Repulic of Iraq
Ministry of Higher Eduction And Scientific Research

Diyala University
College of Education Al-Miqdad
Mathematics department

A Graduation project submitted to the Mathematics department in partial requirements for the degree bachelors in Mathematics fulfillment of the

By

SUPERVISOR CERTIFACATION

I certify that the preparation of project entitled:

Some Basic Orthogonal Polynomials:
 Definitions And Properties

Prepared by: Saja Hassan Abed

Sara Hussein Ali

Abstract

Was made under my supervisor at mathematics of department in partial fulfillment of the requirements for degree of bachelor of mathematics

Signature:
Name of supervisor:
Date:

إلى الوالدين فلو لاهما لما وجدت في هذه الحياة، ومهمـا تـعلمت الصمود، مهمـا
كانت الصعوبـات
إهاء
إلى أساتذتي الكرام........... فعنهم استتقيت الحروف وتعلمت كيف أنطق الكلمات، وأصوغ العبارات واحتكم إلى القواعد في مجال......

إهاء
إلى الزملاء والزميلات الذين لم يدخروا جهدا في مدي بالمعلومـات والبيانات

أهدي إليكم بحتى هذا

داعيا المولى سبحانه وتعالى أن يتكلل بالنجاح والقبول من جانب أعضاء

لجنة المنافسة المبجلين

الثشكر والثقبير

لحمد لله رب العالمين والصلاة والسلام على سيد الأولين والآخرين وأشرف الخلق
أجمعين ححلـ وعلى آله وصحبه وسلم تسليمـا كثيراً

امـا بـد
يطيب لي أن أتقدم بجزيل الثكر والثناء إلى من لا أجد كلمة في سطور الكتب

 من وقت وجهِ نورت طريق بحثّي العلمي.

ومن واجب الاخلاص والعرفان أن أتقدم بالثكر والامتتان إلى الأستاذي الأفاضل (دكتور خالد هادي حميد)، لما قدمـه لي من توجيهات وأراء سديدة خلال ملا مدة الاراسة والبحث.

وأتوجه بالثكر الى كل من تكرم وسمح بتطبيق الاراسة عليه، و لمـا قدموه لي من خدمات جليلة لن أنساها

وأخيراً أنقدم بالثككر الى كل من شـارك بمساعدة، أو مشورة ، أو رأي، أو ملاحظة.

والله ولي التوفيق

TITLE OF PAGE	Page
الاية القرانية	
الاهداء	
الشكر وتقاير	
Contents	
INTRODUCTION	1
Chapter one Orthogonal polynomials 1.1Orthogonal polynomials	1
1.2 Orthogonal polynomials via a three-level recurrence	6
1.3 Orthogonal polynomials via Rodrigues rule	10
1.4 Orthogonal polynomials via differential equations	11
Chapter Two Some Orthogonal Polynomials	13
2.1 Some classical orthogonal polynomials	13
2.1.1 Legendre polynomials	14
2.1.2 Laguerre polynomials	17
2.1.3 Hermite polynomials	19
2.1.4 Chebychev polynomials	21
2.1.5 Gegenbauer polynomials	25
Conclusion	28
References	29

I. Introduction

Orthogonal polynomials are connected with many mathematical, physical, engineering, and computer sciences topics, such as trigonometry, hyper geometric series, special and elliptic functions, continued fractions, interpolation, quantum mechanics, partial differential equations. They are also be found in scattering theory, automatic control, signal analysis, potential theory, approximation theory, and numerical analysis.

Orthogonal polynomials are special polynomials that are orthogonal with respect to some special weights allowing them to satisfy some properties that are not generally fulfilled with other polynomials or functions. Such properties have made them well- known candidates to resolve enormous problems in physics, probability, statistics and other fields. Since their origin in the early 19th century, orthogonal polynomials have formed a somehow classical topic related to Legendre polynomials, Stieltjes' continued fractions, and the work of Gauss, Jacobi, and Christoffel, which has been generalized by Chebyshev, Heine, Szegö, Markov, and others. The most popular orthogonal polynomials are Jacobi, Laguerre, Hermite polynomials, and their special relatives, such as Gegenbauer, Chebyshev, and Legendre polynomials. An extending family has been developed from the work of Wilson, inducing a special set of orthogonal polynomi- als known by his name, which generalizes the Jacobi class. This new family has given rise to other previously unknown sets of orthogonal polynomials, including Meixner Pollaczek, Hahn, and A skey polynomials.

Orthogonal polynomials may also be classified according to the measure applied to define the orthogonality. In this context, we cite the class of discrete orthogonal polynomials that form a special case based on some discrete measure. The most common are Racah polynomials, Hahn polynomials, and their dual class, which in turn include Meixner, Krawtchouk, and Charlier polynomials.

Already with the classification of orthogonal polynomials, one can distinguish circular and generally spherical orthogonal polynomials,
which consists of some special sets related to measures supported by the circle or the sphere. One well-known class is composed of Rogers-Szegö polynomials on the unit circle and Zernike polynomials, which are related to the unit disk.

Orthogonal polynomials, and especially classical ones, can generally be introduced by three principal methods. A first method is based on the Rodrigues formula which consists of introducing orthogonal polynomials as outputs of a derivation. The second method consists of introducing orthogonal polynomials as eigenvectors of Sturm-Liouville operators, or equivalently, solutions of second-order differential equations. The last method is based on a three-level recurrence formula.

Chapter one

Orthogonal polynomials

In this chapter, we reviews basic definitions as well as properties of orthogonal polynomials.

To do this, we first restrict ourselves to the field \mathbb{R}, and when it is necessary we recall that the development remains valid on the complex field \mathbb{C}.

1.1 Some Basic Definitions

Definition(1.1.1):

A Hilbert space is a vector space equipped with a scalar product, which makes it a complete space relative to the scalar product induced norm.

Definition (1.1.2):

A polynomial P of degree n on \mathbb{R} is formally defined by the expression

$$
P(X)=\sum_{k=0}^{n} a_{k} X^{k}
$$

where X is the variable and $a_{k} s, 0 \leq k \leq n$, are elements of \mathbb{R} called scalars and known as the polynomial coefficlent such that $a_{n} \neq 0$.

Remark.

The polynomial function associated with the polynomial P, which will also be denoted by P, is the functlon defined on the whole space \mathbb{R} by $P(x)=\sum_{k=0}^{n} a_{k} x^{k}$. We denote by $\mathbb{R}[X]$ the set of all polynomials on \mathbb{R}. Of course, It is well known that $\mathbb{R}[X]$ is a vector space on \mathbb{R} with infinite dimension and that for any $n \in \mathbb{N}$, the set $\mathbb{R}_{n}[X]$ of polynomials on \mathbb{R} with degree at most n is a vector space with dimension $n+1$ on \mathbb{R}.

Definition(1.1.3):

A set of polynomials $\mathcal{B}=\left(P_{0}, P_{1}, \ldots, P_{n}, \ldots\right)$ in $\mathbb{R}[X]$ is sald to be staggered with the degrees iff $\operatorname{deg}\left(P_{t}\right)=i, \forall i$.

The following result shows one important property of staggered degrees polynomials confirming the ability of such polynomials to be good candidates for polynomial spaces bases.
Proposition (1.1.1) :
Any finite set $\mathrm{B}=\left(\mathrm{P}_{0}, \mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}\right)$ of staggered degrees polynomials in $\mathbb{R}_{n}[\mathrm{X}]$ is linearly independent.

Proof.

Let $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right)$ be scalars in \mathbb{R} such that $\sum_{i=0}^{n} \alpha_{i} P_{t}=0$. This means that for all $x \in \mathbb{R}, \sum_{t=0}^{n} \alpha_{l} P_{l}(x)=0$. By considering the n th-order derivative on x, we obtain $\alpha_{n} \frac{d^{n} P_{n}}{d x^{n}}=0$. Consequently, $\alpha_{n}=0$. Next, proceeding by induction on n, we prove that all the coefficlents α_{i} are null. Hence, \mathfrak{B} is a free set in E. Observe next that the dimension of E $(\operatorname{dim} E=n+1)$ coincides with the cardinality of \mathcal{B}. Therefore, \mathcal{B} is a basis of E.

