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.... فلولاهما لما وجدت فً هذه الحٌاة، ومهما تعلمت الصمود، مهما ٌنإلى الوالد  

 كانت الصعوبات

 إهداء

ٌت الحروف وتعلمت كٌف أنطق الكلمات، وأصوغ قهم استنفع إلى أساتذتً الكرام..........

القواعد فً مجال..... العبارات واحتكم إلى  

 

 إهداء

تدي بالمعلومات والبٌانامإلى الزملاء والزمٌلات الذٌن لم ٌدخروا جهدا فً   

 

اأهدي إلٌكم بحتى هذ  

 

أعضاء جانب   من  والقبول  بالنجاح  ٌتكلل  أن  وتعالى  سبحانه  المولى  داعٌا  

 

جلٌنبالمنافسة الم لجنة  

 

 

 

 

 

 

 



 

 
 

 

 

 

 لحمد لله رب العالمٌن والصلاة والسلام على سٌد الأولٌن والآخرٌن وأشرف الخلق 

                       أجمعٌن محمد وعلى آله وصحبه وسلم تسلٌما كثٌرا  

 

 

.......دعاما ب  

ٌطٌب لً أن أتقدم بجزٌل الشكر والثناء إلى من لا أجد كلمة فً سطور الكتب 

( ساجد ولٌد عمرانتستحق شرف الارتقاء لشكره ، إلى أستاذتً المشرف ) م . م 

ه من توجٌهات وملاحظات علمٌة وما منحنً إٌاه اكان نعم العون لً ، لما أبد الذي

.من وقت وجهد نورت طرٌق بحثً العلمً  

 

الأفاضل ي اذتومن واجب الاخلاص والعرفان أن أتقدم بالشكر والامتنان إلى  الأس 

ه لً من توجٌهات وأراء سدٌدة خلال مدة م، لما قد) دكتور خالد  هادي حمٌد (

.الدراسة والبحث  

وأتوجه بالشكر الى كل من تكرم وسمح بتطبٌق الدراسة علٌه، و لما قدموه لً 

  من خدمات جلٌلة لن أنساها

و وأخٌرا  أتقدم بالشكر الى كل من شارك بمساعدة، أو مشورة ، أو رأي، أ

 ملاحظة.

 

 

 والله ولً التوفٌق

 

 الشكر والتقدٌر
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I. Introduction 

            

         Orthogonal polynomials are connected with many mathematical, 

physical, engineering, and computer sciences topics, such as 

trigonometry, hyper geometric series, special and elliptic functions, 

continued fractions, interpolation, quantum mechanics, partial differential 

equations. They are also be found in scattering theory, automatic control, 

signal analysis, potential theory, approximation theory, and numerical 

analysis. 

          Orthogonal polynomials are special polynomials that are 

orthogonal with respect to some special weights allowing them to satisfy 

some properties that are not generally fulfilled with other polynomials or 

functions. Such properties have made them well- known candidates to 

resolve enormous problems in physics, probability, statistics and other 

fields. Since their origin in the early 19th century, orthogonal polynomials 

have formed a somehow classical topic related to Legendre polynomials, 

Stieltjes’ continued fractions, and the work of Gauss, Jacobi, and 

Christoffel, which has been generalized by Chebyshev, Heine, Szegö, 

Markov, and others. The most popular orthogonal polynomials are Jacobi, 

Laguerre, Hermite polynomials, and their special relatives, such as 

Gegenbauer, Chebyshev, and Legendre polynomials. An extending 

family has been developed from the work of Wilson, inducing a special 

set of orthogonal polynomi- als known by his name, which generalizes 

the Jacobi class. This new family has given rise to other previously 

unknown sets of orthogonal polynomials, including Meixner Pollaczek, 

Hahn, and A skey polynomials. 

        Orthogonal polynomials may also be classified according to the 

measure applied to define the orthogonality. In this context, we cite the 

class of discrete orthogonal polynomials that form a special case based on 

some discrete measure. The most common are Racah polynomials, Hahn 

polynomials, and their dual class, which in turn include Meixner, 

Krawtchouk, and Charlier polynomials. 

       Already with the classification of orthogonal polynomials, one can 

distinguish circular and generally spherical orthogonal polynomials, 
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which consists of some special sets related to measures supported by the 

circle or the sphere. One well-known class is composed of Rogers–Szegö 

polynomials on the unit circle and Zernike polynomials, which are related 

to the unit disk. 

