the area under a curve. To gain insight into the final form
of the rule, consider the trapezoids shown in Figure 1 . We assume that
the length of each subinterval is given by Ay. First, recall that the area of
a trapezoid with a height of h and bases of length b1 and b2 is given by

Area=1/2h(b1+b2)

We see that the first trapezoid has a height Ax and parallel bases of
length f(x0) and f(x1). Thus, the area of the first trapezoid in

Figure 2.1 is)
gAw(f(mo) + f(21))

The areas of the remaining three trapezoids are

A2 (f(@r) + f(22)), 502 (f(w2) + f(z3)), and
= Aa(fas) + Flay))

After taking out a common factor of 1/2A, and combining like terms,
b 1 1
/ f(z)dz ~ EAas(f(a:U) + f(z1)) + EA:c(f(:cl) + fz2)) + %Am(fm) + f(z3)) + %Am(f(mg) + flz4))

we have

b
[5@ e~ S () + 2 5(en) + 2(w) +2 £@3) + 1(20)

-14 -

Generalizing, we formally state the following rule.

The Trapezoidal Rule

Assume that f(x) is continuous over [a,b]. Let n be a positive integer and
Ay =b-a /n.

Let [a,b] be divided into nn subintervals, each of length Ax, with
endpoints at P={x0,x1,x2...,xn}.

Set
A
T, = S (fl@o) +2£(w1) + 2 £(22) + -+ +2 f(wa1) + F(z2))

b
Then, lim Tn:/ f(z)dx
a

n——+4o0o

Before continuing, let’s make a few observations about the trapezoidal
rule. First of all, it is useful to note that

n

1
P E(L" + R,,) where L, = ;f(mm)ﬁiﬂ and

-15-

Yi

f(x)

That is, L, and R, approximate the integral using the left-hand and right-
hand endpoints of each subinterval, respectively. In addition, a careful
examination of Figure 2 leads us to make the following observations
about using the trapezoidal rules and midpoint rules to estimate the
definite integral of a nonnegative function. The trapezoidal rule tends to
overestimate the value of a definite integral systematically over intervals
where the function is concave up and to underestimate the value of a
definite integral systematically over intervals where the function is
concave down. On the other hand, the midpoint rule tends to average
out these errors somewhat by partially overestimating and partially
underestimating the value of the definite integral over these same types
of intervals. This leads us to hypothesize that, in general, the midpoint
rule tends to be more accurate than the trapezoidal rule.

Yi

f(x)

/\\

™ O

Xq X5 X3 b = x, a=xXy, my Xy m, X, m; X3 my b

Figure 2 :The trapezoidal rule tends to be less
accurate than the midpoint rule.

-16 -

X4

xV

In mathematics, and more specifically in numerical analysis, the
trapezoidal rule (also known as the trapezoid rule or trapezium rule; see
Trapezoid for more information on terminology) is a technique for
approximating the definite integral.

A

cr;

The function f(x) (in blue) is
approximated by a linear function
(in red).

/ab f(x) dx

The trapezoidal rule works by approximating the region under the
graph of the function f(x) as a trapezoid and calculating its area.

It follows that

_[f(z)dz ~ (b—a) - 1(f(a) + £(b))

-17 -

The trapezoidal rule may be viewed as the result obtained by averaging
the left and right Riemann sums, and is sometimes defined this way. The
integral can be even better approximated by partitioning the integration
interval, applying the trapezoidal rule to each subinterval, and summing
the results. In practice, this "chained" (or "composite") trapezoidal rule
is usually what is meant by "integrating with the trapezoidal rule". Let
{xx} be a partition of [a,b] such that

a=x) <21 <<y 1<zxNy=0>
be the length of the k-th subinterval that is,

Axp = T — Tp—1

then

b
| f@ds 3

When the partition has a regular spacing, as is often the case, that is,
when all the Axx have the same value Ay, the formula can be simplified
for calculation efficiency by factoring Ay out

b
flz)dz ~ %(f(lu)+2f(ffl]+"f(ﬂ-‘l) 2f(z3) + 2f(@4) + -+ + 2f(an-1) + f(zN))

f(xr—1 +f($A)Ax
k

Mz

(1]

The approximation becomes more accurate as the resolution of the
partition increases (that is, for larger N, all Axi decrease).