Theorem (1.1.1): (GRAM-SCHMIDT).

Let $\left\{f_{n}\right\}_{n \geq 0}$ be a countable system of linearly independent elements in a prehilbertian space. Then, there exists an orthonormal system $\left\{g_{n}\right\}_{n \geq 0}$ such that for any n, $\operatorname{Vect}\left\{g_{0}, g_{1}, \ldots, g_{n}\right\}=\operatorname{Vect}\left\{f_{0}, f_{1}, \ldots, f_{n}\right\}$.
Proof. We proceed by induction to construct the system $\left\{g_{n}\right\}_{n \geq 0}$. Let $g_{0}=f_{0}$. Then element g_{1} will be defined by

$$
g_{1}=f_{1}-\alpha g_{0} .
$$

As we want g_{0} and g_{1} to be orthogonal, we obtain

$$
\left\langle g_{0}, g_{1}\right\rangle=\left\langle g_{0}, f_{1}\right\rangle-\alpha\left\langle g_{0}, g_{0}\right\rangle=0 .
$$

So that, $\alpha=\frac{\left\langle g_{0}, f_{1}\right\rangle}{\left\langle g_{0}, g_{0}\right\rangle}$. Otherwise, we subtract from f_{1} its orthogonal projection on g_{0}, 1.e.,

$$
g_{1}=f_{1}-\frac{\left\langle f_{1}, g_{0}\right\rangle}{\left\langle g_{0}, g_{0}\right\rangle} g_{0}
$$

Hence, clearly we have Vect $\left\{0, g_{1}\right\}=\operatorname{Vect}\left\{f_{0}, f_{1}\right\}$.
Next, g_{2} is defined analogously by subtracting from f_{2} its orthogonal projections on $\left(g_{0}, g_{1}\right)$. In other words,

$$
g_{2}=f_{2}-\frac{\left\langle f_{2}, g_{1}\right\rangle}{\left\langle g_{1}, g_{1}\right\rangle} g_{1}-\frac{\left\langle f_{2}, g_{0}\right\rangle}{\left\langle g_{0}, g_{0}\right\rangle} g_{0} .
$$

It is straightforward that g_{2} is orthogonal to g_{0} and g_{1}. Assume next that g_{n} is well known. g_{n+1} will be obtained as follows:

$$
g_{n+1}=f_{n+1}-\sum_{i=0}^{n} \frac{\left\langle f_{n+1}, g_{i}\right\rangle}{\left\langle g_{i}, g_{t}\right\rangle} g_{t}
$$

We check easily that for all $k \leq n$,

$$
\begin{aligned}
\left\langle g_{n+1}, g_{k}\right\rangle & =\left\langle f_{n+1}, g_{k}\right\rangle-\sum_{i=1}^{n} \frac{\left\langle f_{n+1}, g_{i}\right\rangle}{\left\langle g_{i}, g_{i}\right\rangle}\left\langle g_{i}, g_{k}\right\rangle \\
& =\left\langle f_{n+1}, g_{k}\right\rangle-\frac{\left\langle f_{n+1}, g_{k}\right\rangle}{\left\langle g_{k}, g_{k}\right\rangle}\left\langle g_{k}, g_{k}\right\rangle=0 .
\end{aligned}
$$

Obvlously, the elements g_{n} are not normalized. To do this, we divide each one by its norm. The equality Vect

$$
\left\{g_{0}, g_{1}, \ldots, g_{n}\right\}=\operatorname{Vect}\left\{f_{0}, f_{1}, \ldots, f_{n}\right\}
$$

Is straightforward.

Definition (1.1.4):

Let I be an interval in \mathbb{R} nonreduced to a point and let ω be a positive continuous function on $I . \omega$ is sald to be a weight function iff

$$
\int_{I}|x|^{d} \omega(x) \mathrm{d} x<\infty, \forall d \in \mathbb{N} .
$$

We denote by the next $\mathcal{C}_{\omega}(I)$ the vector space of continuous functions on the interval I, satisfying

$$
\begin{equation*}
\int_{I}|f(x)|^{2} \omega(x) \mathrm{d} x<\infty \tag{1.1}
\end{equation*}
$$

It results from hypothesis 7 that the polynomials are elements of $\mathcal{C}_{\omega}(I)$. On this space of functions, a scalar product can be defined by

$$
\begin{equation*}
\langle f, g\rangle=\int_{I} f(x) g(x) \omega(x) \mathrm{d} x \tag{1.2}
\end{equation*}
$$

The integration interval I will be called the orthogonality interval.
Definition (1.1.5): A set of polynomials $\left(P_{t}\right)_{t \geq 0}$ is said to be orthogonal iff it satisfies
(1) Degree $\left(P_{t}\right)=i ; \forall i \in \mathbb{N}$.
(2) $\left\langle P_{1}, P_{j}\right\rangle=0 ; \forall(i, j) \in \mathbb{N}^{2} ; i \neq j$.

The following result shows some generic propertles of orthogonal polynomials, as they are speclal cases of staggered degree polynomials and consequently they also form good candidates for polynomial spaces orthogonal bases.

Proposition (1.1.2):

Let $\left(P_{t}\right)_{t \geq 0}$ be a set of orthogonal polynomials. Then
(1) $\forall n \in \mathbb{N} ;\left(P_{0}, P_{1}, \ldots, P_{n}\right)$ is an orthogonal basis of $\mathbb{R}_{n}[X]$.
(2) $\forall(n, p) \in \mathbb{N}^{2} ; n \geq p+1 \Longrightarrow P_{n} \in\left(\mathbb{R}_{p}[X]\right)^{\perp}$.

Proof. The first assertion is a consequence of Proposition (1.1) and the orthogonality of the set $\left(P_{0}, P_{1}, \ldots, P_{n}\right)$. (We can also use the second point in Definition (1.1) to prove the independence of the $P_{j} \mathrm{~s}, j=0, \ldots, n$). Next, as $\mathbb{R}_{p}[X]$ is generated by the set $\left(P_{0}, P_{1}, \ldots, P_{p}\right)$ and $n \geq p+1$,
which means that $P_{n} \perp P_{j}$, for all $j=0, \ldots, p$, so it is orthogonal to $\mathbb{R}_{p}[X]$.

Remark.

Sometimes we need to use unitary orthogonal polynomials P_{n}. Thus, we need to multiply them by constants so that $\lambda_{n} P_{n}$ becomes unitary or not. So, in the following, we will not differentlate between the two notions and will use the notation $\left(P_{n}\right)_{n}$ and $\lambda_{n} P_{n}$ depending on the context.

Theorem(1.1.2):

The unitary orthogonal polynomials satisfy the following assertions:
(1) $P_{0}(x)=1$.
(2) Degree $\left(P_{n}\right)=n, \forall n \in \mathbb{N}$.
(3) $\int_{I} P_{n}(x) Q(x) w(x) \mathrm{d} x=0, \forall Q \in \mathbb{R}[X]$ such that Degree $(Q)<n$.
(4) $\mathbb{R}_{n}(X)=\operatorname{Vect}\left(P_{0}, \ldots, P_{n}\right), \forall n \in \mathbb{N}$.

Proof. (1) P_{0} is a unitary constant polynomial. So, it is equal to 1 .
(2) It follows from the first assertion in Definition 1.2.
(3) As Degree $(Q)>n$ so $Q \in \mathbb{R}_{n}[X]^{\perp}$.
(4) Holds from proposition 1.1.

