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L. Introduction

Orthogonal polynomials are connected with many mathematical,
physical, engineering, and computer sciences topics, such as
trigonometry, hyper geometric series, special and elliptic functions,
continued fractions, interpolation, qguantum mechanics, partial differential
equations. They are also be found in scattering theory, automatic control,
signal analysis, potential theory, approximation theory, and numerical
analysis.

Orthogonal polynomials are special polynomials that are
orthogonal with respect to some special weights allowing them to satisfy
some properties that are not generally fulfilled with other polynomials or
functions. Such properties have made them well- known candidates to
resolve enormous problems in physics, probability, statistics and other
fields. Since their origin in the early 19th century, orthogonal polynomials
have formed a somehow classical topic related to Legendre polynomials,
Stieltjes’ continued fractions, and the work of Gauss, Jacobi, and
Christoffel, which has been generalized by Chebyshev, Heine, Szego,
Markov, and others. The most popular orthogonal polynomials are Jacobi,
Laguerre, Hermite polynomials, and their special relatives, such as
Gegenbauer, Chebyshev, and Legendre polynomials. An extending
family has been developed from the work of Wilson, inducing a special
set of orthogonal polynomi- als known by his name, which generalizes
the Jacobi class. This new family has given rise to other previously
unknown sets of orthogonal polynomials, including Meixner Pollaczek,
Hahn, and A skey polynomials.

Orthogonal polynomials may also be classified according to the
measure applied to define the orthogonality. In this context, we cite the
class of discrete orthogonal polynomials that form a special case based on
some discrete measure. The most common are Racah polynomials, Hahn
polynomials, and their dual class, which in turn include Meixner,
Krawtchouk, and Charlier polynomials.

Already with the classification of orthogonal polynomials, one can
distinguish circular and generally spherical orthogonal polynomials,




which consists of some special sets related to measures supported by the
circle or the sphere. One well-known class is composed of Rogers—Szeg0
polynomials on the unit circle and Zernike polynomials, which are related
to the unit disk.

Orthogonal polynomials, and especially classical ones, can generally
be introduced by three principal methods. A first method is based on the
Rodrigues formula which consists of introducing orthogonal polynomials
as outputs of a derivation. The second method consists of introducing
orthogonal polynomials as eigenvectors of Sturm—Liouville operators, or
equivalently, solutions of second-order differential equations. The last
method is based on a three-level recurrence formula.




Chapter one

Orthogonal polynomials

In this chapter, we reviews basic definitions as well as properties
of orthogonal polynomials.

To do this, we first restrict ourselves to the field R, and when it is
necessary we recall that the development remains valid on the complex
field C.

1.1 Some Basic Definitions
Definition( 1.1.1):

A Hilbert space is a vector space equipped with a scalar product,
which makes it a complete space relative to the scalar product induced
norm.

Definition (1.1.2):
A polynomial P of degree n on R is formally defined by the

expression

n

P(X) = z apX*

k=0
where X is the variable and a;s,0 < k < n, are elements of R called
scalars and known as the polynomial coefficlent such that a,, # 0.
Remark.
The polynomial function associated with the polynomial P, which will
also be denoted by P, is the functlon defined on the whole space R by
P(x) = Yr_oarx®. We denote by R[X] the set of all polynomials on
R. Of course, It is well known that R[X] is a vector space on R with
infinite dimension and that for any n €N, the set R,[X] of
polynomials on R with degree at most n is a vector space with

dimensionn + 1 on R.

e
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Definition(1.1.3):
A set of polynomials B = (P,, P, ..., B, ...) in R[X] is sald to be
staggered with the degrees iff deg(P;) = i, Vi.

The following result shows one important property of staggered
degrees polynomials confirming the ability of such polynomials to be
good candidates for polynomial spaces bases.

Proposition (1.1.1) :

Any finite set B = (P, Py, . . ., P,) of staggered degrees polynomials

in Ry[X] is linearly independent.
Proof.
Let (ag, a4, ..., ay) be scalars in R such that Yi*,a;P; = 0. This means

that for all x € R, Y- P;(x) = 0. By considering the n th-order

derivative on x, we obtain an% = 0. Consequently, a, = 0. Next,

proceeding by induction on n, we prove that all the coefficlents a; are
null. Hence, B is a free set in E. Observe next that the dimension of E
(dim E =n+ 1) coincides with the cardinality of B. Therefore, B is a

basis of E.

Theorem (1.1.1): (GRAM-SCHMIDT).

