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 الاهداء

 

ت قاطرة البحث بكثير من العوائق، ومع ذلك حاولت أن أتخطَّاها بثبات بفضل من الله  مرَّ

 ومن ِّه

 إلى صاحب السيرة العطرة، والفكر المُستنير؛

ل في بلوغي التعليم العالي ومن كان له الفضل الأوَّ  

 )والدي الحبيب(، أطال الله في عُمره

إلى من وضعتني على طريق الحياة، وجعلتني رابط الجأش،و  

 وراعتني حتى صرت كبيرًا

 )أمي الغالية(، طيَّب الله ثراها

 والى مشرفتنا بالبحث الاستاذة )  ايناس حسن (

ممن لم يتوانوا في مد يد العون لي إلى جميع أساتذتي الكرام؛  

...أهُدي إليكم بحثي   
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 شكر وتقديرال

  

 وانطلاقاً من مبدأ أنه لا يشكر الله من لا يشكر الناس، فإننا نتوجه بالشكر الجزيل

  ا( الذي رافقنا في مسيرتنا لإنجاز هذا البحث وكانت لهايناس حسن) ةللأستاذ 

البناءة والدعم الأكاديمي، اوانتقاداته اتوجيهاتهبصمات واضحة من خلال   

ر عائلاتنا التي ككما نش   

 صبرت وتحملت معنا ورفدتنا بالكثير من الدعم على جميع الأصعدة، ونشكر الأصدقاء 

 والأحباب وكل من قدم لما الدعم المادي أو المعنوي
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 ) ملخص البحث (

 

 

 في التحليل العددي او ) سمبون ( ( ) شبه المنحرف في هذا البحث ثم الاهتمام بطريقه   

  يات حيث ثم مناقشه ايجاب دالةبا اعتبارها طريقة من طرق التقريب في ايجاد الله تكامل منحني ال

 واسرع وتستخدم في تطبيقات  قنا ان هذه الطريقة تكون إدجدو يات الطريقة وقدبوسل

 ،الطب ال جرية في مالمعالجات الصو

 .الأمثلة لتوضيح هذه الطريقة  بعضحل الى تم  بالاضافة 
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Introduction  

 Numerical analysis and mathematical modelling have become essential 

in many areas of modern life. Sophisticated numerical analysis software 

is being embedded in popular software packages, e.g. spreadsheet 

programs, allowing many people to perform modelling even when they 

are unaware of the mathematics involved in the process. This requires 

creating reliable, efficient, and accurate numerical analysis software; 

and it requires designing problem solving environments (PSE) in which 

it is relatively easy to model a given situation. The PSE for a given 

problem area is usually based on excellent theoretical mathematical 

models, made available to the user through a convenient graphical user 

interface. Such software tools are well-advanced in some areas, e.g. 

computer aided design of structures, while other areas are still 

grappling with the more basic problems of creating accurate 

mathematical models and accompanying tools for their solution, e.g. 

atmospheric modelling.  

 Computer aided design (CAD) and computer aided manufacturing 

(CAM) are important areas within engineering, and some quite 

sophisticated PSEs have been developed for CAD/CAM. A wide variety 

of numerical analysis is involved in the mathematical models that must 

be solved. The models are based on the basic Newtonian laws of 

mechanics; there are a variety of possible models, and research 

continues on designing such models. An important CAD topic is that of 

modelling the dynamics of moving mechanical systems. The 

mathematical model involves systems of both ordinary differential 

equations and algebraic equations (generally nonlinear. Building 

simulators for cars, planes, and other vehicles requires solving 

differential-algebraic systems in real-time. 
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Chapter one 

  

1.1 Numerical  algorithms  

Numerical algorithms are almost as old as human civilization. The Rhind 

Papyrus (˜1650 BC) of ancient Egypt describes a root finding method for 

solving a simple equation;. Archimedes of Syracuse (287- 212 BC) created 

much new mathematics, including the “method of exhaustion” for 

calculating lengths, areas, and volumes of geometric figures .   