As discussed below, it is also possible to place
error bounds on the accuracy of the value of a
definite integral estimated using a trapezoidal
rule.

f(%ia1)

i)

-18-

Example 2.1.1 : Using the Trapezoidal Rule

1
Use the trapezoidal rule to estimate /0 x2 dx

using four subintervals.

Solution:

The endpoints of the subintervals consist of elements of the set
P={0,14,12,34,1} and Ax=1-04=14. Thus,

f1m2dm~l.l(f(0)+2f(
0 T2 4

PN

) +2£(3)+2£(3) +£(1)

=1(0+2- L2 +2- 2422 41)

11

32

2.2 Absolute and Relative Error

An important aspect of using these numerical approximation rules
consists of calculating the error in using them for estimating the value
of a definite integral. We first need to define absolute error and relative
error.

-19-

Definition: absolute and relative error

If BB is our estimate of some quantity having an actual value of A, then
the absolute error is given by |A-B].

The relative error is the error as a percentage of the actual value and is

given by

A-B
‘T -100%.

Example 2.2.1 : Calculating Error in the Midpoint Rule
Calculate the absolute and relative error in the estimate of using the

1
/U X%2dx midpoint rule, found in Example 2.

Solution:
1
The calculated value is /U X* dx =13

and our estimate from the example is M4=21/64. Thus, the absolute
error is given by [1/3 - 21/64| = 1/192 = 0.0052.

The relative error is

1/96
/— = 0.03125 ~ 3.1%

1/3

-20-

Example 2.2.2 : Calculating Error in the Trapezoidal Rule

1
Calculate the absolute and relative error in the estimate /U X2 dx

of using the trapezoidal rule .

Solution: The calculated value is fol x2 dx and our estimate from the
example is M4=21/64. Thus, the absolute error is given by
|11/3-21/64 | = 11/92 = 0.0052.

The relative error is

/192 _ 1 0.015625 ~ 1.6%
1/3 64 e

2.3 Numerical implementation

2.3.1 Non-uniform grid

When the grid spacing is non-uniform, one can use the formula

b N #(zpy .

k—

-21-

2.3.2 Uniform grid

For a domain discretized into N equally spaced panels, considerable
simplification may occur. Let

Az, = Az = b—a

the approximation to the integral becomes

/ab f(z)dx =

-

(f(zr-1) + F(z))

b
Il

A
T 1
%(f(wo) +2f(21) + 2f(22) + 2f(ws) + -+~ + 2f(2n-1) + f2n))

A (Nl fa) + TEN f(m) |

k=1 -

2.4 Error analysis

The error of the composite trapezoidal rule is the difference between
the value of the integral and the numerical result:

- [[s 258 [0 B o)

k=1

-22-

There exists a number € between a and b, such that

o (b —a)? ;
= f(6)

It follows that if the integrand is concave up (and thus has a positive
second derivative), then the error is negative and the trapezoidal rule
overestimates the true value. This can also be seen from the geometric
picture: the trapezoids include all of the area under the curve and extend
over it. Similarly, a concave-down function yields an underestimate
because area is unaccounted for under the curve, but none is counted
above. If the interval of the integral being approximated includes an
inflection point, the error is harder to identify.

An asymptotic error estimate for N = o< is given by

(b—a)®

E= —W[f’(b) ~ f'(a)] + O(N7?)

Further terms in this error estimate are given by the Euler—Maclaurin
summation formula.