Let {f,,},,=0 be a countable system of linearly independent elements in
a prehilbertian space. Then, there exists an orthonormal system {g,},0
such that for any n, Vect {go, 91, ---» gn} = Vect{fy, f1, -, fu}-
Proof. We proceed by induction to construct the system {g,},so. Let
Jo = fo- Then element g, will be defined by

91 = fL — ago.

As we want g, and g, to be orthogonal, we obtain

(9o, 91) = (9o, f1) — a{g0, go) = 0.

e
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So that, a = (<g°—’fl>. Otherwise, we subtract from f; its orthogonal

Jdo.9o

projection on g,, 1.e.,

(f1, 90)
(9o» o)
Hence, clearly we have Vect {0, g,} = Vect{f,, f1}.

g1=f1— 9o

Next, g, is defined analogously by subtracting from £, its orthogonal

projections on (g,, g1)- In other words,
_ (f2'91)g _ (f2) 90) g
(91907 (909007
It is straightforward that g, is orthogonal to g, and g,. Assume next that

g2 = f2

Jn 1s well known. g,,., will be obtained as follows:

(s 90)
(gog0

i=0

In+1 = fn+1 -

We check easily that for all k < n,

(Gn+1, 9> = o1 i) — %<gir9k>

i=1

— _ <fn+1r gk) _
= (fn+1, 9k) —<gk’gk> (G gi) = 0.

Obvlously, the elements g, are not normalized. To do this, we divide

each one by its norm. The equality Vect

{go; 91, > gn} = VeCt{fOJ flr ""fn}
Is straightforward.

Definition (1.1.4):
Let I be an interval in R nonreduced to a point and let w be a

positive continuous function on I. w is sald to be a weight function iff

f |x|%w(x)dx < oo, Vd € N.
I




We denote by the next C,, (1) the vector space of continuous functions on

the interval I, satisfying
j If () |?w(x)dx < o (1.1)
1

It results from hypothesis 7 that the polynomials are elements of C,, ().

On this space of functions, a scalar product can be defined by
(1.9 = [ Fg0Ex (12)
1

The integration interval I will be called the orthogonality interval.
Definition (1.1.5): A set of polynomials (P;).s is said to be orthogonal
Iff it satisfies

(1) Degree (P;) = i;Vi € N.

(2) (Py, P;) = 0;V(i,j) € N%; i = .

The following result shows some generic propertles of orthogonal
polynomials, as they are speclal cases of staggered degree polynomials
and consequently they also form good candidates for polynomial spaces

orthogonal bases.

Proposition (1.1.2):

Let (P;):so be a set of orthogonal polynomials. Then

(1) vn € N; (P, P4, ..., B,) is an orthogonal basis of R,,[X].

@ V(mp) ENEn=p+1= P, e (R,[X]).

Proof. The first assertion is a consequence of Proposition (1.1) and the
orthogonality of the set (Py, Py, ..., B,). (We can also use the second point
in Definition (1.1) to prove the independence of the P; s,j = 0, n)
Next, as R, [X] is generated by the set (Py, P;, ..., P,) and n = p + 1,




which means that £, L P;, forall j = 0, ..., p, so it is orthogonal to

R, [X].

Remark.

Sometimes we need to use unitary orthogonal polynomials B,. Thus,
we need to multiply them by constants so that A, P, becomes unitary or
not. So, in the following, we will not differentlate between the two
notions and will use the notation (P,), and A,P, depending on the

context.

Theorem(1.1.2):
The unitary orthogonal polynomials satisfy the following assertions:
(1) Py(x) = 1.
(2) Degree (B,) = n,vn € N.
3) J,B.(x)Q(x)w(x)dx = 0,vQ € R[X] such that Degree(Q) < n.
(4) R, (X) = Vect(P,y, ..., B,),Vn € N.
Proof. (1) P, is a unitary constant polynomial. So, it is equal to 1.
(2) It follows from the first assertion in Definition 1.2.
(3) As Degree( Q) >nso Q € R, [X]*.
(4) Holds from proposition 1.1.
Lemma (1.1.1)
Let (P,, ..., B,) be a unitary orthogonal polynomial set. Hence,
1) (P, ..., B,) is a basis of R,,[X].
(2) B, is orthogonal to R,,_; [X].

Indeed, Firstly, we know that dim R,,[X] =n + 1 = card(P,, ..., B,). On
the other hand, (P,, ..., B,) is orthogonal; hence, it is linearly independent.