Lemma (1.1.1)

Let $\left(P_{0}, \ldots, P_{n}\right)$ be a unitary orthogonal polynomial set. Hence,
(1) $\left(P_{0}, \ldots, P_{n}\right)$ is a basis of $\mathbb{R}_{n}[X]$.
(2) P_{n} is orthogonal to $\mathbb{R}_{n-1}[X]$.

Indeed, Firstly, we know that $\operatorname{dim} \mathbb{R}_{n}[X]=n+1=\operatorname{card}\left(P_{0}, \ldots, P_{n}\right)$. On the other hand, $\left(P_{0}, \ldots, P_{n}\right)$ is orthogonal; hence, it is linearly independent. Thus, it consists of a basis in $\mathbb{R}_{n}[X]$.

The second point follows from the fact that P_{n} is orthogonal to $\left(P_{0}, \ldots, P_{n-1}\right)$, which means that it is orthogonal to $\mathbb{R}_{n-1}(X)=$ $\operatorname{Vect}\left(P_{0}, \ldots, P_{n-1}\right)$.

1.2 Orthogonal polynomials via a three-level recurrence

Theorem(1.2.1) (Recurrence rule).

Let $\left(P_{t}\right)_{t \geq 0}$ be a set of orthogonal polynomials. There exist scalars $\left(a_{n}\right)_{n},\left(b_{n}\right)_{n}$, and $\left(c_{n}\right)_{n}$ such that

$$
P_{n+1}=\left(a_{n} X+b_{n}\right) P_{n}+c_{n} P_{n-1} ; \forall n \in \mathbb{N}^{*}
$$

More precisely,

$$
a_{n}=\frac{k_{n+1}}{k_{n}}, b_{n}=-a_{n} \frac{\left\langle X P_{n}, P_{n}\right\rangle}{\left\|P_{n}\right\|^{2}} \text { and } c_{n}=-\frac{a_{n}}{a_{n-1}} \frac{\left\langle P_{n}, P_{n}\right\rangle}{\left\langle P_{n-1}, P_{n-1}\right\rangle}
$$

where k_{n} is the coefficient of X^{n} in $P_{n}(X)$.
Proof. Without loss of generality, we can assume that $\left(P_{i}\right)_{t \geq 0}$ is orthonormal. Let $\mathcal{B}=\left(X P_{n}, P_{n}, P_{n-1}, \ldots, P_{0}\right)$ be a set of staggered degree polynomials in $\mathbb{R}_{n+1}[X]$. So, it is linearly independent in $\mathbb{R}_{n+1}[X]$.

Consequently, it forms a basis of $\mathbb{R}_{n+1}[X]$. Consequently, there exist then scalars a_{n}, b_{n}, c_{n} and $\alpha_{i}, 0 \leq i \leq n-2$ such that

$$
P_{n+1}=a_{n} X P_{n}+b_{n} P_{n}+c_{n} P_{n-1}+\sum_{t=0}^{n-2} \alpha_{i} P_{t} .
$$

Next, using the orthogonality property of $\left(P_{t}\right)_{t \geq 0}$, we obtain

$$
\left\langle P_{n+1}, P_{t}\right\rangle=a_{n}\left\langle X P_{n}, P_{i}\right\rangle+\alpha_{i}\left\|P_{t}\right\|^{2}=0, \forall 0 \leq i \leq n-2 .
$$

On the other hand,

$$
\left\langle X P_{n}, P_{t}\right\rangle=\left\langle P_{n}, X P_{t}\right\rangle .
$$

Since $X P_{t} \in \mathbb{R}_{n-1}[X]$, we obtain

$$
\left\langle X P_{n}, P_{l}\right\rangle=0
$$

Consequently,

$$
\alpha_{i}=0, \forall 0 \leq i \leq n-2
$$

Hence,

$$
\begin{equation*}
P_{n+1}=\left(a_{n} X+b_{n}\right) P_{n}+c_{n} P_{n-1} . \tag{2.3}
\end{equation*}
$$

We now evaluate the coefficlents a_{n}, b_{n}, and c_{n}. Recall that P_{n} can be written as

$$
P_{n}(X)=k_{n} X^{n}+k_{n-1} X^{n-1}+\cdots+k_{0} .
$$

By identification of the higher degree monomials in (2.3), we obtain

$$
a_{n}=\frac{k_{n+1}}{k_{n}}
$$

Next, the inner product of (2.3) with P_{n} gives

$$
\left\langle P_{n+1}, P_{n}\right\rangle=a_{n}\left\langle X P_{n}, P_{n}\right\rangle+b_{n}\left\langle P_{n}, P_{n}\right\rangle+c_{n}\left\langle P_{n-1}, P_{n}\right\rangle .
$$

Using the orthogonality of the set, we get

$$
a_{n}\left\langle X P_{n}, P_{n}\right\rangle+b_{n}\left\langle P_{n}, P_{n}\right\rangle=0 .
$$

Hence,

$$
b_{n}=-a_{n} \frac{\left\langle X P_{n}, P_{n}\right\rangle}{\left\langle P_{n}, P_{n}\right\rangle} .
$$

Next, using the inner product with P_{n-1} and using again the orthogonality of the set, we obtain

$$
a_{n}\left\langle X P_{n}, P_{n-1}\right\rangle+c_{n}\left\langle P_{n-1}, P_{n-1}\right\rangle=0 .
$$

Hence,

$$
c_{n}=-a_{n} \frac{\left\langle X P_{n}, P_{n-1}\right\rangle}{\left\langle P_{n-1}, P_{n-1}\right\rangle}=-a_{n} \frac{\left\langle P_{n}, X P_{n-1}\right\rangle}{\left\langle P_{n-1}, P_{n-1}\right\rangle} .
$$

Next, denote $X P_{n-1}=\sum_{t=0}^{n} \alpha_{t} P_{t}$ as the decomposition of $X P_{n-1}$ in the basis of polynomials $\left(P_{t}\right)_{0 \leq 1 \leq n}$. By observing the higher degree monomials in the decomposition, we get

$$
X k_{n-1} X^{n-1}=\alpha_{n} k_{n} X^{n} \Leftrightarrow \alpha_{n}=\frac{k_{n-1}}{k_{n}}=\frac{1}{a_{n-1}} .
$$

On the other hand,

$$
\left\langle X P_{n}, P_{n-1}\right\rangle=\left\langle P_{n}, X P_{n-1}\right\rangle
$$

$$
\begin{gathered}
=\alpha_{n}\left\langle P_{n}, P_{n}\right\rangle+\sum_{i=0}^{n-1} \alpha_{i}\left\langle P_{n}, P_{t}\right\rangle \\
=\alpha_{n}\left\langle P_{n}, P_{n}\right\rangle+\sum_{i=0}^{n-1} \alpha_{i} 0 \\
=\alpha_{n}\left\langle P_{n}, P_{n}\right\rangle
\end{gathered}
$$

Consequently,

$$
c_{n}=-a_{n} \frac{\left\langle P_{n}, X P_{n-1}\right\rangle}{\left\langle P_{n-1}, P_{n-1}\right\rangle}=-a_{n} \frac{\alpha_{n}\left\langle P_{n}, P_{n}\right\rangle}{\left\langle P_{n-1}, P_{n-1}\right\rangle}=-\frac{a_{n}}{a_{n-1}} \frac{\left\langle P_{n}, P_{n}\right\rangle}{\left\langle P_{n-1}, P_{n-1}\right\rangle}
$$

Hence,

$$
P_{n+1}=a_{n} X P_{n}+b_{n} P_{n}+c_{n} P_{n-1},
$$

where

$$
a_{n}=\frac{k_{n+1}}{k_{n}}, b_{n}=-a_{n} \frac{\left\langle X P_{n}, P_{n}\right\rangle}{\left\langle P_{n}, P_{n}\right\rangle} \text { and } c_{n}=-\frac{a_{n}}{a_{n-1}} \frac{\left\langle P_{n}, P_{n}\right\rangle}{\left\langle P_{n-1}, P_{n-1}\right\rangle} .
$$

In the case where $\left(P_{0}, \ldots, P_{n}\right)$ is orthonormal, we obtain

$$
a_{n}=\frac{k_{n+1}}{k_{n}}, b_{n}=-a_{n}\left\langle X P_{n}, P_{n}\right\rangle \text { and } c_{n}=-\frac{a_{n}}{a_{n-1}} .
$$

Theorem (1.2.2): (Favard's theorem).