-23-

2.5 Trapezoidal Rule Formula

We apply the trapezoidal rule formula to solve a definite integral by
calculating the area under a curve by dividing the total area into little
trapezoids rather than rectangles. This rule is used for approximating
the definite integrals where it uses the linear approximations of the
functions. The trapezoidal rule takes the average of the left and the
right sum.

Let y = f(x) be continuous on [a, b]. We divide the interval [a, b] into n
equal subintervals, each of width, h = (b - a)/n,

suchthata=xpo <X <X < <X,=b
A _h
rea= E[yo + 2(y1 + y2 + y3+ +yn_1) + yn]

where,

® yo, V1,Y2... are the values of functionat x =1, 2,

3..... respectively.

Trapezoidal Rule Formula

b
Area = fydx ~ %h [Yo+2(y+ Y+ . + Yy, D+,]
a

where h =

b-a
n

-24-

Example 2.1.2:
Use the Trapezoidal Rule with n=6 to approximate

T

/ sin®zdz.

0

Solution

Here

f(x) =sin’z, a=0, b=r.

The width of each subinterval is

so the grid points have the coordinates
=
Calculat the values of the function f(x) at the points xi

-25-

The Trapezoidal Rule formula is written in the form

™

A 1
fSiIIzEd.’I:%Tg:Tw[f($0)+2f($1)+ ~--+2f(335)+f($6)}:% 0+2-Z+2 -%4-0
0

W1+3+2+3+17ﬂ' 12711'
1212 2 2 2] 12 2 2

We can also determine the exact value of the integral:

r r sin2z]" 1 m
fsin2wd:t— f(l—cosZw)d;c—— [$—) } 15[(7"—0)—0}:5‘

0 0

B =

So, in this particular example, the trapezoidal approximation Ts
coincides with the exact value of the integral.

-26-

2.6 Periodic and peak functions

The trapezoidal rule converges rapidly for periodic functions. This is an
easy consequence of the Euler-Maclaurin summation formula, which
says that if /is p times continuously differentiable with period T

N-1 T PRl B . ‘ L e
> s = [fla)de + 3 SE(PEDT) - FED(O) - (PR | Be/m @) s
k=0 k=1 :

where h :=T/N and By is the periodic extension of theplaystyle p th
Bernoulli polynomial.Due to the periodicity, the derivatives at the
endpoint cancel and we see that the error is O(hv) .

A similar effect is available for peak-like functions, such as Gaussian,
Exponentially modified Gaussian and other functions with derivatives at
integration limits that can be neglected. The evaluation of the full
integral of a Gaussian function by trapezoidal rule with 1% accuracy can
be made using just 4 points. Simpson's rule requires 1.8 times more
points to achieve the same accuracy.

Although some effort has been made to extend the Euler-Maclaurin
summation formula to higher dimensions, the most straightforward
proof of the rapid convergence of the trapezoidal rule in higher
dimensions is to reduce the problem to that of convergence of Fourier
series. This line of reasoning shows that if | is periodiconan -
dimensional space with p continuous derivatives, the speed of
convergence is O(hv/d) . For very large dimension, the shows that
Monte-Carlo integration is most likely a better choice, but for 2 and 3
dimensions, equispaced sampling is efficient. This is exploited in
computational solid state physics where equispaced sampling over
primitive cells in the reciprocal lattice is known as Monkhorst-Pack
integration.