Thus, it consists of a basis in R,,[X].

e
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The second point follows from the fact that P, is orthogonal to
(Py, ..., P,_1), which means that it is orthogonal to R,,_; (X) =
VeCt(Po, ey P‘l’l—l)'

1.2 Orthogonal polynomials via a three-level recurrence
Theorem( 1.2.1) (Recurrence rule).
Let (P;):so be aset of orthogonal polynomials. There exist scalars
(an)n (by)n, and (c,),, such that
Poi1=(a, X+ b,)P, +c,Pp_q1; VN E N,
More precisely,
K1 (XPy, By) an (P, Py)

an = y Dp = —an 2 an Cn - - ]
Ky P, I Ap—1{Pn—1,Pp_1)

where k,, is the coefficient of X™ in P,(X).

Proof. Without loss of generality, we can assume that (P;) ;s iS
orthonormal. Let B = (XP,, P,, P,,_4, ..., Py) be a set of staggered degree
polynomials in R,,;; [X]. So, it is linearly independent in R,, ., [X].
Consequently, it forms a basis of R, ;[X]. Consequently, there exist then
scalars a,, b, ¢, and a;,0 < i < n — 2 such that
n-2
P,.1 =a,XP, + b, P, +c,Pp_1 + Z a;P;.
t=0
Next, using the orthogonality property of (P;);sq, We obtain
(Pry1, Pr) = an(XPy, Pi) + a;lIP|* =0, VO < i < —2.
On the other hand,
(XPy, Pr) = (Py, XP¢).
Since XP; € R,,_;[X], we obtain
(XP,P;)=0
Consequently,

(leo,VOSlSTl—Z

e
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Hence,
Ppy1 = (@nX + bp) By + ciPry (2.3)
We now evaluate the coefficlents a,, b,,, and c,,. Recall that P, can be
written as
P,(X) =k, X"+ k, (X" 1+ + k.
By identification of the higher degree monomials in (2.3), we obtain

Kn+1

Kn
Next, the inner product of (2.3) with B, gives
(Pps1, Pn) = an(XPy, By} + bp(Py, Py} + cu{Pp_1, By).
Using the orthogonality of the set, we get
an<XPn: Pn) + bn<Pn: Pn) = 0.

a, =

Hence,
(XPy, By)
b, = —a, ——.
(Po, Pn)
Next, using the inner product with P,_; and using again the orthogonality
of the set, we obtain
an<XPnr Pn—l) + Cn<Pn—1r Pn—l) = 0.
Hence,
o, XPuP) (P XPus)
" (Pn_1,Pn1) " (Pp_1,Pa_q)

Next, denote XP,,_; = Y'7—,a;P; as the decomposition of XP,,_; in the

Ch =

basis of polynomials (P;)y<1<n- BY 0bserving the higher degree

monomials in the decomposition, we get

Xkp X" = ap kX" © a, = =

On the other hand,
(XPn; Pn—l) = (PanPn—l)




n-1
= an<Pn; Pn) + z ai<Pn: Pt)
i=0

n-1
= an<Pn; Pn) + z a;0
i=0

= ap(Py, Py).
Consequently,
(PuXPi_1)  an(PuP)  ay  (PuB)

T B Py MPauPat) Gng Py Paa)
Hence,
P,y = a,XP, + b, P, + ¢, Py_4,
where
0, = @ b, = —a, (XPy, Py) and ¢, = — an Py Py) .
Ky (B, Pn) A1 {Pn_1, Pn_1)

In the case where (P,, ..., P,) is orthonormal, we obtain

k a
2L b, = —a,(XP,P,) and ¢, = — ——.
ky an-1

a, =

Theorem (1.2.2): (Favard's theorem).

Let {c,}n=o and {1, }—, be sequences in R, and {P, }5—,, a set of
polynomials satisfying

Pa(x) = (x = ¢p)Pn_1(x) = AnPn_2(x), Vn € N,

where Py(x) = 1 and P, (x) = x — ¢;. Then, there exists a unique linear
form ¢ on R, (X) for which ¢ (P, B,) = 0 whenever k + m.
Proof. We proceed by steps.
Step 1. We claim that Degree (P,) = n,vn € N. Indeed, forn =
0, Py(x) = 1. Hence, Degree(P,) = 0. Forn =1,P;(x) = x — ¢, S0 it is
of degree 1. Assume next that Degree(P,) = n and prove the same for

P, 1. The three-level relation above ylelds that




Degree(P, 1) = Degree((x — ¢p11)P (%)) = 1+ n.
Hence, we proved by recurrence on n that Degree(P,) = n,Vn € N.
Step 2. Consider the space R, [X] of polynomials on R with degrees at
most n. It results from Step 1 that the set B,, = (P, ..., B,), satisfying that
the three-level relation is a degree-straggled set of polynomials.
Henceforth, it is a basis of R,,[X]. Let ¢: R,,[X] — R be the continuous
linear form defined on such a basis by

p(Po) =1,0(P) == @(B) =0.
It holds from the Riez-Fréchet theorem that there exists a function w such
that
o(P) =(P,w) = J P(x)w(x)dx.