When used as a method to find approximations, it is in much the spirit of 

modern numerical integration; and it was an important precursor to the 

development of the calculus by Isaac Newton and Gottfried Leibnitz. A 

major impetus to developing numerical procedures was the invention of 

the calculus by Newton and Leibnitz, as this led to accurate mathematical 

models for physical reality, first in the physical sciences and eventually in 

the other sciences, engineering, medicine, and business. These 

mathematical models cannot usually be solved explicitly, and numerical 

methods to obtain approximate solutions are needed. Another 

important aspect of the development of numerical methods was the 

creation of logarithms by Napier (1614) and others, giving a much 

simpler manner of carrying out the arithmetic operations of 

multiplication, division, and exponentiation. Newton created a number 

of numerical methods for solving a variety of problems, and his name is 

attached today to generalizations of his original ideas. Of special note is 

his work on root finding and polynomial interpolation. Following 

Newton, many of the giants of mathematics of the 18th and 19th 

centuries made major contributions to the numerical solution of 

mathematical problems. Foremost among these are Leonhard Euler 

(1707-1783), Joseph-Louis Lagrange (1736-1813), and Karl Friedrich 
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Gauss (1777-1855). Up to the late 1800’s, it appears that most 

mathematicians were quite  

Most mathematical modelsused in the natural sciences and engineering 

are based on ordinary differential equations, partial differential 

equations, and integral equations. The numerical methods for these 

equations are primarily of two types. The first type approximates the 

unknown function in the equation by a simpler function, often a 

polynomial or piecewise polynomial function, choosing it to satisfy the 

original equation approximately. Among the best known of such 

methods is the finite element method for solving partial differential 

equations; see [8]. The second type of numerical method approximates 

the derivatives or integrals in the equation of interest, generally solving 

approximately for the solution function at a discrete set of points. Most 

initial value problems for ordinary differential equations and partial 

differential equations are solved in this way, and the numerical 

procedures are often called finite difference methods, primarily for 

historical reasons. Most numerical methods for solving differential and 

integral equations involve both approximation theory and the solution 

of quite large linear and nonlinear systems. For an introduction to the 

numerical analysis of differential equations.  

Virtually all numerical computation is carried out on digital computers, 

and their structure and properties affect the structure of numerical 

algorithms, especially when solving large linear systems. First and 

foremost, the computer arithmetic must be understood. Historically, 

computer arithmetic varied greatly between different computer 

manufacturers, and this was a source of many problems when 

attempting to write software which could be easily ported between 

different computers. This has been lessoned significantly with the 

development of the IEEE (Institute for Electrical and Electronic 

Engineering) standard for computer floating-point arithmetic. All small 
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computers have adopted this standard, and most larger computer 

manufacturers have done so as well. For a discussion of the standard and 

of computer floating-point arithmetic in general,. 

For large scale problems, especially in numerical linear algebra, it is 

important to know how the elements of an array A or a vector x are 

stored in memory. Knowing this can lead to much faster transfer of 

numbers from the memory into the arithmetic registers of the computer, 

thus leading to faster programs. A somewhat related topic is that of 

pipelining. This is a widely used technique whereby the execution of 

computer operations are overlapped, leading to faster execution. 

Machines with the same basic clock speed can have very different 

program execution times due to differences in pipelining and differences 

in the way memory is accessed  

Most present-day computers are sequential in their operation, but 

parallel computers are being used ever more widely. Some parallel 

computers have independent processors that all access the same 

computer memory (shared memory parallel computers), whereas other 

parallel computers have separate memory for each processor 

(distributed memory parallel computers). Another form of parallelism is 

the use of pipelining of vector arithmetic operations. Some parallel 

machines are a combination of some or all of these patterns of memory 

storage and pipelining. With all parallel machines, the form of a 

numerical algorithm must be changed in order to make best use of the 

parallelism. For examples of this in numerical linear algebra.  