Let $\left\{c_{n}\right\}_{n=0}^{\infty}$ and $\left\{\lambda_{n}\right\}_{n=0}^{\infty}$ be sequences in \mathbb{R}, and $\left\{P_{n}\right\}_{n=0}^{\infty}$, a set of polynomials satisfying

$$
P_{n}(x)=\left(x-c_{n}\right) P_{n-1}(x)-\lambda_{n} P_{n-2}(x), \forall n \in \mathbb{N}^{*},
$$

where $P_{0}(x)=1$ and $P_{1}(x)=x-c_{1}$. Then, there exists a unique linear form φ on $\mathbb{R}_{n}(X)$ for which $\varphi\left(P_{k} P_{m}\right)=0$ whenever $k \neq m$.
Proof. We proceed by steps.
Step 1. We claim that Degree $\left(P_{n}\right)=n, \forall n \in \mathbb{N}$. Indeed, for $n=$ $0, P_{0}(x)=1$. Hence, Degree $\left(P_{0}\right)=0$. For $n=1, P_{1}(x)=x-c$, so it is of degree 1 . Assume next that $\operatorname{Degree}\left(P_{n}\right)=n$ and prove the same for P_{n+1}. The three-level relation above ylelds that

$$
\operatorname{Degree}\left(P_{n+1}\right)=\operatorname{Degree}\left(\left(x-c_{n+1}\right) P_{n}(x)\right)=1+n
$$

Hence, we proved by recurrence on n that $\operatorname{Degree}\left(P_{n}\right)=n, \forall n \in \mathbb{N}$.
Step 2. Consider the space $\mathbb{R}_{n}[X]$ of polynomials on \mathbb{R} with degrees at most n. It results from Step 1 that the set $\mathcal{B}_{n}=\left(P_{0}, \ldots, P_{n}\right)$, satisfying that the three-level relation is a degree-straggled set of polynomials.

Henceforth, it is a basis of $\mathbb{R}_{n}[X]$. Let $\varphi: \mathbb{R}_{n}[X] \rightarrow \mathbb{R}$ be the continuous linear form defined on such a basis by

$$
\varphi\left(P_{0}\right)=1, \varphi\left(P_{1}\right)=\cdots=\varphi\left(P_{n}\right)=0
$$

It holds from the Riez-Fréchet theorem that there exists a function ω such that

$$
\varphi(P)=\langle P, \omega\rangle=\int_{\mathbb{R}} P(x) \omega(x) d x
$$

We now prove that

$$
\varphi\left(P_{k} P_{m}\right)=0, \forall 0 \leq k \neq m \leq n .
$$

For $k<m$, denote $P_{k}(x)=\sum_{s=0}^{k} \alpha_{s}(k) x^{s}$. We get $\varphi\left(P_{k} P_{m}\right)=\sum_{s=0}^{k} \alpha_{S}(k) \varphi\left(x^{s} P_{m}\right)$.

On the other hand, $x^{s} P_{m}$ can be written as

$$
x^{s} P_{m}=\sum_{t=m-s}^{m+s} d_{i} P_{t}
$$

Hence,

$$
\varphi\left(x^{s} P_{m}\right)=\sum_{i=m-s}^{m+s} d_{i} \varphi\left(P_{t}\right)=0
$$

Example (1.2.1) We set here some examples of induction relations for the most known orthogonal polynomials.
(1) Legendre polynomials

$$
P_{n+1}=\frac{2 n+1}{n+1} X P_{n}-\frac{n}{n+1} P_{n-1}, \forall n \in \mathbb{N}^{*}
$$

(2) Chebyshev polynomials

$$
P_{n+1}=2 X P_{n}-P_{n-1}, \forall n \in \mathbb{N}^{*} .
$$

(3) Hermite polynomials

$$
P_{n+1}=2 X P_{n}-2 n P_{n-1}, \forall n \in \mathbb{N}^{*} .
$$

1.3 Orthogonal polynomials via Rodrigues rule

A literature review of orthogonal polynomials reveals that there are many methods to obtain such polynomials. One is explicit and based on the Rodrigues rule, which applies derivation. Let

$$
P_{n}(x)=\frac{1}{k_{n} \omega(x)} \frac{d^{n}}{d x^{n}}\left[\omega(x) S^{n}\right],
$$

where S is a polynomial in x, ω is a weight function, and k_{n} is a constant. We have precisely the following result.

Theorem 1.3.1

Let $I=[a, b]$ and ω is a weight function on I and $\left(\phi_{n}\right)_{n \in \mathbb{N}}$ be a set of real functions on I satisfying
(1) ϕ_{n} is C^{n} on $] a, b[$ for all n.
(2) $\phi_{n}^{(k)}\left(a^{+}\right)=\phi_{n}^{(k)}\left(b^{-}\right)=0$ for all $k, 0 \leq k \leq n-1$.
(3) $T_{n}=\frac{1}{k_{n} \omega}\left(\omega \phi_{n}\right)^{(n)}$ is a polynomial of degree $n,\left(k_{n}\right.$ is a normalization constant). Then, $\left(T_{n}\right)_{n \in \mathbb{N}}$ is orthogonal. The converse is true iff ω is C^{∞}.

Proof. It suffices to prove the orthogonality. For $n<m$, we have

$$
\begin{aligned}
\left\langle T_{n}, T_{m}\right\rangle & =\int_{a}^{b} T_{n}(x) T_{m}(x) \omega(x) d x \\
& =\int_{a}^{b} T_{n}(x) \frac{1}{k_{m} \omega(x)}\left(\omega \phi_{m}\right)^{(m)} \omega(x) d x \\
& =\int_{a}^{b} T_{n}(x) \frac{1}{k_{m}}\left(\omega \phi_{m}\right)^{(m)} d x \\
& =(-1)^{m} \int_{a}^{b}\left(T_{n}(x)\right)^{(m)} \frac{\omega \phi_{m}}{k_{m}} d x \\
& =0
\end{aligned}
$$

The fourth equality is a consequence of Hypothesis (2) and the integration by the parts rule. The last equality is a consequence of Hypothesis (3).

1.4 Orthogonal polynomials via differential equations

A large class of orthogonal polynomials is obtained from first-order linear differential equations of the type

$$
a(x) y^{\prime \prime}+b(x) y^{\prime}-\lambda_{n} y=0
$$

Whe0re a is a polynomial of degree 2 , and b is a polynomial of degree 1 , where both are independent of the integer parameter n, and finally, λ_{n} are scalars. y is the unknown function. By introducing the operator $T: \mathbb{R}[X] \rightarrow \mathbb{R}[X]$ such that $T(y)=a y^{\prime \prime}+b y^{\prime}$, the solution y appears as an eigenvector of T associated with the eigenvalue λ_{n}. We introduce next a resolvent function $\omega>0$, which permits us to express the operator T on the form $T(y)=\frac{1}{w}\left(a w y^{\prime}\right)^{\prime}$. The equality $T(y)=a y^{\prime \prime}+a^{\prime} y^{\prime}+\frac{a w^{\prime}}{w} y^{\prime}$ shows that ω is a solution of the differential equation $a \omega^{\prime}+\left(a^{\prime}-b\right) \omega=$ 0 . So, it is of the form $\omega=e^{A}$, where A is a primitive of $\frac{b-a^{\prime}}{a}$. Recall now that

$$
\begin{aligned}
\langle T(f), g\rangle= & \int_{I}\left(a \omega f^{\prime}\right)^{\prime}(x) g(x) \omega(x) d x \\
& =\left[a \omega f^{\prime} g\right]_{I}-\int_{I} a(x) f^{\prime}(x) g^{\prime}(x) \omega(x) d x
\end{aligned}
$$