R
We now prove that

For k < m, denote P, (x) = 3%, a (k)xS. We get
k

OPE) = ) as (k)P Br).

s=0

On the other hand, x*P,, can be written as

x*B, = z d;P;
t=m-s
Hence,
m+s
PEB) = Y dip(P) =0,
I=m-=s

Example (1.2.1) We set here some examples of induction relations for
the most known orthogonal polynomials.

(1) Legendre polynomials




_2n+1XP
LT +1 7Y n+1

(2) Chebyshev polynomials
P,., = 2XP, — P,_,, Vn € N*.
(3) Hermite polynomials
P,.; = 2XP, — 2nP,_,, VYn € N*.

P,_,, Vn € N*

1.3 Orthogonal polynomials via Rodrigues rule
A literature review of orthogonal polynomials reveals that there are many
methods to obtain such polynomials. One is explicit and based on the

Rodrigues rule, which applies derivation. Let

n
k,w(x)dx™

where S is a polynomial in x, w is a weight function, and k,, is a constant.

P(x) = lw(x)S™],

We have precisely the following result.

Theorem 1.3.1

Let I = [a, b] and w is a weight function on | and (¢,,) ey be a set of
real functions on | satisfying

(1) ¢, isC™ on ]a, b[ for all n.

) ¢V at) = ¢ b)) =0forallk,0 <k <n-—1.

3)T, = k,%w (wep,))™ is a polynomial of degree n, (k,, is a
normalization constant). Then, (T;,) ey IS Orthogonal. The converse is
true iff w is C™.

Proof. It suffices to prove the orthogonality. For n < m, we have




b
(T Tp) = f T () T (D)0 (x) dx

b
[ 1) gy @ Mo

b 1
= f To(x) 1= (W) ™ dx

W Pm

d
e,

- o | T
=0 ’
The fourth equality is a consequence of Hypothesis (2) and the
integration by the parts rule. The last equality is a consequence of
Hypothesis (3).

1.4 Orthogonal polynomials via differential equations
A large class of orthogonal polynomials is obtained from first-order linear
differential equations of the type

a(x)y" +bx)y'— 1,y =0, (2.6
WheOre a is a polynomial of degree 2 , and b is a polynomial of degree 1
, Where both are independent of the integer parameter n, and finally, 1,,
are scalars. y is the unknown function. By introducing the operator
T:R[X] — R[X] such that T(y) = ay"” + by’, the solution y appears as
an eigenvector of T associated with the eigenvalue 4,,. We introduce next

a resolvent function w > 0, which permits us to express the operator T on

!

the form T (y) = %(awy’)’. The equality T(y) = ay”" +a'y’ + %y’
shows that w is a solution of the differential equation aw’ + (a’ — b)w =

b_ 1
2 Recall now

a

0. So, it is of the form w = e“, where 4 is a primitive of

that




(T(F)g) = j (aof") (g ()w()dx
1

= [awf"g], - jl A f' (09 (D ()dx.

Iff the weight w vanishes on the frontler of the integration interval I, we

obtain
(T, g) = — j A ()9 (wx)dx = {f, T(9)).
1

This means that the operator T is symmetric.
Denote for the next T;,: R, [X] — R, [X] the restriction of T on R,,[X]. It
is straightforward that R,,[X] is invariant under the action of T;, since the
degrees of a
and b are less than 2 and 1 , respectively. So, we can arrange the pairs
(4,y) into a sequence (A, yx), wWhere we re-obtain the eigenpairs of the
operator T, for k = 0, ..., n. Next, observing that a(x) = a,X? + a, X +
ay and b(x) = by X + by, it results that T,, is an endomorphism on R,,[X].
Thus, there exists a T-eigenvector's orthonormal basis of such a space. In
particular, there exists at least an elgenvector P, of degree n, which may
be assumed to be unitary and satisfying

aP,’ + bP, = A, P,.
This means that for n # m, we obtain 4,, # 4,,, and thus the polynomials

P, are orthogonal.




Chapter Two

Some Orthogonal Polynomials

2.1 Some classical orthogonal polynomials

In the previous chapter, we reviewed the three most well-known
schemes to obtain orthogonal polynomials. The first one is based on the
explicit Rodrigues derivation rule, which states that the nth element of

the set of orthogonal polynomials, which is also of degree n, is obtained

by

n
k,w(x)dx™

where S is a suitable polynomial in x.