  

Numerical analysis is the area of mathematics and computer science that 

creates, analyzes, and implements algorithms for solving numerically the 

problems of continuous mathematics. Such problems originate generally 

from real-world applications of algebra, geometry and calculus, and they 
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involve variables which vary continuously; these problems occur 

throughout the natural sciences, social sciences, engineering, medicine, 

and business. During the past half-century, the growth in power and 

availability of digital computers has led to an increasing use of realistic 

mathematical models in science and engineering, and numerical analysis 

of increasing sophistication has been needed to solve these more 

detailed mathematical models of the world. The formal academic area 

of numerical analysis varies from quite theoretical mathematical studies 

(e.g. see [5]) to computer science issues. With the growth in importance 

of using computers to carry out numerical procedures in solving 

mathematical models of the world, an area known as scientific 

computing or computational science has taken shape during the 1980s 

and 1990s. This area looks at the use of numerical analysis from a 

computer science perspective; see [20], [16]. It is concerned with using 

the most powerful tools of numerical analysis, computer graphics, 

symbolic mathematical computations, and graphical user interfaces to 

make it easier for a user to set up, solve, and interpret complicated 

mathematical models of the real world.  

With the growth in importance of using computers to carry out 

numerical procedures in solving mathematical models of the world, an 

area known as scientific computing or computational science has taken 

shape during the 1980s and 1990s. This area looks at the use of 

numerical analysis from a computer science perspective. It is concerned 

with using the most powerful tools of numerical analysis, computer 

graphics, symbolic mathematical computations, and graphical user 

interfaces to make it easier for a user to set up, solve, and interpret 

complicated mathematical models of the real world  
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Numerical analysis is the study of algorithms that use numerical 

approximation (as opposed to symbolic manipulations) for the problems 

of mathematical analysis (as distinguished from discrete mathematics). 

Numerical analysis finds application in all fields of engineering and the 

physical sciences, and in the 21st century also the life and social sciences, 

medicine, business and even the arts. Current growth in computing 

power has enabled the use of more complex numerical analysis, 

providing detailed and realistic mathematical models in science and 

engineering. 

Examples of numerical analysis include: ordinary differential equations 

as found in celestial mechanics (predicting the motions of planets, stars 

and galaxies), numerical linear algebra in data analysis and stochastic 

differential equations and Markov chains for simulating living cells in 

medicine and biology.  

Before modern computers, numerical methods often relied on hand 

interpolation formulas, using data from large printed tables. Since the 

mid 20th century, computers calculate the required functions instead, 

but many of the same formulas continue to be used in software 

algorithms.   

The numerical point of view goes back to the earliest mathematical 

writings. A tablet from the Yale Babylonian Collection (YBC 7289), gives 

a sexagesimal numerical approximation of the square root of 2, the 

length of the diagonal in a unit square. 
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1.2 Advanced numerical methods   

 Numerical analysis continues this long tradition: rather than giving exact 

symbolic answers translated into digits and applicable only to real-world 

measurements, approximate solutions within specified error bounds are 

used.  

The overall goal of the field of numerical analysis is the design and 

analysis of techniques to give approximate but accurate solutions to hard 

problems, the variety of which is suggested by the following:  

• Advanced numerical methods are essential in making numerical 

weather prediction feasible.  

• Computing the trajectory of a spacecraft requires the accurate 

numerical solution of a system of ordinary differential equations.  

• Car companies can improve the crash safety of their vehicles by using 

computer simulations of car crashes. Such simulations essentially consist 

of solving partial differential equations numerically.  

• Hedge funds (private investment funds) use tools from all fields of 

numerical analysis to attempt to calculate the value of stocks and 

derivatives more precisely than other market participants.  

• Airlines use sophisticated optimization algorithms to decide ticket 

prices, airplane and crew assignments and fuel needs. Historically, such 

algorithms were developed within the overlapping field of operations 

research.  