        Orthogonal polynomials, and especially classical ones, can generally 

be introduced by three principal methods. A first method is based on the 

Rodrigues formula which consists of introducing orthogonal polynomials 

as outputs of a derivation. The second method consists of introducing 

orthogonal polynomials as eigenvectors of Sturm–Liouville operators, or 

equivalently, solutions of second-order differential equations. The last 

method is based on a three-level recurrence formula. 
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Chapter  one  

Orthogonal   polynomials 

 

        In this chapter,  we   reviews basic definitions as well as properties 

of orthogonal polynomials. 

       To do this, we first restrict ourselves to the field ℝ, and when it is 

necessary we recall that the development remains valid on the complex 

field ℂ. 

1.1 Some  Basic  Definitions 

Definition( 1.1.1):  

      A Hilbert space is a vector space equipped with a scalar product, 

which makes it a complete space relative to the scalar  product induced 

norm. 

Definition (1.1.2): 

     A polynomial P of degree n on ℝ is formally defined by the 

expression 

     ∑  

 

   

   
  

where   is the variable and          , are elements of ℝ called 

scalars and known as the polynomial coefficlent such that     . 

Remark.  

The polynomial function associated with the polynomial  , which will 

also be denoted by  , is the functlon defined on the whole space ℝ by 

          
     

 . We denote by ℝ    the set of all polynomials on 

ℝ. Of course, It is well known that ℝ    is a vector space on ℝ with 

infinite dimension and that for any    , the set ℝ     of 

polynomials on ℝ with degree at most   is a vector space with 

dimension     on ℝ. 
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Definition(1.1.3):  

       A set of polynomials                  in ℝ    is sald to be 

staggered with the degrees iff              . 

 

      The following result shows one important property of staggered 

degrees polynomials   confirming the ability of such polynomials to be 

good candidates for   polynomial   spaces bases. 

Proposition (1.1.1) : 

      Any finite set B = (P0, P1, . . . , Pn) of staggered degrees polynomials  

in ℝn[X] is linearly independent. 

Proof.  

Let              be scalars in ℝ such that     
        . This means 

that for all   ℝ     
           . By considering the   th-order 

derivative on  , we obtain   
    

   
  . Consequently,     . Next, 

proceeding by induction on  , we prove that all the coefficlents    are 

null. Hence,   is a free set in  . Observe next that the dimension of   

(dim       ) coincides with the cardinality of  . Therefore,   is a 

basis of  . 

 

Theorem (1.1.1): (GRAM-SCHMIDT). 

     Let {  }    be a countable system of linearly independent elements in 

a prehilbertian space. Then, there exists an orthonormal system {  }    

such that for any  , Vect {          }       {          }. 

Proof. We proceed by induction to construct the system {  }   . Let 

     . Then element    will be defined by 

           

As we want    and    to be orthogonal, we obtain 

⟨     ⟩  ⟨     ⟩   ⟨     ⟩     
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So that,   
⟨     ⟩

⟨     ⟩
. Otherwise, we subtract from    its orthogonal 

projection on   , 1.e., 

      
⟨     ⟩

⟨     ⟩
   

Hence, clearly we have Vect {    }       {     }. 

Next,    is defined analogously by subtracting from    its orthogonal 

projections on        . In other words, 

      
⟨     ⟩

⟨     ⟩
   

⟨     ⟩

⟨     ⟩
    

It is straightforward that    is orthogonal to    and   . Assume next that 

   is well known.      will be obtained as follows: 

          ∑ 

 

   

⟨       ⟩

⟨     ⟩
   

We check easily that for all    , 

⟨       ⟩   ⟨       ⟩  ∑  

 

   

 
⟨       ⟩

⟨     ⟩
⟨     ⟩

  ⟨       ⟩  
⟨       ⟩

⟨     ⟩
⟨     ⟩    

 

Obvlously, the elements    are not normalized. To do this, we divide 

each one by its norm. The equality Vect 

{          }       {          } 

Is straightforward. 

 

Definition (1.1.4): 

        Let   be an interval in ℝ nonreduced to a point and let   be a 

positive continuous function on     is sald to be a weight function iff 

∫ 
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We denote by the next       the vector space of continuous functions on 

the interval  , satisfying 

∫ 
 

                                                 

It results from hypothesis 7 that the polynomials are elements of      . 