P.(x) = [w(x)S™],

The next method is based on an induction rule eventually necessitates that
the first and the second elements of the desired set of orthogonal
polynomials be known. It states that

Ppy1 = (anX + Bp) Py + Py, (2.1)
where a,, b,,, and c,, are known scalars.
Finally, the last scheme consists of introducing orthogonal polynomials as
the solutions of ordinary differential equations (ODES) of the form

a(x)y" +b(x)y — A,y =0

where a is a 2-degree polynomial and b is a polynomial with degree 1
and A,, are scalars. The idea consists of developing polynomial solutions
of the ODEs. According to the coefficlents of each equation, we obtain
the desired class of polynomials, such as Legendre and Laguerre.
In this section, we propose to revisit some classical classes of orthogonal

polynomials and show their construction with the three schemes.




2.1.1 Legendre polynomials

From Rodrigues rule:

Legendre polynomials consist of polynomials defined on the
orthogonality interval I = [—1,1] relative to the weight functlon w = 1,
the polynomial S(x) = (x? — 1), and the constant k,, = 2™n!. The nth

Legendre polynomial, usually denoted in the literature by L,,, is obtained

by

2™n!

dn 2_1 n
L) = [(x ) ]

Using the Leibniz rule of derivation, L,,(x) can be explicitly computed.
We have

Ln(6) = o= B CR (G — DM (@ + DD =

S0 (G (x = DM (x + D

For example,
Lo(x) =1, Li(x) =x,
1 1
L,(x) = 5(3962 - 1), L;(x) = E(ng — 3x),
1 1
L,(x) = §(35x4 —30x%2+3), Ls(x) = 3 (63x> — 70x3 + 15x).

From the induction rule

Legendre polynomials can also be introduced via the induction rule

Lppn = 2 Ly o

T a1 n41

with initial data L,(x) = 1 and L, (x) = x. It ylelds, for n = 1, that
1

3 1 3
La(x) = 5xly (%) =5 Lo(x) = 5x° —=.

L,_4, Vn € N*

Forn = 2, it ylelds that

5 2 5 (3, 1\ 2 5, 3
L3(x)=§xL2(x)—§L1(x)=§x<§x _§> 5%

Applying the same procedure, we obtain




1 1
Ly(x) = 5(35x4 —30x%2 +3), and Lg(x) = §(6Bx5 — 70x3 + 15x).

From ODEs
Legendre polynomials are obtained as the polynomial solutions of the
following ODE:
(1—x3)y" —2xy"+n(n+1)y=0,x €l
=[-1,1]. (2.2)
Using the notations of Section 2.2, this means that
a(x) =1—x% b(x) = -2y and A, = —n(n + 1). In the sense of the
linear operator T, the polynomials L,, can be introduced vla the operator
T(y) =1 —x2)y" —2xy' = (A - xDy'),
which corresponds to the weight function w(x) = 1 and a(x)w(x) =
1 — x2. Note that aw vanishes at the frontiers +1 of the orthogonality
interval I. Furthermore, in terms of elgenvalues as in equation (2.7), If we
suppose that the same eigenvalue A,, is assoclated with at least two
elgenvectors P, and P,,, we obtain (n — m)(n + m — 1) = 0, which has
no integer solutions except n = m. This confirms that the eigenvalues
and elgenvectors are one to one, which means that the elgenvectors
(polynomials) are orthogonal. Figure 2.1 lllustrates the graphs of the first
Legendre polynomials.
For clarity and convenience, we will develop the polynomial solutions.
So, denote P(x) = a,xP + a,_1xP~* + -+ 4+ a;x + a, as a polynomial
solution of degree p of equation (2.8). We obtain the following system:
( 2a, +n(n+1)a, =0
6a; + (n*+n—2)a; =0
[+ 1)~ (- D(p+ D]ay, =0
[((n(n+ 1) = p(p + Dla, =0,
\(k+ 1) (k+2)ag[(n(n+1)—k(k+1)]a,=0,2<k<p-2

Hence, p = nand

-




( 2a, +n(n+ 1)ay, =0,
6as; + (n?+n—2)a; =0,
[(n(n +1) —n(n—1)]a,_, =0,
\(k + D)k + 2)ag[(n(n+1) —k(k+1)]a,=0,2<k<p-2.
For example, for n = 0, we obtain
P(x) = ao
Forn =1, we get
P(x) = ax
For n = 2, we obtain
P(x) = —ay(3x% — 1)
Forn = 3,

P(x) = —a, (gx?’ — x)

For n = 4, we have

P(x) = —a, (S?Sx‘* —10x?% + 1)

-1 —0.5 o 0.5 1
=

Fig. 2.1: Legendre polynomlals

Next, for n = 5, we obtain

e
1




21 . 14 |
P(x)=a1(?)( X +x)

Now, using the orthogonality of these polynomials on [—1,1], we obtain

the same polynomials.