-27-

2.7 Trapezoid Laws

Areq = fydx = %h [Y+2(y+ Yy, +..+y) +y]
a

Example 2.2.3: Find the integral of the function in the trapezoidal way

=)
I
[HEN

[3+ 1)

1

/ (x3+1) dx =1/2[1+42]=3/2=1.5
0

-28-

Example 2.2.4 : Use the trapezoid formula to find the integral

h=10/4 =1/4 =0.25

a=0 b=1
X 0 0.25 0.5 0.75 1
F(X) 0 0.0625 0.25 0.5625 1

fol f(x) dx =h/2 [fo+ 2f1+ 2f; + 2f3 +f4]

1
/ X2 dx =0.25/2 [0+ 2(0.0625) + 2(0.25) + 2(0.5625) + 1
0

=0.125[2.75] = 0.34375

-29-

Example 2.2.5 : Use the trapezoid formula to find the integral

1
/(; V1 —x? dx n=5
Solution
h=X1—X0/n =1-O/ 5 =1/5 =0.2
X 0 0.2 0.4 0.6 0.8 1
1 0.9797 10.9165 |0.8 0.6 0

h
5 [v0 + 2y1 + 2y2 + 2y3 + 2y4 + y5]

x1
[re ax=
x0

1
j 1+ x2 dx
0

= 02—2 [1+4 2(0.9797) + 2(0.9165) + 2(0.8) + 2(0.6) + 0]

=0.1[1+1.9594 +1.833+1.6 +1.2]
=0.75924

-30-

da3lsd!

QigHHY@L@ﬂ\HJcMHLALﬁLGJMJA_ﬁ
ool 1lgy Ciua o Aﬁl_t\JcQAJ\\A_gJaSSuuAMU_‘GPSJS_J\
Qi_)ﬂ_mg_'uws;ﬂjcw\gﬁju}j&mu\uﬁ&b\ﬂd\@b
£ s gall 138 slad (g gl | gl
((adiall dnd 48y jh aladiuly &) Jad) Sy)

d.v.bc&y.bg_d\ ‘:\J‘Hw‘ \ﬂﬁﬂjﬁ&bﬁd\dﬂj
Gumial iy (ALE W) Agled By ¢ gy Hgay La aaall B (38 ald
Eoad) Jin aadi B Bde o ploadlall)) da gl) g ¢ il
eSJA_*a aa_aa e.ﬁu.JS_aiij c(ﬁk_aﬁd‘\l_gi eSﬁaeLqug eSS;‘J_A C}-ﬁ&ﬁ.Lf_k;j
13) Ul o4 AL daadl g ¢ aSilac)) JUs o s i

-31-

(Sluogdl)

Lad da)) da) Cre 3 gaad) pasatia (4 6S5 Ladie g A) Al yh aladiily a1
G

(s AU Agale Bald 4 9<i <14y jhal) oda A Al clipdail) (e &) |2

Flwall Ja A draal (pa Al Ll gaand) Jadail) cailag alaia¥) anki L I ddLa) 3
gty

e

-32-

REFERENCES

1- R. Aiken (editor) . Stiff Computation , Oxford University Press,
Oxford , 1985 .

2- U. Ascher and R. Russell , eds . Numerical Boundary Value
ODEs, Birkha user, Boston, MA, 1985 .

3- U. Ascher, R. Mattheij, and R. Russell . Numerical Solution of
Boundary Value Problems for Ordinary Differential Equations,
Prentice - Hall , Englewood Cliffs , New Jersey, 1988 .

4- K. Atkinson . An Introduction to Numerical Analysis, 2nd ed .,
John Wiley, New York , 1989 .

5- K. Atkinson and W. Han . Elementary Numerical Analysis, 3rd
ed ., John Wiley, New York , 2004 .

6- A. Aziz . Numerical Solutions of Boundary Value Problems for
Ordinary Differential Equations , Academic Press , New York ,
1975.

7- L. Shampine, I. Gladwell , and S. Thompson . Solving ODEs with
MATLAB , Cambridge University Press, 2003 .

8- J.C. Butcher . " General linear methods ", Acta Numerical ,
Cambridge University Press , 2006 .

9- C.W.Gear.NumericallnitialValueProblemsinOrdinaryDifferential
Prentice Hall , Englewood Cliffs , NJ, 1971 .

10- 10 E. Isaacson and H. Keller . Analysis of Numerical Methods
, John Wiley, New York , 1966 . Equations,

-33-