• Insurance companies use numerical programs for actuarial analysis.  

The rest of this section outlines several important themes of numerical 

analysis.  

History.  
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The field of numerical analysis predates the invention of modern 

computers by many centuries. Linear interpolation was already in use 

more than 2000 years ago. Many great mathematicians of the past were 

preoccupied by numerical analysis as is obvious from the names of 

important algorithms like Newton's method, Lagrange interpolation 

polynomial, Gaussian elimination, or Euler's method.  

   

  

To facilitate computations by hand, large books were produced with 

formulas and tables of data such as interpolation points and function 

coefficients. Using these tables, often calculated out to 16 decimal places 

or more for some functions, one could look up values to plug into the 

formulas given and achieve very good numerical estimates of some 

functions. The canonical work in the field is the NIST publication edited 

by Abramowitz and Stegun, a 1000-plus page book of a very large 

number of commonly used formulas and functions and their values at 

many points. The function values are no longer very useful when a 

computer is available, but the large listing of formulas can still be very 

handy.  

The mechanical calculator was also developed as a tool for hand 

computation. These calculators evolved into electronic computers in the 

1940s, and it was then found that these computers were also useful for 

administrative purposes. But the invention of the computer also 

influenced the field of numerical analysis,[5] since now longer and more 

complicated calculations could be done. 
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1.3 Numerical stability and well-posed problems 

 Numerical stability is a notion in numerical analysis. An algorithm is 

called 'numerically stable' if an error, whatever its cause, does not grow 

to be much larger during the calculation. This happens if the problem is 

'well-conditioned', meaning that the solution changes by only a small 

amount if the problem data are changed by a small amount. To the 

contrary, if a problem is 'ill-conditioned', then any small error in the data 

will grow to be a large error.   

Both the original problem and the algorithm used to solve that problem 

can be 'well-conditioned' or 'ill-conditioned', and any combination is 

possible.  

Much effort has been put in the development of methods for solving 

systems of linear equations. Standard direct methods, i.e., methods that 

use some matrix decomposition are Gaussian elimination, LU 

decomposition, Cholesky decomposition for symmetric (or hermitian) 

and positive-definite matrix, and QR decomposition for non-square 

matrices. Iterative methods such as the Jacobi method, Gauss–Seidel 

method, successive over-relaxation and conjugate gradient method[12] 

are usually preferred for large systems. General iterative methods can be 

developed using a matrix splitting.  

Root-finding algorithms are used to solve nonlinear equations (they are 

so named since a root of a function is an argument for which the function 

yields zero). If the function is differentiable and the derivative is known, 

then Newton's method is a popular choice. Linearization is another 

technique for solving nonlinear equations.  

Numerical integration, in some instances also known as numerical 

quadrature, asks for the value of a definite integral. Popular methods use 

one of the Newton–Cotes formulas (like the midpoint rule or Simpson's 
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rule) or Gaussian quadrature. These methods rely on a "divide and 

conquer" strategy, whereby an integral on a relatively large set is broken 

down into integrals on smaller sets. In higher dimensions, where these 

methods become prohibitively expensive in terms of computational 

effort, one may use Monte Carlo or quasi-Monte Carlo methods (see 

Monte Carlo integration), or, in modestly large dimensions, the method 

of sparse grids.  

  

Since the late twentieth century, most algorithms are implemented in a 

variety of programming languages. The Netlib repository contains 

various collections of software routines for numerical problems, mostly 

in Fortran and C. Commercial products implementing many different 

numerical algorithms include the IMSL and NAG libraries; a free-software 

alternative is the GNU Scientific Library.  

Over the years the Royal Statistical Society published numerous 

algorithms in its Applied Statistics (code for these "AS" functions is here); 

ACM similarly, in its Transactions on Mathematical Software ("TOMS" 

code is here). The Naval Surface Warfare Center several times published 

its Library of Mathematics Subroutines .  