On this space of functions, a scalar product can be defined by 

⟨   ⟩  ∫ 
 

                                                   

The integration interval   will be called the orthogonality interval. 

Definition (1.1.5): A set of polynomials         is said to be orthogonal 

iff it satisfies 

(1) Degree            . 

(2) ⟨     ⟩                 . 

 

         The following result shows some generic propertles of orthogonal 

polynomials, as they are speclal cases of staggered degree polynomials 

and consequently they also form good candidates for polynomial spaces 

orthogonal bases. 

 

Proposition (1.1.2): 

 Let         be a set of orthogonal polynomials. Then 

(1)                   is an orthogonal basis of ℝ    . 

(2)                    (ℝ    )
 

. 

Proof. The first assertion is a consequence of Proposition (1.1) and the 

orthogonality of the set             . (We can also use the second point 

in Definition (1.1) to prove the independence of the             ). 

Next, as ℝ     is generated by the set (          ) and      , 
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which means that      , for all        , so it is orthogonal to 

ℝ    . 

 

Remark.  

      Sometimes we need to use unitary orthogonal polynomials   . Thus, 

we need to multiply them by constants so that      becomes unitary or 

not. So, in the following, we will not differentlate between the two 

notions and will use the notation       and      depending on the 

context. 

 

Theorem(1.1.2): 

      The unitary orthogonal polynomials satisfy the following assertions: 

(1)        . 

(2) Degree            . 

(3)  
 
                      ℝ    such that             . 

(4) ℝ                        . 

Proof. (1)    is a unitary constant polynomial. So, it is equal to    

(2) It follows from the first assertion in Definition      

(3) As Degree(      so   ℝ     .  

(4) Holds from proposition      

Lemma (1.1.1) 

      Let           be a unitary orthogonal polynomial set. Hence, 

(1)           is a basis of ℝ    . 

(2)    is orthogonal to ℝ      . 

 

Indeed, Firstly, we know that     ℝ                       . On 

the other hand,           is orthogonal; hence, it is linearly independent. 

Thus, it consists of a basis in ℝ    . 
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The second point follows from the fact that    is orthogonal to 

           , which means that it is orthogonal to ℝ       

                . 

 

1.2  Orthogonal polynomials via a three-level recurrence 

Theorem( 1.2.1) (Recurrence rule). 

      Let         be a set of orthogonal polynomials. There exist scalars 

           , and       such that 

                               

More precisely, 

   
    

  
        

⟨      ⟩

∥∥  ∥∥           
  

    

⟨     ⟩

⟨         ⟩
  

where    is the coefficient of    in      . 

Proof. Without loss of generality, we can assume that         is 

orthonormal. Let                       be a set of staggered degree 

polynomials in ℝ      . So, it is linearly independent in ℝ      . 

Consequently, it forms a basis of ℝ      . Consequently, there exist then 

scalars          and            such that 

                       ∑  

   

   

      

Next, using the orthogonality property of        , we obtain 

⟨       ⟩    ⟨      ⟩    ∥∥  ∥∥
               

On the other hand, 

⟨      ⟩  ⟨      ⟩  

Since     ℝ      , we obtain 

⟨      ⟩    

Consequently, 
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Hence, 

                                               

We now evaluate the coefficlents      , and   . Recall that    can be 

written as 

                
          

By identification of the higher degree monomials in (2.3), we obtain 

   
    

  
 

Next, the inner product of (2.3) with    gives 

⟨       ⟩    ⟨      ⟩    ⟨     ⟩    ⟨       ⟩  

Using the orthogonality of the set, we get 

  ⟨      ⟩    ⟨     ⟩     

Hence,  

      

⟨      ⟩

⟨     ⟩
  

Next, using the inner product with      and using again the orthogonality 

of the set, we obtain 

  ⟨        ⟩    ⟨         ⟩     

Hence, 

      

⟨        ⟩

⟨         ⟩
    

⟨        ⟩

⟨         ⟩
  

Next, denote           
       as the decomposition of       in the 

basis of polynomials          . By observing the higher degree 

monomials in the decomposition, we get 

      
                

    

  
 

 

    
  

On the other hand, 

⟨        ⟩  ⟨        ⟩ 
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   ⟨     ⟩  ∑  