One important question is how to choose the polynomial S in
Rodrigues rule to be equivalent with the same outputs of the recurrence
rule and the ODE scheme.

Firstly, the degree of S is fixed in an obvlous way as deg P, = n, Vn.
Hence, for example, in the Legendre case, S should be of degree 2 , that
I}

S(x) = a+ bx + cx?, ¢ # 0.
Thus,

dn
L,(x) = enﬁ(sn(x)); €n = gl
Consequently, from the induction rule of Legendre polynomials we

obtain, forn = 2,

3 1
L, = EXLl - ELO
2 124 3 ! 1
e;(5%(x)) = 591)((5 (x)) _Eeo
As a result,

b>+2ac+2=0
6bc—3b =0

6c2 —6c=0

Hence, we obtain

Or equivalently,
S(x) =x%2-1
2.1.2 Laguerre polynomials

From the Rodrigues rule:

ARY%



These polynomials are obtained via the Rodrigues rule with w(x) =
e™,5(x) = x and the constant k,, = n ! by

n
exn k

C
Lp(x) = Ew(e_x)(n) = k—rg(—)()k-
k=0

The first polynomials are then
Lo(x)=1, Li(x) =1—x,
L,(x) = %(x2 —4x +2), L3(x) = %(—x3 + 9x% — 18x + 6),

Ly(x) = = (x* — 16x3 + 72x2 — 96x + 24),

1
Le(x) = m(—x5 + 25x* — 200x3 + 600x2 — 600x + 120).

It holds clearly from simple calculus that these polynomials are
orthogonal in the interval [0, oo [ relative to the weight function w(x) =
e ~.
From the induction rule
Laguerre polynomials are solutions of the following recurrent relation:

m+DL () +(x—2n—-1DL,(x)+nL,_1(x) =0
with the first and second elements £,(x) = 1 and £;(x) = 1 — x. For
n =1, we get

2L,(x) + (x—3)Ly(x) + Ly(x) =0,

which implies that

1 1 1
L,(x) =§(3—x)(1—x)+§=§(x2—4x+2).

Next, for n = 2, we obtain
3Ls(x)+ (x—=5)Ly(x)+ 2L,(x) =0,

which means that
1
Li(x) = g(—x3 + 9x% — 18x + 6).

Similarly, we can obtain
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1
Ly(x) = o (—x* — 163 + 72x% — 96x + 24)

and

1
Ls(x) = FO(_XS + 25x* — 200x3 + 600x% — 600x + 120).

From ODEs

To apply the ODE procedure, we set I =]0, oo [ as the orthogonality

interval, a(x) = x, b(x) = 1 — x, w(x) = e~* and consequently, the

operator T will be T(y) = xy"" — (1 — x)y’. We observe immediately

that a(x)w(x) = xe ™  is null at 0 and has the limit 0 at +co.

Furthermore, P(x)w(x) is integrable on I for all polynomial P. In the

present case, equation (2.7) becomes (n + m)(n —m) = 0 and the

eigenvalues are A,, = —n. The assoclated ODE is
xy"'—(1—-x)y'+ny=0

It is straightforward that for all n, the polynomial £,, is a solution of this

differential equation. Figure 2.2 illustrates the graphs of some examples

of Laguerre polynomials.

2.1.3 Hermite polynomials

From Rodrigues rule:

Hermite polynomials are related to the orthogonality interval I = R with

the weight function w(x) = e ™*". Denote H,, as the nth element, 1.e., a
Hermite polynomial of degree n. H,, is explicitly expressed via Rodrigues

rule as follows:

2 dn 2
H,(x) = (—-1)"e* W(e *).
As examples, we get

Hy(x) =1, Hi(x) =2x, H,(x) =4x?—2
Hy(x) = 8x3 —12x, and H,(x) = 16x* — 48x?% + 12




From the induction rule
Hermite polynomials H,, can be obtained by means of the induction rule

H,,, =2XH, — 2nH,_,, VYn € N¥,

J33333

Fig. 2.2: Laguerre polynomlals.

with the initial data Hy(X) = 1 and H,(X) = 2X. So, forn = 1,2,3,4,5
we obtain as examples