There are several popular numerical computing applications such as 

MATLAB, TK Solver, S-PLUS, and IDL as well as free and open source 

alternatives such as FreeMat, Scilab, GNU Octave (similar to Matlab), and 

IT++ (a C++ library). There are also programming languages such as R 

(similar to S-PLUS), Julia, and Python with libraries such as NumPy, SciPy 

and SymPy. Performance varies widely: while vector and matrix 

operations are usually fast, scalar loops may vary in speed by more than 

an order of magnitude.   
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Many computer algebra systems such as Mathematica also benefit from 

the availability of arbitrary-precision arithmetic which can provide more 

accurate results.   

Also, any spreadsheet software can be used to solve simple problems 

relating to numerical analysis. Excel, for example, has hundreds of 

available functions, including for matrices, which may be used in 

conjunction with its built in "solver". 

Over the years, we have been taught on how to solve equations using 

various algebraic methods. These methods include the substitution 

method and the elimination method. Other algebraic methods that can 

be executed include the quadratic formula and factorization. In Linear 

Algebra, we learned that solving systems of linear equations can be 

implemented by using row reduction as an algorithm. However, when 

these methods are not successful, we use the concept of numerical 

methods. Numerical methods are used to approximate solutions of 

equations when exact solutions cannot be determined via algebraic 

methods. They construct successive approximations that converge to the 

exact solution of an equation or system of equations. In Math 3351, we 

focused on solving nonlinear equations involving only a single variable. 

We used methods such as Newton’s method, the Secant method, and 

the Bisection method. We also examined numerical methods such as the 

Runge-Kutta methods, that are used to solve initial-value problems for 

ordinary differential equations. However these problems only focused 

on solving nonlinear equations with only one variable, rather than 

nonlinear equations with several variables. The goal of this paper is to 

examine three different numerical methods that are used to solve 

systems of nonlinear equations in several variables. The first method we 

will look at is Newton’s method. This will be followed by Broyden’s 

method, which is sometimes called a Quasi-Newton method; it is derived 

from Newton’s method. Lastly, we will study the Finite Difference 



- 11 - 
 

method that is used to solve boundary value problems of nonlinear 

ordinary differential equations. For each method, a breakdown of each 

numerical procedure will be provided. In addition, there will be some 

discussion of the convergence of the numerical methods, as well as the 

advantages and disadvantages of each method. After a discussion of 

each of the three methods, we will use the computer program Matlab to 

solve an example of a nonlinear ordinary differential equation using both 

the Finite Diffference method and Newton’s method . 
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2.1 Trapezoidal Rule 

 

 

We can also approximate the value of a definite integral by using 

trapezoids rather than rectangles. In Figure 2.1 , the area beneath the 

curve is approximated by trapezoids rather than by rectangles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: 2.1  Trapezoids may be used to 

approximate the area under a curve, hence 

approximating the definite integral. 
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for estimating definite integrals uses trapezoids rather than rectangles 

to approximate the area under a curve. To gain insight into the final form 

of the rule, consider the trapezoids shown in Figure 1 . We assume that 

the length of each subinterval is given by Δx. First, recall that the area of 

a trapezoid with a height of h and bases of length b1 and b2 is given by  

Area=1/2h(b1+b2) 

 We see that the first trapezoid has a height Δx and parallel bases of 

length f(x0) and f(x1). Thus, the area of the first trapezoid in 

 Figure 2.1 is 

 

 

The areas of the remaining three trapezoids are 

 

 

 

After taking out a common factor of 1/2Δx and combining like terms, 

we have 
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Generalizing, we formally state the following rule. 

 

The Trapezoidal Rule 

Assume that f(x) is continuous over [a,b]. Let n be a positive integer and 

Δx = b−a /n. 

 Let [a,b] be divided into nn subintervals, each of length Δx, with 

endpoints at P={x0,x1,x2…,xn}.  