   

   

  ⟨     ⟩ 

   ⟨     ⟩  ∑  

   

   

    

   ⟨     ⟩  

Consequently, 

      

⟨        ⟩

⟨         ⟩
    

  ⟨     ⟩

⟨         ⟩
  

  

    

⟨     ⟩

⟨         ⟩
 

Hence, 

                        

where 

   
    

  
        

⟨      ⟩

⟨     ⟩
          

  

    

⟨     ⟩

⟨         ⟩
  

In the case where           is orthonormal, we obtain 

   
    

  
        ⟨      ⟩           

  

    
  

 

Theorem (1.2.2): (Favard's theorem). 

     Let {  }   
  and {  }   

  be sequences in ℝ, and {  }   
 , a set of 

polynomials satisfying 

                                      

where         and           . Then, there exists a unique linear 

form   on ℝ     for which           whenever    . 

Proof. We proceed by steps. 

Step 1. We claim that Degree            . Indeed, for   

         . Hence,              . For              , so it is 

of degree 1. Assume next that               and prove the same for 

    . The three-level relation above ylelds that 
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                     (             )       

Hence, we proved by recurrence on   that                   . 

Step 2. Consider the space ℝ     of polynomials on ℝ with degrees at 

most  . It results from Step 1 that the set             , satisfying that 

the three-level relation is a degree-straggled set of polynomials. 

Henceforth, it is a basis of ℝ    . Let   ℝ     ℝ be the continuous 

linear form defined on such a basis by 

                         

It holds from the Riez-Fréchet theorem that there exists a function   such 

that 

     ⟨   ⟩  ∫  
ℝ

            

We now prove that 

                     

For    , denote           
         . We get 

        ∑  

 

   

              

On the other hand,      can be written as 

     ∑  

   

     

      

Hence,  

        ∑  

   

     

           

 

Example (1.2.1) We set here some examples of induction relations for 

the most known orthogonal polynomials. 

(1) Legendre polynomials 
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(2) Chebyshev polynomials 

                       

(3) Hermite polynomials 

                         

 

1.3  Orthogonal polynomials via Rodrigues rule 

A literature review of orthogonal polynomials reveals that there are many 

methods to obtain such polynomials. One is explicit and based on the 

Rodrigues rule, which applies derivation. Let 

      
 

      

  

   
          

where   is a polynomial in     is a weight function, and    is a constant. 

We have precisely the following result. 

 

Theorem        

Let         and   is a weight function on I and         be a set of 

real functions on I satisfying 

(1)    is    on       for all  . 

(2)   
          

          for all          . 

(3)    
 

   
         is a polynomial of degree  , (    is a 

normalization constant). Then,         is orthogonal. The converse is 

true iff   is   . 

Proof. It suffices to prove the orthogonality. For    , we have 
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⟨     ⟩   ∫  
 

 

                 

  ∫  
 

 

      
 

      
              

  ∫  
 

 

      
 

  

          

 

       ∫  
 

 

           
   

  
  

   

 

The fourth equality is a consequence of Hypothesis (2) and the 

integration by the parts rule. The last equality is a consequence of 

Hypothesis (3). 

 

1.4  Orthogonal polynomials via differential equations 

A large class of orthogonal polynomials is obtained from first-order linear 

differential equations of the type 

                                                  

Whe0re   is a polynomial of degree 2 , and   is a polynomial of degree 1 

, where both are independent of the integer parameter  , and finally,    

are scalars.   is the unknown function. By introducing the operator 

  ℝ    ℝ    such that              , the solution   appears as 

an eigenvector of   associated with the eigenvalue   . We introduce next 

a resolvent function    , which permits us to express the operator   on 

the form      
 

 
       . The equality                

   

 
   

shows that   is a solution of the differential equation             

 . So, it is of the form     , where   is a primitive of 
    

 
. Recall now 

that 
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⟨      ⟩  ∫ 
 

                    

          ∫ 
 

                      

Iff the weight   vanishes on the frontler of the integration interval  , we 

obtain 

⟨      ⟩   ∫ 
 

                     ⟨      ⟩  

This means that the operator   is symmetric. 

Denote for the next    ℝ     ℝ     the restriction of   on ℝ    . It 

is straightforward that ℝ     is invariant under the action of    since the 

degrees of   

and   are less than 2 and 1 , respectively. So, we can arrange the pairs 

      into a sequence        , where we re-obtain the eigenpairs of the 

operator    for        . Next, observing that         
      

   and            , it results that    is an endomorphism on ℝ    . 