H,(X) = 4X? — 2, Hy(X) = 8X3 — 12X, H,(X) = 16X* — 48X2 + 12
Hs(X) = X5 — 10X3 + 15X, Hg(X) = X® — 15X* + 45X2 — 15

From ODEs
Hermite polynomials are also solutions of a second-order ODE in the

2

interval I = R. this means that a(x) = 1,b(x) = —2x, and w(x) = e™*
as a weight function. It is immediate that a(x)w(x) = e~*" which has 0
limits at the boundaries of the interval I. Furthermore, P(x)w(x) is
integrable on I for all polynomials P. By means of the eigenvalues of the
linear operator T, Hermite polynomials are eigenvectors of T(y) = y"' —

2xy' assoclated with eigenvalues A,, = —2n. The corresponding ODE is




y"' =2xy'+2ny =0

Some examples of Hermite polynomials are illustrated in figure 2.3.

50
&0 —
30 —
20—~

1{] ] --"I'n.._

Fig. 2.3: Hermite polynomlals.

2.1.4 Chebyshev polynomials

From Rodrigues rule

Chebyshev polynomials are related to the orthogonality interval I =] —
1,1 [ and the weight function w(x) = (1 — x?)~'/2. Denoted usually by
T,, for the Chebyshev polynomial of degree n, these are explicitly

expressed via the Rodrigues rule as

1
—1D"(1 — x®)2vm d* 1
Tn(x) — ( ) ( X ) \/_ ((1 _ xZ)TL—E)’
ALY (n + 1) dx™

2

where I'(x) = f0+°° t*~le~tdt is Euler's well-known functlon. It is

immediately seen (by recurrence for example) that

(s ]) - GO

2 221n!

and hence, the first Chebyshev polynomials can be obtained as

,VneN,
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To(x) =1, Ty(x) = x, T,(x) =2x*>—1
T5(x) = 4x3 — 3x, Ty(x) = 8x* — 8x%2 + 1, T5(x) = 16x° — 20x3 + 5x.

From the induction rule
Chebyshev polynomials are solutions of the induction formula
Thy1 = 2xT, — T,—1, Yn € N7,

with initlal data, Ty(x) = 1 and T; (x) = x. Let, T,,(x) = Y¢_,arxk,
then

rsoar xk = 2xYRooaix® — XRZoak X"
Yheoak Tl apfia™t 4 agtt = YRog 2apx "t — YRZgag Xk
= Yki12ag_x* — YRZoag tx"
Y@@t — 2al_; + a Hx* + altt + a7t
+(a** = 2a_)x" + (at] — 2aM)x"t = 0.
We obtain the following system:

alt'+al =0

ap*tt =2ap_; -
n+1l _ n
Any1 = 20n

aftt=2al ,—a} L 1<k<n-1.

We have
To(x)=1ea) =1
and
T.\()=xea=0,al =1
Hence,

T,(x) = aix* +aix + aj
From the above system, we obtain
az = —a) = -1
a? =2a; =0
a5 =2al —ad =2
which means that

T,(x) =2x* -1
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Now, replacing n by 2 in the system we obtain

(a3 = —a} = 0.
Ja§=2af=0.

a3 =2a% —al = -3.
La§’=2a§—a%=4.

Therefore,

T3(x) = 4x3 — 3x.
Next, for n = 3, the system becomes
(ag = —ai = 1.
ai = 2a3 = 0.
{at =2a —a?=0.
aj = 2a3 —a? = -8.

\aj = 2a3 —a3 = 8.
Thus,

T,(x) = 8x* — 8x2 + 1.
Now, by replacing n with 4 , the system ylelds

(a3 = —aj = 0.
a; = 2a; = 0.
a} = 2ag — a3 =5.

-

as = 2af —a3 =0.
a3 = 2a; — a3 = —20.
\a2 = 2a} — a3 = 16.

Hence,

Ts(x) = 16x° — 20x3 + 5x.
So, we obtain the same Techebychev polynomials as for the Rodrigues
and ODE rules.
From ODEs
Weset] =] —1,1[,a(x) =1 —x2,b(x) = —x and w(x) = (1 —
x2)~1/2_The linear operator T is then given by

T(y) =1 -x*)y" —xy'.
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It is straightforward that a(x)w(x) = V1 — x2 vanishes at +1 and the

eigenvalues 1,, = —n? give rise to elgenvectors (polynomials), T, s. This

ylelds that the T,, s are the corresponding solutions of the ODE
(1—x3)y" —xy' +n?y =0.

Remark 24. Chebyshev polynomials T, can be explicitly defined on

[—-1,1] by

T,,(x) = cos(nArccos(x)).