Set 

 

 

 

 

Before continuing, let’s make a few observations about the trapezoidal 

rule. First of all, it is useful to note that 
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That is, Ln and Rn approximate the integral using the left-hand and right-

hand endpoints of each subinterval, respectively. In addition, a careful 

examination of Figure 2 leads us to make the following observations 

about using the trapezoidal rules and midpoint rules to estimate the 

definite integral of a nonnegative function. The trapezoidal rule tends to 

overestimate the value of a definite integral systematically over intervals 

where the function is concave up and to underestimate the value of a 

definite integral systematically over intervals where the function is 

concave down. On the other hand, the midpoint rule tends to average 

out these errors somewhat by partially overestimating and partially 

underestimating the value of the definite integral over these same types 

of intervals. This leads us to hypothesize that, in general, the midpoint 

rule tends to be more accurate than the trapezoidal rule. 

 

 

 

 

 

Figure 2 :The trapezoidal rule tends to be less 

accurate than the midpoint rule. 
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In mathematics, and more specifically in numerical analysis, the 

trapezoidal rule (also known as the trapezoid rule or trapezium rule; see 

Trapezoid for more information on terminology) is a technique for 

approximating the definite integral. 

 

 

 

 

 

 

 

  

 

 

 

  

The trapezoidal rule works by approximating the region under the 

graph of the function f(x)  as a trapezoid and calculating its area. 

 It follows that  

 

 

 

The function f(x) (in blue) is 

approximated by a linear function 

(in red). 
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The trapezoidal rule may be viewed as the result obtained by averaging 

the left and right Riemann sums, and is sometimes defined this way. The 

integral can be even better approximated by partitioning the integration 

interval, applying the trapezoidal rule to each subinterval, and summing 

the results. In practice, this "chained" (or "composite") trapezoidal rule 

is usually what is meant by "integrating with the trapezoidal rule". Let 

{xk}  be a partition of [a,b] such that  

  

be the length of the k-th subinterval that is,   

 

then 

  

When the partition has a regular spacing, as is often the case, that is, 

when all the ∆xk have the same value ∆x, the formula can be simplified 

for calculation efficiency by factoring ∆x out  

The approximation becomes more accurate as the resolution of the 

partition increases (that is, for larger N , all ∆xk decrease). 

As discussed below, it is also possible to place 

error bounds on the accuracy of the value of a 

definite integral estimated using a trapezoidal 

rule. 
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Example 2.1.1 : Using the Trapezoidal Rule 

 

Use the trapezoidal rule to estimate          x2 dx       

using four subintervals. 

 

Solution: 

The endpoints of the subintervals consist of elements of the set 

P={0,14,12,34,1} and Δx=1−04=14. Thus, 

 

 

 

             

 

 

 

2.2 Absolute and Relative Error 

 

An important aspect of using these numerical approximation rules 

consists of calculating the error in using them for estimating the value 

of a definite integral. We first need to define absolute error and relative 

error.  
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Definition: absolute and relative error 

If BB is our estimate of some quantity having an actual value of A , then 

the absolute error is given by |A−B|. 

The relative error is the error as a percentage of the actual value and is 

given by 

 

 

Example 2.2.1 : Calculating Error in the Midpoint Rule 

 Calculate the absolute and relative error in the estimate of using the  

X2 dx   midpoint rule, found in Example 2 . 

 

 

Solution: 

The calculated value is 

and our estimate from the example is M4=21/64.  Thus, the absolute 

error is given by ∣1/3 − 21/64∣ = 1/192 ≈ 0.0052. 

The relative error is 

 

 

 

 

 

 

X2  dx  = 13 
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Example 2.2.2 : Calculating Error in the Trapezoidal Rule 

 

Calculate the absolute and relative error in the estimate  

of using the trapezoidal rule . 

 

Solution: The calculated value is  ∫ 𝑥2  𝑑𝑥  
1

0
and our estimate from the 

example is M4=21/64. Thus, the absolute error is given by                

∣1/3−21/64 ∣ = 11/92 ≈ 0.0052.    