Thus, there exists a  -eigenvector's orthonormal basis of such a space. In 

particular, there exists at least an elgenvector    of degree  , which may 

be assumed to be unitary and satisfying 

   
      

        

This means that for    , we obtain       and thus the polynomials 

   are orthogonal. 

 

 

 

 

 

   

  



 
13 

 

Chapter Two 

Some  Orthogonal Polynomials 

 

2.1 Some classical orthogonal polynomials 

          In the previous  chapter, we reviewed the three most well-known 

schemes to obtain orthogonal polynomials. The first one is based on the 

explicit Rodrigues derivation rule, which states that the  th element of 

the set of orthogonal polynomials, which is also of degree  , is obtained 

by 

      
 

      

  

   
          

where   is a suitable polynomial in  . 

The next method is based on an induction rule eventually necessitates that 

the first and the second elements of the desired set of orthogonal 

polynomials be known. It states that 

                                               

where      , and    are known scalars. 

Finally, the last scheme consists of introducing orthogonal polynomials as 

the solutions of ordinary differential equations (ODEs) of the form 

                    

where   is a 2-degree polynomial and   is a polynomial with degree 1 

and    are scalars. The idea consists of developing polynomial solutions 

of the ODEs. According to the coefficlents of each equation, we obtain 

the desired class of polynomials, such as Legendre and Laguerre. 

In this section, we propose to revisit some classical classes of orthogonal 

polynomials and show their construction with the three schemes. 
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2.1.1 Legendre polynomials 

From Rodrigues rule: 

Legendre polynomials consist of polynomials defined on the 

orthogonality interval          relative to the weight functlon    , 

the polynomial            , and the constant        . The  th 

Legendre polynomial, usually denoted in the literature by   , is obtained 

by 

      
  

   
[
       

    
] 

Using the Leibniz rule of derivation,       can be explicitly computed. 

We have 

      
 

    
    

    
                          

 

  
    

     
                  

For example, 

                  

       
 

 
               

 

 
         

       
 

 
                     

 

 
                

 

From the induction rule 

Legendre polynomials can also be introduced via the induction rule 

     
    

   
    

 

   
            

with initial data         and        . It ylelds, for    , that 

      
 

 
       

 

 
      

 

 
   

 

 
  

For    , it ylelds that 

      
 

 
       

 

 
      

 

 
 (

 

 
   

 

 
)  

 

 
  

 

 
   

 

 
   

Applying the same procedure, we obtain 



 
15 

 

      
 

 
                           

 

 
                 

From ODEs 

Legendre polynomials are obtained as the polynomial solutions of the 

following ODE: 

                            

                                            

Using the notations of Section    , this means that 

                   and            . In the sense of the 

linear operator  , the polynomials    can be introduced vla the operator 

                    (        )
 
  

which corresponds to the weight function        and          

    . Note that    vanishes at the frontiers    of the orthogonality 

interval  . Furthermore, in terms of elgenvalues as in equation (2.7), If we 

suppose that the same eigenvalue    is assoclated with at least two 

elgenvectors    and   , we obtain               , which has 

no integer solutions except    . This confirms that the eigenvalues 

and elgenvectors are one to one, which means that the elgenvectors 

(polynomials) are orthogonal. Figure     lllustrates the graphs of the first 

Legendre polynomials. 

For clarity and convenience, we will develop the polynomial solutions. 

So, denote                
             as a polynomial 

solution of degree   of equation (2.8). We obtain the following system: 

{
 
 

 
 

              

                

[                         

[                    

                                           

 

Hence,     and 
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{
 
 

 
                

                 

[                      

                                            

 

For example, for    , we obtain 

        

For    , we get 

         

For    , we obtain 

                

For    , 

        (
 

 
    ) 

For    , we have 

        (
  

 
         ) 

 

                   

 

 

  

 

 

 

 

 

 

Fig. 2.1: Legendre polynomlals 

 

Next, for    , we obtain 
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       (
  

 
   

  

 
    ) 

Now, using the orthogonality of these polynomials on       , we obtain 

the same polynomials. 