Iff the weight ω vanishes on the frontler of the integration interval I, we obtain

$$
\langle T(f), g\rangle=-\int_{I} a(x) f^{\prime}(x) g^{\prime}(x) \omega(x) d x=\langle f, T(g)\rangle
$$

This means that the operator T is symmetric.
Denote for the next $T_{n}: \mathbb{R}_{n}[X] \rightarrow \mathbb{R}_{n}[X]$ the restriction of T on $\mathbb{R}_{n}[X]$. It is straightforward that $\mathbb{R}_{n}[X]$ is invariant under the action of T_{n} since the degrees of a
and b are less than 2 and 1 , respectively. So, we can arrange the pairs (λ, y) into a sequence $\left(\lambda_{k}, y_{k}\right)$, where we re-obtain the eigenpairs of the operator T_{n} for $k=0, \ldots, n$. Next, observing that $a(x)=a_{2} X^{2}+a_{1} X+$ a_{0} and $b(x)=b_{1} X+b_{0}$, it results that T_{n} is an endomorphism on $\mathbb{R}_{n}[X]$. Thus, there exists a T-eigenvector's orthonormal basis of such a space. In particular, there exists at least an elgenvector P_{n} of degree n, which may be assumed to be unitary and satisfying

$$
a P_{n}^{\prime \prime}+b P_{n}^{\prime}=\lambda_{n} P_{n}
$$

This means that for $n \neq m$, we obtain $\lambda_{n} \neq \lambda_{m}$ and thus the polynomials P_{n} are orthogonal.

Chapter Two

Some Orthogonal Polynomials

2.1 Some classical orthogonal polynomials

In the previous chapter, we reviewed the three most well-known schemes to obtain orthogonal polynomials. The first one is based on the explicit Rodrigues derivation rule, which states that the nth element of the set of orthogonal polynomials, which is also of degree n, is obtained by

$$
P_{n}(x)=\frac{1}{k_{n} \omega(x)} \frac{d^{n}}{d x^{n}}\left[\omega(x) S^{n}\right],
$$

where S is a suitable polynomial in x.
The next method is based on an induction rule eventually necessitates that the first and the second elements of the desired set of orthogonal polynomials be known. It states that

$$
\begin{equation*}
P_{n+1}=\left(a_{n} X+B_{n}\right) P_{n}+c_{n} P_{n-1}, \tag{2.1}
\end{equation*}
$$

where a_{n}, b_{n}, and c_{n} are known scalars.
Finally, the last scheme consists of introducing orthogonal polynomials as the solutions of ordinary differential equations (ODEs) of the form

$$
a(x) y^{\prime \prime}+b(x) y-\lambda_{n} y=0
$$

where a is a 2 -degree polynomial and b is a polynomial with degree 1 and λ_{n} are scalars. The idea consists of developing polynomial solutions of the ODEs. According to the coefficlents of each equation, we obtain the desired class of polynomials, such as Legendre and Laguerre. In this section, we propose to revisit some classical classes of orthogonal polynomials and show their construction with the three schemes.

2.1.1 Legendre polynomials

From Rodrigues rule:
Legendre polynomials consist of polynomials defined on the orthogonality interval $I=[-1,1]$ relative to the weight functlon $\omega \equiv 1$, the polynomial $S(x)=\left(x^{2}-1\right)$, and the constant $k_{n}=2^{n} n$!. The nth Legendre polynomial, usually denoted in the literature by L_{n}, is obtained by

$$
L_{n}(x)=\frac{d^{n}}{d x^{n}}\left[\frac{\left(x^{2}-1\right)^{n}}{2^{n} n!}\right]
$$

Using the Leibniz rule of derivation, $L_{n}(x)$ can be explicitly computed.
We have
$L_{n}(x)=\frac{1}{2^{n} n!} \sum_{k=0}^{n} C_{n}^{k}\left((x-1)^{n}\right)^{(k)}\left((x+1)^{n}\right)^{(n-k)}=$
$\frac{1}{2^{n}} \sum_{k=0}^{n}\left(C_{n}^{k}\right)^{2}(x-1)^{n-k}(x+1)^{k}$
For example,

$$
\begin{aligned}
L_{0}(x) & =1, & L_{1}(x) & =x \\
L_{2}(x) & =\frac{1}{2}\left(3 x^{2}-1\right), & L_{3}(x) & =\frac{1}{2}\left(5 x^{3}-3 x\right) \\
L_{4}(x) & =\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right), & L_{5}(x) & =\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right)
\end{aligned}
$$

From the induction rule
Legendre polynomials can also be introduced via the induction rule

$$
L_{n+1}=\frac{2 n+1}{n+1} X L_{n}-\frac{n}{n+1} L_{n-1}, \forall n \in \mathbb{N}^{*}
$$

with initial data $L_{0}(x)=1$ and $L_{1}(x)=x$. It ylelds, for $n=1$, that

$$
L_{2}(x)=\frac{3}{2} x L_{1}(x)-\frac{1}{2} L_{0}(x)=\frac{3}{2} x^{2}-\frac{1}{2} .
$$

For $n=2$, it ylelds that

$$
L_{3}(x)=\frac{5}{3} x L_{2}(x)-\frac{2}{3} L_{1}(x)=\frac{5}{3} x\left(\frac{3}{2} x^{2}-\frac{1}{2}\right)-\frac{2}{3} x=\frac{5}{2} x^{3}-\frac{3}{2} x
$$

Applying the same procedure, we obtain

$$
L_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right), \text { and } L_{5}(x)=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right) .
$$

From ODEs

Legendre polynomials are obtained as the polynomial solutions of the following ODE:

$$
\begin{align*}
&\left(1-\chi^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0, x \in I \\
&=[-1,1] . \tag{2.2}
\end{align*}
$$

Using the notations of Section 2.2, this means that $a(x)=1-\chi^{2}, b(x)=-2 \chi$ and $\lambda_{n}=-n(n+1)$. In the sense of the linear operator T, the polynomials L_{n} can be introduced vla the operator

$$
T(y)=\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}=\left(\left(1-\chi^{2}\right) y^{\prime}\right)^{\prime},
$$

which corresponds to the weight function $\omega(x)=1$ and $a(x) \omega(x)=$ $1-\chi^{2}$. Note that $a \omega$ vanishes at the frontiers ± 1 of the orthogonality interval I. Furthermore, in terms of elgenvalues as in equation (2.7), If we suppose that the same eigenvalue λ_{n} is assoclated with at least two elgenvectors P_{n} and P_{m}, we obtain $(n-m)(n+m-1)=0$, which has no integer solutions except $n=m$. This confirms that the eigenvalues and elgenvectors are one to one, which means that the elgenvectors (polynomials) are orthogonal. Figure 2.1 lllustrates the graphs of the first Legendre polynomials.