The relative error is 

 

 

  

  

2.3 Numerical implementation 

 

2.3.1 Non-uniform grid 

When the grid spacing is non-uniform, one can use the formula 

 

 

 

 

X2  dx   
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2.3.2 Uniform grid 

For a domain discretized into N  equally spaced panels, considerable 

simplification may occur. Let 

 

 

 

the approximation to the integral becomes 

 

 

2.4 Error analysis 

The error of the composite trapezoidal rule is the difference between 

the value of the integral and the numerical result: 
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There exists a number ξ between a and b, such that 

 

 

 

It follows that if the integrand is concave up (and thus has a positive 

second derivative), then the error is negative and the trapezoidal rule 

overestimates the true value. This can also be seen from the geometric 

picture: the trapezoids include all of the area under the curve and extend 

over it. Similarly, a concave-down function yields an underestimate 

because area is unaccounted for under the curve, but none is counted 

above. If the interval of the integral being approximated includes an 

inflection point, the error is harder to identify. 

 

An asymptotic error estimate for N → ∞ is given by 

 

 

 

Further terms in this error estimate are given by the Euler–Maclaurin 

summation formula. 
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2.5 Trapezoidal Rule Formula 

 

We apply the trapezoidal rule formula to solve a definite integral by 

calculating the area under a curve by dividing the total area into little 

trapezoids rather than rectangles. This rule is used for approximating 

the definite integrals where it uses the linear approximations of the 

functions. The trapezoidal rule takes the average of the left and the 

right sum. 

Let y = f(x) be continuous on [a, b]. We divide the interval [a, b] into n 

equal subintervals, each of width, h = (b - a)/n,  

 

 

 

 

 

 

 

Trapezoidal Rule Formula 

 

 

 



- 25 - 
 

Example 2.1.2 : 

Use the Trapezoidal Rule with n=6 to approximate 

 

Solution 

Here 

 

The width of each subinterval is 

 

so the grid points have the coordinates 

 

Calculat the values of the function f(x) at the points xi 
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The Trapezoidal Rule formula is written in the form 

 

 

 

We can also determine the exact value of the integral: 

 

 

 

 

So, in this particular example, the trapezoidal approximation T6 

coincides with the exact value of the integral. 
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2.6 Periodic and peak functions 

The trapezoidal rule converges rapidly for periodic functions. This is an 

easy consequence of the Euler-Maclaurin summation formula, which 

says that if f is p  times continuously differentiable with period T 

 

where h :=T/N  and Ḃp is the periodic extension of theplaystyle p th 

Bernoulli polynomial.Due to the periodicity, the derivatives at the 

endpoint cancel and we see that the error is O(hp) . 

A similar effect is available for peak-like functions, such as Gaussian, 

Exponentially modified Gaussian and other functions with derivatives at 

integration limits that can be neglected. The evaluation of the full 

integral of a Gaussian function by trapezoidal rule with 1% accuracy can 

be made using just 4 points. Simpson's rule requires 1.8 times more 

points to achieve the same accuracy. 

Although some effort has been made to extend the Euler-Maclaurin 

summation formula to higher dimensions, the most straightforward 

proof of the rapid convergence of the trapezoidal rule in higher 

dimensions is to reduce the problem to that of convergence of Fourier 

series. This line of reasoning shows that if  f  is periodic on a n -

dimensional space with p  continuous derivatives, the speed of 

convergence is O(hp/d) . For very large dimension, the shows that 

Monte-Carlo integration is most likely a better choice, but for 2 and 3 

dimensions, equispaced sampling is efficient. This is exploited in 

computational solid state physics where equispaced sampling over 

primitive cells in the reciprocal lattice is known as Monkhorst-Pack 

integration. 
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2.7 Trapezoid Laws 

 

 

 

 

 

 