Indeed, by considering Molvre's rule (cos 8 + isin 8)™ = cosnf +
isinnd, and by setting for 8 € [0, 7], x = cos 6, we obtain sin 6v1 — x2.
This implies that
2]
cos(nB) = cos(narccos(x)) = CAM(=1)My™2m(1 — x2)™, n
m=0
€ N.
Next, we observe that
cos((n+1)0) + cos((n—1)0) = 2cos Bcos(nb).
Henceforth, we obtain explicit T,, s as above. Figure 2.4 illustrates the
graphs of the first Chebyshev polynomials.
Remark 25. It holds that a second kind of Chebyshev polynomial already
exists. It is defined by means of the Rodrigues rule as

(-D"(n+Dver  dv

1 n
2m41T (4 3) (1 — x2)2 %
2

U,(x) = ((1 — xz)”%), x € [-1,1]

or by means of trigonometric functions as
sin(n+1)6

U,(cos8) = B — vn € N*,
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These polynomials satisfy the same induction rule as the previous but
with different initial data U,(x) = 1 and U, (x) = 2x. Finally, similar to
other classes of orthogonal polynomials, they satisfy the ODE

Vx € R, (1 —x2)U;)/(x) — 3xU,(x) + n(n + 2)U, (x) = 0.
2.2.5 Gegenbauer polynomials
From Rodrigues rule:
Gegenbauer polynomials, also called ultraspherical polynomials, are
defined relative to the weight function w(x) = (1 — x2)P~1/2 where p is
a real parameter, and to the orthogonality interval I = [—1,1]. From the

Rodrigues rule, these are defined as

- (p+ %) I'(n + 2p)

Gh(x) =
2mm! T(2p)T (p +m+ %)
i (SR ) 29)

Hence, by applying the Leibniz derivation rule, we obtain

GP(x) = CPIx™ — @pp_pXx™ 2 + @y gx™ 4 + -]
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Fig. 2.4: Chebyshev polynomials.

where
p  2"T(p+m)
™ miT(p)
m(m—1) m(m—1)(m—2)(m—3)

tm-2 = 2?2(p+m—1)° Tm-4 = 2%p+m—-D(p+m-2)""
From the induction rule
Gegenbauer polynomials GZ, can also be introduced vla the induction rule
stated for p > _71 by
mGP (x) = 2y(m+p — 1)651_1(30
— (m+2p —2)Gh_,(x) (2.4)
already with
Gy (x) =1 and G (x) = 2p(1 —x).

This gives, for example,

1
626 =204+ 1) [~ 3

and

. 4 ; 3
G3 (x) = §p(p +1(p +2) [X e 4)(]
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Furthermore, we notice that G is composed of monomials having the

same parity of the index m.

Remark. The following assertions hold:
Grn(=1) = (=D™GR(0)- *
Gy .1(0)=0. e

(-D"T+m)
T()I(m+1) °

= Gm(0) =

m

From ODEs
Gegenbauer polynomials GZ. are solutions of the ODE

(1—x*)y" = (2p + Dxy' + m(m + 2p)y =0,
In the interval I =] — 1,1 [ with coefficlents a(x) = 1 — x2,b(x) =
—(2p + Dx and c(xy) = m(m + 2p). These polynomials can be
introduced as the eigenvectors of the linear Sturm-Llouvllle-type operator
T defined by

T(y)=1-x?y"—@2p+ Dxy".
By choosing w(x) =(1-— Xz)p‘%, we observe that a(x)w(x) =

1
(1 — x?)P*z vanishes at the boundary points +1. The eigenvalues are
Am = —m(m + 2p).
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Conclusion:

In this work, we outlined the concepts and the main properties and
characteristics of orthogonal polynomials. Some basic notions concerning
orthogonal polynomials are recalled that are related to weight functions,
integration theory, linear algebra theory of vector spaces, their basis, and
orthogonal systems and their relation to orthogonal polynomials. Next,
the three main methods for introducing orthogonal polynomials were
reviewed. The first method uses Rodrigues formula and it yields
orthogonal polynomials as outputs of a higher order derivatives of some
special functions. The second is based on recurrence relations, which
yield orthogonal polynomials as sequences of functions defined by a
three-level induction rule. We recalled and redeveloped Favard’s results
on orthogonal polynomials as well as its reciprocals. The last method
consists of orthogonal polynomials as solutions to ordinary differential
equations or equivalently as eigen functions of Sturm-Liouville
operators. Some concluding and illustrating examples are provided to
enlighten theoretical developments.
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