For clarity and convenience, we will develop the polynomial solutions.
So, denote $P(x)=a_{p} x^{p}+a_{p-1} x^{p-1}+\cdots+a_{1} x+a_{0}$ as a polynomial solution of degree p of equation (2.8). We obtain the following system:

$$
\left\{\begin{array}{c}
2 a_{2}+n(n+1) a_{0}=0 \\
6 a_{3}+\left(n^{2}+n-2\right) a_{1}=0 \\
{\left[(n(n+1)-(p-1)(p+1)] a_{p-1}=0\right.} \\
{\left[(n(n+1)-p(p+1)] a_{p}=0,\right.} \\
(k+1)(k+2) a_{k+2}\left[(n(n+1)-k(k+1)] a_{k}=0,2 \leq k \leq p-2\right.
\end{array}\right.
$$

Hence, $p=n$ and

$$
\left\{\begin{array}{c}
2 a_{2}+n(n+1) a_{0}=0, \\
6 a_{3}+\left(n^{2}+n-2\right) a_{1}=0, \\
{\left[(n(n+1)-n(n-1)] a_{p-1}=0,\right.} \\
(k+1)(k+2) a_{k+2}\left[(n(n+1)-k(k+1)] a_{k}=0,2 \leq k \leq p-2 .\right.
\end{array}\right.
$$

For example, for $n=0$, we obtain

$$
P(x)=a_{0}
$$

For $n=1$, we get

$$
P(x)=a_{1} \chi
$$

For $n=2$, we obtain

$$
P(x)=-a_{0}\left(3 x^{2}-1\right)
$$

For $n=3$,

$$
P(x)=-a_{1}\left(\frac{5}{3} x^{3}-x\right)
$$

For $n=4$, we have

$$
P(x)=-a_{0}\left(\frac{35}{3} x^{4}-10 x^{2}+1\right)
$$

Fig. 2.1: Legendre polynomlals

Next, for $n=5$, we obtain

$$
P(x)=a_{1}\left(\frac{21}{5} \chi^{5}-\frac{14}{3} x^{3}+x\right)
$$

Now, using the orthogonality of these polynomials on $[-1,1]$, we obtain the same polynomials.

One important question is how to choose the polynomial S in Rodrigues rule to be equivalent with the same outputs of the recurrence rule and the ODE scheme.

Firstly, the degree of S is fixed in an obvlous way as $\operatorname{deg} P_{n}=n, \forall n$.
Hence, for example, in the Legendre case, S should be of degree 2 , that is,

$$
S(x)=a+b x+c x^{2}, c \neq 0 .
$$

Thus,

$$
L_{n}(x)=e_{n} \frac{d^{n}}{d x^{n}}\left(S^{n}(x)\right), e_{n}=\frac{1}{2^{n} n!} .
$$

Consequently, from the induction rule of Legendre polynomials we obtain, for $n=2$,

$$
\begin{aligned}
L_{2} & =\frac{3}{2} \chi L_{1}-\frac{1}{2} L_{0} \\
e_{2}\left(S^{2}(x)\right)^{\prime \prime} & =\frac{3}{2} e_{1} \chi\left(S^{\prime}(x)\right)-\frac{1}{2} e_{0}
\end{aligned}
$$

As a result,

$$
\left\{\begin{array}{l}
b^{2}+2 a c+2=0 \\
6 b c-3 b=0 \\
6 c^{2}-6 c=0
\end{array}\right.
$$

Hence, we obtain

$$
c=1, b=0, a=-1
$$

Or equivalently,

$$
S(x)=x^{2}-1
$$

2.1.2 Laguerre polynomials

From the Rodrigues rule:

These polynomials are obtained via the Rodrigues rule with $\omega(x)=$ $e^{-x}, S(x)=x$ and the constant $k_{n}=n!$ by

$$
\mathcal{L}_{n}(x)=\frac{e^{x}}{n!} \frac{d^{n}}{d x^{n}}\left(e^{-x} \chi^{n}\right)=\sum_{k=0}^{n} \frac{C_{n}^{k}}{k!}(-\chi)^{k}
$$

The first polynomials are then
$\mathcal{L}_{0}(x)=1, \mathcal{L}_{1}(x)=1-x$,
$\mathcal{L}_{2}(x)=\frac{1}{2}\left(x^{2}-4 x+2\right), \mathcal{L}_{3}(x)=\frac{1}{6}\left(-x^{3}+9 x^{2}-18 x+6\right)$,
$\mathcal{L}_{4}(x)=\frac{1}{24}\left(x^{4}-16 x^{3}+72 x^{2}-96 x+24\right)$,
$\mathcal{L}_{5}(x)=\frac{1}{120}\left(-x^{5}+25 x^{4}-200 x^{3}+600 x^{2}-600 x+120\right)$.
It holds clearly from simple calculus that these polynomials are
orthogonal in the interval [$0, \infty$ [relative to the weight function $\omega(x)=$ e^{-x}.

From the induction rule
Laguerre polynomials are solutions of the following recurrent relation:

$$
(n+1) \mathcal{L}_{n+1}(x)+(x-2 n-1) \mathcal{L}_{n}(x)+n \mathcal{L}_{n-1}(x)=0
$$

with the first and second elements $\mathcal{L}_{0}(x)=1$ and $\mathcal{L}_{1}(x)=1-x$. For $n=1$, we get

$$
2 \mathcal{L}_{2}(x)+(x-3) \mathcal{L}_{1}(x)+\mathcal{L}_{0}(x)=0
$$

which implies that

$$
\mathcal{L}_{2}(x)=\frac{1}{2}(3-x)(1-x)+\frac{1}{2}=\frac{1}{2}\left(x^{2}-4 x+2\right)
$$

Next, for $n=2$, we obtain

$$
3 \mathcal{L}_{3}(x)+(x-5) \mathcal{L}_{2}(x)+2 \mathcal{L}_{1}(x)=0
$$

which means that

$$
\mathcal{L}_{3}(x)=\frac{1}{6}\left(-x^{3}+9 x^{2}-18 x+6\right)
$$

Similarly, we can obtain

$$
\mathcal{L}_{4}(x)=\frac{1}{24}\left(-x^{4}-16 \chi^{3}+72 x^{2}-96 x+24\right)
$$

and

$$
\mathcal{L}_{5}(x)=\frac{1}{120}\left(-x^{5}+25 x^{4}-200 x^{3}+600 x^{2}-600 x+120\right) .
$$

From ODEs
To apply the ODE procedure, we set $I=] 0, \infty$ [as the orthogonality interval, $a(x)=x, b(x)=1-x, \omega(x)=e^{-x}$ and consequently, the operator T will be $T(y)=x y^{\prime \prime}-(1-x) y^{\prime}$. We observe immediately that $a(x) \omega(x)=x e^{-x}$ is null at 0 and has the limit 0 at $+\infty$.
Furthermore, $P(x) \omega(x)$ is integrable on I for all polynomial P. In the present case, equation (2.7) becomes $(n+m)(n-m)=0$ and the eigenvalues are $\lambda_{n}=-n$. The assoclated ODE is

$$
x y^{\prime \prime}-(1-x) y^{\prime}+n y=0
$$

It is straightforward that for all n, the polynomial \mathcal{L}_{n} is a solution of this differential equation. Figure 2.2 illustrates the graphs of some examples of Laguerre polynomials.

2.1.3 Hermite polynomials

From Rodrigues rule:
Hermite polynomials are related to the orthogonality interval $I=\mathbb{R}$ with the weight function $\omega(x)=e^{-x^{2}}$. Denote H_{n} as the nth element, 1.e., a Hermite polynomial of degree $n . H_{n}$ is explicitly expressed via Rodrigues rule as follows:

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right)
$$

As examples, we get

$$
\begin{array}{ll}
H_{0}(x)=1, H_{1}(x)=2 x, & H_{2}(x)=4 x^{2}-2 \\
H_{3}(x)=8 x^{3}-12 x, \text { and } & H_{4}(x)=16 x^{4}-48 x^{2}+12
\end{array}
$$

From the induction rule
Hermite polynomials H_{n} can be obtained by means of the induction rule

$$
H_{n+1}=2 X H_{n}-2 n H_{n-1}, \forall n \in \mathbb{N}^{*},
$$

Fig. 2.2: Laguerre polynomlals.
with the initial data $H_{0}(X)=1$ and $H_{1}(X)=2 X$. So, for $n=1,2,3,4,5$ we obtain as examples

$$
\begin{aligned}
& H_{2}(X)=4 X^{2}-2, H_{3}(X)=8 X^{3}-12 X, H_{4}(X)=16 X^{4}-48 X^{2}+12 \\
& H_{5}(X)=X^{5}-10 X^{3}+15 X, H_{6}(X)=X^{6}-15 X^{4}+45 X^{2}-15
\end{aligned}
$$

From
ODEs
Hermite polynomials are also solutions of a second-order ODE in the interval $I=\mathbb{R}$. this means that $a(x)=1, b(x)=-2 x$, and $\omega(x)=e^{-x^{2}}$ as a weight function. It is immediate that $a(x) \omega(x)=e^{-x^{2}}$, which has 0 limits at the boundaries of the interval I. Furthermore, $P(x) \omega(x)$ is integrable on I for all polynomials P. By means of the eigenvalues of the linear operator T, Hermite polynomials are eigenvectors of $T(y)=y^{\prime \prime}-$ $2 x y^{\prime}$ assoclated with eigenvalues $\lambda_{n}=-2 n$. The corresponding ODE is

$$
y^{\prime \prime}-2 x y^{\prime}+2 n y=0
$$

Some examples of Hermite polynomials are illustrated in figure 2.3.