 

     One important question is how to choose the polynomial   in 

Rodrigues rule to be equivalent with the same outputs of the recurrence 

rule and the ODE scheme. 

Firstly, the degree of   is fixed in an obvlous way as            . 

Hence, for example, in the Legendre case,   should be of degree 2 , that 

is, 

                    

Thus, 

        

  

   
            

 

    
  

Consequently, from the induction rule of Legendre polynomials we 

obtain, for    , 

    
 

 
    

 

 
  

    
         

 

 
           

 

 
  

 

As a result, 

{
          
        
        

 

Hence, we obtain 

               

Or equivalently, 

          

2.1.2 Laguerre polynomials 

From the Rodrigues rule: 
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These polynomials are obtained via the Rodrigues rule with      

           and the constant      ! by 

      
  

  

  

   
        ∑  

 

   

  
 

  
       

The first polynomials are then 

                  , 

      
 

 
                 

 

 
               , 

      
 

  
                     , 

      
 

   
                                 

It holds clearly from simple calculus that these polynomials are 

orthogonal in the interval      [ relative to the weight function      

   . 

From the induction rule 

Laguerre polynomials are solutions of the following recurrent relation: 

                                      

with the first and second elements         and          . For 

   , we get 

                           

which implies that 

      
 

 
           

 

 
 

 

 
           

 

Next, for    , we obtain 

                            

which means that 

      
 

 
                 

Similarly, we can obtain 
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and 

      
 

   
                                 

From ODEs 

To apply the ODE procedure, we set        [ as the orthogonality 

interval,       ,                   and consequently, the 

operator   will be                   . We observe immediately 

that               is null at 0 and has the limit 0 at   . 

Furthermore,          is integrable on   for all polynomial  . In the 

present case, equation (2.7) becomes              and the 

eigenvalues are      . The assoclated ODE is 

                  

It is straightforward that for all  , the polynomial    is a solution of this 

differential equation. Figure     illustrates the graphs of some examples 

of Laguerre polynomials. 

2.1.3 Hermite polynomials 

From Rodrigues rule: 

Hermite polynomials are related to the orthogonality interval   ℝ with 

the weight function          
. Denote    as the  th element, 1.e., a 

Hermite polynomial of degree      is explicitly expressed via Rodrigues 

rule as follows: 

                

   
(    

)  

As examples, we get 
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From the induction rule 

Hermite polynomials    can be obtained by means of the induction rule 

                         

 

 

 

 

 

 

 

 

 

 

 

                                        Fig. 2.2: Laguerre polynomlals.    

 

with the initial data         and         . So, for             

we obtain as examples 

                                              

                                        
 

From ODEs 

Hermite polynomials are also solutions of a second-order ODE in the 

interval   ℝ. this means that                , and          
 

as a weight function. It is immediate that              
, which has 0 

limits at the boundaries of the interval  . Furthermore,          is 

integrable on   for all polynomials  . By means of the eigenvalues of the 

linear operator  , Hermite polynomials are eigenvectors of          

     assoclated with eigenvalues       . The corresponding ODE is 
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Some examples of Hermite polynomials are illustrated in figure 2.3. 

  

 

 

 

 

 

 

 

 

 

 

                                                                                x 

Fig. 2.3: Hermite polynomlals. 

2.1.4 Chebyshev   polynomials 

From Rodrigues rule 

Chebyshev polynomials are related to the orthogonality interval     

    [ and the weight function                . Denoted usually by 

   for the Chebyshev polynomial of degree  , these are explicitly 

expressed via the Rodrigues rule as 

      
           

 
 √ 

   (  
 
 )

  

   
(        

 
 )  

where       
 

  
           is Euler's well-known functlon. It is 

immediately seen (by recurrence for example) that 

 (  
 

 
)  

     √ 

     
        

and hence, the first Chebyshev polynomials can be obtained as 



 
22 

 

                             

                                                  
 

From the induction rule 

Chebyshev polynomials are solutions of the induction formula 

                       

with initlal data,         and        . Let,           
    

   , 

then 

    
      

            
    

        
      

      

    
      

          
          

        
     

          
      

      

     
         

        
      

      

    
       

         
    

         
      

    

    
         

          
       

          

We obtain the following system: 

{
 
 

 
   

      
     

  
         

  

    
       

 

  
         

    
             

 

We have 

          
    

and 

          
      

     

Hence, 

        
      

     
  