Example 2.2.3: Find the integral of the function in the trapezoidal way  

  

 ∫ (𝑥3 + 1)
1

0
  

 

 

 

  

 h = 1-0 /1 = 1 

 

 

 

 

 

n =1 

1 

0 

(x3+1) dx  =1/2 [1+2] = 3/2 = 1.5 
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Example 2.2.4 : Use the trapezoid formula to find the integral 

 

 

 

 

 

 

 

 

 

X 0 0.25 0.5 0.75 1 
F(X) 0 0.0625 0.25 0.5625 1 

 

 

      ∫     
1

0
f (x) dx  = h/2  [ f0 + 2f1 + 2f2 + 2f3 +f4 ] 

 

 

 

 

 

 

1 

0 

n = 4 

h = 1-0 / 4    = 1 / 4  = 0.25 

a = 0 b = 1 

 

 

          

          

 

X2 dx  = 0.25/2  [ 0 + 2(0.0625) + 2(0.25) + 2(0.5625) + 1 

= 0.125 [2.75] = 0.34375 

X2  dx 
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Example 2.2.5 : Use the trapezoid formula to find the integral 

 

Solution 

 

h = x1 – x0 / n            = 1-0 /  5  = 1/5  = 0.2 

 

x 0 0.2 0.4 0.6 0.8 1 
y 1 0.9797 0.9165 0.8 0.6 0 

 

∫ 𝑓(𝑥)  𝑑𝑥 =
ℎ

2
 [ 𝑦0

𝑥1

𝑥0

+ 2𝑦1 + 2𝑦2 + 2𝑦3 + 2𝑦4 + 𝑦5] 

 

∫ √1 + 𝑥2
1

0

  𝑑𝑥 

=
0.2

2
 [ 1 + 2(0.9797) + 2(0.9165) + 2(0.8) + 2(0.6) + 0] 

 

= 0.1 [ 1+1.9594 + 1.833 + 1.6 + 1.2 ] 

=0.75924 

 

 

 1 − 𝑥2    dx n = 5 
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 الخاتمة

 

لقددددد وصددددلنا لنهايددددة هددددذا البحددددث ، وفددددي النهايددددة لا يسددددعني سددددو  أن 

أشدددكركم علدددى حسدددن متدددابعتكم لهدددذا البحدددث ، وأندددا قدددد عرضدددت بهدددذا البحدددث 

تعدددالى وكرمددده وتوفيقدددة ، وقدددد أكرمندددي اللددده بدددأن  رائدددي المتواضدددع ببركدددة اللددده

  أدلوا بدلوي تجاه هذا الموضوع

 ( فرحنملا هبش ةقيرط مادختساب يبيرقتلا لحلا إيجاد )

قدددد وفقندددي فدددي هدددذا البحدددث فدددي هدددذا الموضدددوع ، ولعدددل  ولعدددل اللددده تعدددالى

قلمددي وفددق فددي تقددديم مددا يدددور بخلدددي ، وفددي نهايددة الأمددر فددإنني بشددر أصدديب 

خطدد، ، وإننددي أتوجدده إلددى اللدده بالدددعاء علددى تددوفيقي فددي تقددديم هددذا البحددث وأ

وعلددددى حسددددن قددددراءتكم ومتددددابعتكم لهددددذا البحددددث ، ونشددددكر لكددددم سددددعة صدددددركم 

 ونرجو أن ينال البحث إعجابكم ، والحمد لله الذي هدانا إلى هذا
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 ) التوصيات (

 

عة فما بالرا جةعندما تكون متعدده الحدود من الدر خر ا يقةوصي  باستخدام طرن .1

 فوق
 

 علميه للقارئ  ئدةلكي تكون فا ةالبحث عن التطبيقات التي تلائم هذه الطريق .2
 

 

دي لما له من أهمية في حل المسائل داضافة الى ما تقدم الأهتمام بجانب التحليل الع .3

 التطبيقة
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