Fig. 2.3: Hermite polynomlals.

2.1.4 Chebyshev polynomials

From Rodrigues rule
Chebyshev polynomials are related to the orthogonality interval $I=$] 1,1 [and the weight function $\omega(x)=\left(1-\chi^{2}\right)^{-1 / 2}$. Denoted usually by T_{n} for the Chebyshev polynomial of degree n, these are explicitly expressed via the Rodrigues rule as

$$
T_{n}(x)=\frac{(-1)^{n}\left(1-\chi^{2}\right)^{\frac{1}{2}} \sqrt{\pi}}{2^{n} \Gamma\left(n+\frac{1}{2}\right)} \frac{d^{n}}{d x^{n}}\left(\left(1-x^{2}\right)^{n-\frac{1}{2}}\right),
$$

where $\Gamma(x)=\int_{0}^{+\infty} t^{x-1} e^{-t} d t$ is Euler's well-known functlon. It is immediately seen (by recurrence for example) that

$$
\Gamma\left(n+\frac{1}{2}\right)=\frac{(2 n)!\sqrt{\pi}}{2^{2 n} n!}, \forall n \in \mathbb{N},
$$

and hence, the first Chebyshev polynomials can be obtained as

$$
\begin{aligned}
& T_{0}(x)=1, T_{1}(x)=x, T_{2}(x)=2 x^{2}-1 \\
& T_{3}(x)=4 x^{3}-3 x, T_{4}(x)=8 x^{4}-8 x^{2}+1, T_{5}(x)=16 x^{5}-20 x^{3}+5 x .
\end{aligned}
$$

From the induction rule
Chebyshev polynomials are solutions of the induction formula

$$
T_{n+1}=2 x T_{n}-T_{n-1}, \forall n \in \mathbb{N}^{*},
$$

with initlal data, $T_{0}(x)=1$ and $T_{1}(x)=x$. Let, $T_{n}(x)=\sum_{k=0}^{n} a_{k}^{n} x^{k}$, then
$\sum_{k=0}^{n+1} a_{k}^{n+1} \chi^{k}=2 \chi \sum_{k=0}^{n} a_{k}^{n} \chi^{k}-\sum_{k=0}^{n-1} a_{k}^{n-1} \chi^{k}$
$\sum_{k=0}^{n+1} a_{k}^{n+1} x^{k}+a_{n+1}^{n+1} x^{n+1}+a_{0}^{n+1}=\sum_{k=0}^{n} 2 a_{k}^{n} x^{k+1}-\sum_{k=0}^{n-1} a_{k}^{n-1} x^{k}$
$=\sum_{k=1}^{n+1} 2 a_{k-1}^{n} x^{k}-\sum_{k=0}^{n-1} a_{k}^{n-1} x^{k}$
$\sum_{k=1}^{n-1}\left(a_{k}^{n+1}-2 a_{k-1}^{n}+a_{k}^{n-1}\right) x^{k}+a_{0}^{n+1}+a_{0}^{n-1}$
$+\left(a_{n}^{n+1}-2 a_{n-1}^{n}\right) x^{n}+\left(a_{n+1}^{n+1}-2 a_{n}^{n}\right) x^{n+1}=0$.
We obtain the following system:

$$
\left\{\begin{array}{l}
a_{0}^{n+1}+a_{0}^{n-1}=0 \\
a_{n}^{n+1}=2 a_{n-1}^{n} . \\
a_{n+1}^{n+1}=2 a_{n}^{n} \\
a_{k}^{n+1}=2 a_{k-1}^{n}-a_{k}^{n-1}, 1 \leq k \leq n-1 .
\end{array}\right.
$$

We have

$$
T_{0}(x)=1 \Leftrightarrow a_{0}^{0}=1
$$

and

$$
T_{1}(\chi)=\chi \Leftrightarrow a_{0}^{1}=0, a_{1}^{1}=1 .
$$

Hence,

$$
T_{2}(\chi)=a_{2}^{2} \chi^{2}+a_{1}^{2} \chi+a_{0}^{2}
$$

From the above system, we obtain

$$
\left\{\begin{array}{l}
a_{0}^{2}=-a_{0}^{0}=-1 \\
a_{1}^{2}=2 a_{0}^{1}=0 \\
a_{2}^{2}=2 a_{1}^{1}-a_{2}^{0}=2
\end{array}\right.
$$

which means that

$$
T_{2}(\chi)=2 \chi^{2}-1
$$

Now, replacing n by 2 in the system we obtain

$$
\left\{\begin{array}{l}
a_{0}^{3}=-a_{0}^{1}=0 \\
a_{2}^{3}=2 a_{1}^{2}=0 \\
a_{1}^{3}=2 a_{0}^{2}-a_{1}^{1}=-3 \\
a_{3}^{3}=2 a_{2}^{2}-a_{3}^{1}=4
\end{array}\right.
$$

Therefore,

$$
T_{3}(x)=4 x^{3}-3 x
$$

Next, for $n=3$, the system becomes

$$
\left\{\begin{array}{l}
a_{0}^{4}=-a_{0}^{2}=1 \\
a_{3}^{4}=2 a_{2}^{3}=0 . \\
a_{1}^{4}=2 a_{0}^{3}-a_{1}^{2}=0 \\
a_{2}^{4}=2 a_{1}^{3}-a_{2}^{2}=-8 \\
a_{4}^{4}=2 a_{3}^{3}-a_{4}^{2}=8
\end{array}\right.
$$

Thus,

$$
T_{4}(x)=8 x^{4}-8 x^{2}+1
$$

Now, by replacing n with 4 , the system ylelds

$$
\left\{\begin{array}{l}
a_{0}^{5}=-a_{0}^{3}=0 \\
a_{4}^{5}=2 a_{3}^{4}=0 \\
a_{1}^{5}=2 a_{0}^{4}-a_{1}^{3}=5 \\
a_{2}^{5}=2 a_{1}^{4}-a_{2}^{3}=0 \\
a_{3}^{5}=2 a_{2}^{4}-a_{3}^{3}=-20 \\
a_{5}^{5}=2 a_{4}^{4}-a_{5}^{3}=16
\end{array}\right.
$$

Hence,

$$
T_{5}(x)=16 x^{5}-20 x^{3}+5 x
$$

So, we obtain the same Techebychev polynomials as for the Rodrigues and ODE rules.