From the above system, we obtain 

{

  
     

    

  
     

   

  
     

    
   

 

which means that 
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Now, replacing   by 2 in the system we obtain 

{
 
 

 
   

     
    

  
     

    

  
     

    
     

  
     

    
    

 

Therefore, 

              

Next, for    , the system becomes 

{
 
 

 
 
  

     
    

  
     

    

  
     

    
    

  
     

    
     

  
     

    
    

 

Thus, 

                 

Now, by replacing   with 4 , the system ylelds 

{
  
 

  
 
  

     
    

  
     

    

  
     

    
    

  
     

    
    

  
     

    
      

  
     

    
     

 

Hence, 

                    

So, we obtain the same Techebychev polynomials as for the Rodrigues 

and ODE rules. 

From ODEs 

We set                            and         

       . The linear operator   is then given by 
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It is straightforward that          √     vanishes at    and the 

eigenvalues        give rise to elgenvectors (polynomials),     . This 

ylelds that the      are the corresponding solutions of the     

                     

Remark 24. Chebyshev polynomials    can be explicitly defined on 

       by 

                         

 

Indeed, by considering Molvre's rule                        

       , and by setting for                , we obtain      √    . 

This implies that 

                           ∑  

*
 
 
+

   

  
                      

    

Next, we observe that 

                                          

Henceforth, we obtain explicit    s as above. Figure     illustrates the 

graphs of the first Chebyshev polynomials. 

Remark 25. It holds that a second kind of Chebyshev polynomial already 

exists. It is defined by means of the Rodrigues rule as 

      
          √ 

     (  
 
 )       

 
 

  

   
(        

 
 )            

or by means of trigonometric functions as 
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These polynomials satisfy the same induction rule as the previous but 

with different initial data         and         . Finally, similar to 

other classes of orthogonal polynomials, they satisfy the     

   ℝ          
          

                    

2.2.5 Gegenbauer polynomials 

From Rodrigues rule: 

Gegenbauer polynomials, also called ultraspherical polynomials, are 

defined relative to the weight function                 , where   is 

a real parameter, and to the orthogonality interval         . From the 

Rodrigues rule, these are defined as 

  
     

      (  
 
 )       

          (    
 
 )

  

    
 
 
    

   
(          

 
 )                           

Hence, by applying the Leibniz derivation rule, we obtain 
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Fig. 2.4: Chebyshev polynomials. 

where 

  
 

 
        

      
 

     
      

         
       

                

                
  

 

From the induction rule 

Gegenbauer polynomials   
 

 can also be introduced vla the induction rule 

stated for   
  

 
 by 

   
                  

    

             
                             

already with 

  
 
              

 
             

This gives, for example, 

  
 
           [   

 

    
] 

and 
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 ] 
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Furthermore, we notice that   
 

 is composed of monomials having the 

same parity of the index  . 

 

 

Remark. The following assertions hold: 

   
 
            

 
     

      
 

       

     
 

    
           

          
  

From ODEs 

Gegenbauer polynomials   
 

 are solutions of the ODE 

                                

In the interval         [ with coefficlents                

         and             . These polynomials can be 

introduced as the eigenvectors of the linear Sturm-Llouvllle-type operator 

  defined by 

                          

By choosing              
 

 , we observe that          

        
 

  vanishes at the boundary points   . The eigenvalues are 

           . 
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  Conclusion: 

         In this work, we outlined the concepts and the main properties and 

characteristics of orthogonal polynomials. Some basic notions concerning 

orthogonal polynomials are recalled that are related to weight functions, 

integration theory, linear algebra   theory of vector spaces, their basis, and 

orthogonal systems and their relation to orthogonal  polynomials. Next, 

the three main methods for introducing orthogonal polynomials   were 

reviewed. The first method uses Rodrigues formula and it yields 

orthogonal  polynomials as outputs of a higher order derivatives of some 

special functions.  The second is based on recurrence relations, which 

yield orthogonal polynomials as  sequences of functions defined by a 

three-level induction rule. We recalled and redeveloped  F v r ’s results 

on orthogonal polynomials as well as its reciprocals. The  last method 

consists of orthogonal polynomials as solutions to ordinary differential 

equations or equivalently as eigen functions of Sturm–Liouville 

operators. Some concluding  and illustrating examples are provided to 

enlighten theoretical developments. 
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