From ODEs
We set $I=]-1,1\left[, a(x)=1-x^{2}, b(x)=-x\right.$ and $\omega(x)=(1-$ $\left.x^{2}\right)^{-1 / 2}$. The linear operator T is then given by

$$
T(y)=\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}
$$

It is straightforward that $a(x) \omega(x)=\sqrt{1-x^{2}}$ vanishes at ± 1 and the eigenvalues $\lambda_{n}=-n^{2}$ give rise to elgenvectors (polynomials), $T_{n} \mathrm{~s}$. This ylelds that the $T_{n} \mathrm{~s}$ are the corresponding solutions of the ODE

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0
$$

Remark 24. Chebyshev polynomials T_{n} can be explicitly defined on [$-1,1$] by

$$
T_{n}(x)=\cos (n \operatorname{Arccos}(x)) .
$$

Indeed, by considering Molvre's rule $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+$ $i \sin n \theta$, and by setting for $\theta \in[0, \pi], x=\cos \theta$, we obtain $\sin \theta \sqrt{1-x^{2}}$. This implies that

$$
\begin{aligned}
\cos (n \theta)= & \cos (n \arccos (x))=\sum_{m=0}^{\left[\frac{n}{2}\right]} C_{n}^{2 m}(-1)^{m} \chi^{n-2 m}\left(1-x^{2}\right)^{m}, n \\
& \in \mathbb{N} .
\end{aligned}
$$

Next, we observe that

$$
\cos ((n+1) \theta)+\cos ((n-1) \theta)=2 \cos \theta \cos (n \theta)
$$

Henceforth, we obtain explicit $T_{n} \mathrm{~s}$ as above. Figure 2.4 illustrates the graphs of the first Chebyshev polynomials.

Remark 25. It holds that a second kind of Chebyshev polynomial already exists. It is defined by means of the Rodrigues rule as

$$
U_{n}(x)=\frac{(-1)^{n}(n+1) \sqrt{\pi}}{2^{n+1} \Gamma\left(n+\frac{3}{2}\right)\left(1-x^{2}\right)^{\frac{1}{2}}} \frac{d^{n}}{d x^{n}}\left(\left(1-x^{2}\right)^{n+\frac{1}{2}}\right), x \in[-1,1]
$$

or by means of trigonometric functions as

$$
U_{n}(\cos \theta)=\frac{\sin (n+1) \theta}{\sin \theta}, \forall n \in \mathbb{N}^{*} .
$$

These polynomials satisfy the same induction rule as the previous but with different initial data $U_{0}(x)=1$ and $U_{1}(x)=2 x$. Finally, similar to other classes of orthogonal polynomials, they satisfy the ODE

$$
\forall x \in \mathbb{R},\left(1-x^{2}\right) U_{n}^{\prime \prime}(x)-3 x U_{n}^{\prime}(x)+n(n+2) U_{n}(x)=0
$$

2.2.5 Gegenbauer polynomials

From Rodrigues rule:
Gegenbauer polynomials, also called ultraspherical polynomials, are defined relative to the weight function $\omega(x)=\left(1-x^{2}\right)^{p-1 / 2}$, where p is a real parameter, and to the orthogonality interval $I=[-1,1]$. From the Rodrigues rule, these are defined as

$$
\begin{align*}
G_{m}^{p}(x)= & \frac{(-1)^{m} \Gamma\left(p+\frac{1}{2}\right) \Gamma(n+2 p)}{2^{m} m!\Gamma(2 p) \Gamma\left(p+m+\frac{1}{2}\right)}(1 \\
& \left.\quad-\chi^{2}\right)^{\frac{1}{2}-p} \frac{d^{m}}{d x^{m}}\left(\left(1-\chi^{2}\right)^{p+m-\frac{1}{2}}\right) \tag{2.9}
\end{align*}
$$

Hence, by applying the Leibniz derivation rule, we obtain

$$
G_{m}^{p}(x)=C_{m}^{p}\left[x^{m}-a_{m-2} x^{m-2}+a_{m-4} x^{m-4}+\cdots\right]
$$

Fig. 2.4: Chebyshev polynomials.
where

$$
\begin{gathered}
C_{m}^{p}=\frac{2^{m} \Gamma(p+m)}{m!\Gamma(p)}, \\
a_{m-2}=\frac{m(m-1)}{2^{2}(p+m-1)}, a_{m-4}=\frac{m(m-1)(m-2)(m-3)}{2^{4}(p+m-1)(p+m-2)}, \ldots
\end{gathered}
$$

From the induction rule
Gegenbauer polynomials G_{m}^{p} can also be introduced vla the induction rule stated for $p \geq \frac{-1}{2}$ by

$$
\begin{align*}
m G_{m}^{p}(x)= & 2 \chi(m+p-1) G_{m-1}^{p}(x) \\
& -(m+2 p-2) G_{m-2}^{p}(x) \tag{2.4}
\end{align*}
$$

already with

$$
G_{0}^{p}(x)=1 \text { and } G_{1}^{p}(x)=2 p(1-x)
$$

This gives, for example,

$$
G_{2}^{p}(x)=2 p(p+1)\left[\chi^{2}-\frac{1}{2 p+2}\right]
$$

and

$$
G_{3}^{p}(x)=\frac{4}{3} p(p+1)(p+2)\left[\chi^{3}-\frac{3}{2 p+4} \chi\right]
$$

Furthermore, we notice that G_{m}^{p} is composed of monomials having the same parity of the index m.

Remark. The following assertions hold:
$G_{m}^{p}(-\chi)=(-1)^{m} G_{m}^{p}(\chi)$.
$G_{2 m+1}^{p}(0)=0$.
$-G_{2 m}^{p}(0)=\frac{(-1)^{m} \Gamma(p+m)}{T(p) I(m+1)}$.

From ODEs

Gegenbauer polynomials G_{m}^{p} are solutions of the ODE

$$
\left(1-x^{2}\right) y^{\prime \prime}-(2 p+1) x y^{\prime}+m(m+2 p) y=0,
$$

In the interval $I=$] - 1,1 [with coefficlents $a(x)=1-\chi^{2}, b(x)=$ $-(2 p+1) x$ and $c(\chi)=m(m+2 p)$. These polynomials can be introduced as the eigenvectors of the linear Sturm-Llouvllle-type operator T defined by

$$
T(y)=\left(1-\chi^{2}\right) y^{\prime \prime}-(2 p+1) x y^{\prime}
$$

By choosing $\omega(x)=\left(1-\chi^{2}\right)^{p-\frac{1}{2}}$, we observe that $a(x) \omega(x)=$ $\left(1-\chi^{2}\right)^{p+\frac{1}{2}}$ vanishes at the boundary points ± 1. The eigenvalues are $\lambda_{m}=-m(m+2 p)$.

Conclusion:

In this work, we outlined the concepts and the main properties and characteristics of orthogonal polynomials. Some basic notions concerning orthogonal polynomials are recalled that are related to weight functions, integration theory, linear algebra theory of vector spaces, their basis, and orthogonal systems and their relation to orthogonal polynomials. Next, the three main methods for introducing orthogonal polynomials were reviewed. The first method uses Rodrigues formula and it yields orthogonal polynomials as outputs of a higher order derivatives of some special functions. The second is based on recurrence relations, which yield orthogonal polynomials as sequences of functions defined by a three-level induction rule. We recalled and redeveloped Favard's results on orthogonal polynomials as well as its reciprocals. The last method consists of orthogonal polynomials as solutions to ordinary differential equations or equivalently as eigen functions of Sturm-Liouville operators. Some concluding and illustrating examples are provided to enlighten theoretical developments.

References:

1-Abramowitz, M. and I. S. Stegun, Handbook of Mathematical Functions, Dover Publications, Inc., New York, NY, 1965.

2-Andrews, L. C., Special Functions for Engineers and Applied Mathematicians, MacMillan Publishing Co. New York, NY. 1985.

3-Hochstadt, H., The Functions of Mathematical Physics, Dover Publications Inc., New York, NY, 1986.

4-McLachlan, N. W., Bessel Functions for Engineers, 2nd Edition, Oxford University Press, London, 1961. Sansone, G., Orthogonal Functions, Interscience Publishers, New York, NY., 1959.

5-Nazem A. R., Hesam S. ,haghbin A. ,"A fast numerical method for Solving calculus of variation problems", Advanced Modeling and Optimization v.15, N.2, (2013) 133-149.

