
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/354378596

A Comparison between MSVM and CNN Algorithms in Offline Hand Gesture

Recognition

Thesis · September 2021

CITATIONS

0
READS

151

2 authors, including:

Some of the authors of this publication are also working on these related projects:

A Comparison between MSVM and CNN Algorithms in Offline Hand Gesture Recognition View project

Hind Ibrahim Mohammed

university of Diyala::Al-Muqdad College of Education

2 PUBLICATIONS 1 CITATION

SEE PROFILE

All content following this page was uploaded by Hind Ibrahim Mohammed on 06 September 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/354378596_A_Comparison_between_MSVM_and_CNN_Algorithms_in_Offline_Hand_Gesture_Recognition?enrichId=rgreq-b5d62c2a214d86f71e0b464ba50fd39d-XXX&enrichSource=Y292ZXJQYWdlOzM1NDM3ODU5NjtBUzoxMDY0ODQ4MTA0MzgyNDY1QDE2MzA4OTA5ODA2Mzc%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/354378596_A_Comparison_between_MSVM_and_CNN_Algorithms_in_Offline_Hand_Gesture_Recognition?enrichId=rgreq-b5d62c2a214d86f71e0b464ba50fd39d-XXX&enrichSource=Y292ZXJQYWdlOzM1NDM3ODU5NjtBUzoxMDY0ODQ4MTA0MzgyNDY1QDE2MzA4OTA5ODA2Mzc%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/A-Comparison-between-MSVM-and-CNN-Algorithms-in-Offline-Hand-Gesture-Recognition?enrichId=rgreq-b5d62c2a214d86f71e0b464ba50fd39d-XXX&enrichSource=Y292ZXJQYWdlOzM1NDM3ODU5NjtBUzoxMDY0ODQ4MTA0MzgyNDY1QDE2MzA4OTA5ODA2Mzc%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b5d62c2a214d86f71e0b464ba50fd39d-XXX&enrichSource=Y292ZXJQYWdlOzM1NDM3ODU5NjtBUzoxMDY0ODQ4MTA0MzgyNDY1QDE2MzA4OTA5ODA2Mzc%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hind-Mohammed?enrichId=rgreq-b5d62c2a214d86f71e0b464ba50fd39d-XXX&enrichSource=Y292ZXJQYWdlOzM1NDM3ODU5NjtBUzoxMDY0ODQ4MTA0MzgyNDY1QDE2MzA4OTA5ODA2Mzc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hind-Mohammed?enrichId=rgreq-b5d62c2a214d86f71e0b464ba50fd39d-XXX&enrichSource=Y292ZXJQYWdlOzM1NDM3ODU5NjtBUzoxMDY0ODQ4MTA0MzgyNDY1QDE2MzA4OTA5ODA2Mzc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hind-Mohammed?enrichId=rgreq-b5d62c2a214d86f71e0b464ba50fd39d-XXX&enrichSource=Y292ZXJQYWdlOzM1NDM3ODU5NjtBUzoxMDY0ODQ4MTA0MzgyNDY1QDE2MzA4OTA5ODA2Mzc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hind-Mohammed?enrichId=rgreq-b5d62c2a214d86f71e0b464ba50fd39d-XXX&enrichSource=Y292ZXJQYWdlOzM1NDM3ODU5NjtBUzoxMDY0ODQ4MTA0MzgyNDY1QDE2MzA4OTA5ODA2Mzc%3D&el=1_x_10&_esc=publicationCoverPdf

A Comparison between MSVM and

CNN Algorithms in Offline Hand

Gesture Recognition

A Dissertation

Submitted to the Department of Computer Science\ College

of Sciences\ University of Diyala in a Partial Fulfillment of the

Requirements for the Degree of Master in Computer Science

By

Hind Ibrahim Mohammed Saba

Supervised By

Assist.Prof. Dr. Jumana W. Salih

2021 A.D. 1443 A.H

Ministry of Higher Education and

Scientific Research

University of Diyala

College of Science

 Department of Computer Science

ِالرهحَْْنِِالرهِحِيمِِ بِسْمِِاللَّهِ

عِلِِْ﴿ ِمَِقاَلُواِْسُبْحَانَكَِلاَِ
مَاِعَلهمْتَ نَاِإِِ ِنهكَِلنََاِإِلاهِ

 ﴾ أنَتَِالْعَلِيمُِالْْكَِيمُِ

ِصدقِاللهِالعظيم

 (32سورةِالبقرةِ)الآية:

Dedication
I would like to dedicate this work to:

To my father may God have mercy on him and

mother May God protect her and prolong her life.

To My husband Abbas for his unlimited love,

support, endurance, and encouragement.

 To my candle, my children Ruqia, and

Mohammed.

 To my sisters, brothers, and to everyone who

helped me from a friend or fellow…

Hind Ibrahim Mohammed

Acknowledgements
My thanks are above all to God Almighty, who guided my steps

towards the path of knowledge and without his help and blessing.

This thesis would not be advanced or you will see the light.

I express my sincere appreciation to my supervisor's Assist. Prof.

Dr. Jumana W. Salih for providing his ideas, inspiration, and

continuous support for me during my studies.

I am very grateful to all members and professors of the Computer

Science Department at Diyala University.

Finally, I would have never been able to finish my message

without especially mention my sisters (Alyaa, Dhamaya, Shaimaa,

Esraa, Baidaa, and Nidaa) and support my family and my

husband.

Hind Ibrahim Mohammed

ABSTRACT
The process of identifying each letter separately is very important to

understand. With this, sign language recognition has become an important

technology in artificial intelligence (AI) and machine learning (ML).

This thesis presents two proposed systems for static hand gesture recognition

(HGR) based on ML and Deep Learning (DL) algorithms in which several steps are

used in the form of phases; image acquisition, image preprocessing, feature

extraction, and classification. In the first proposed system, a histogram of oriented

gradients (HOG) is utilized for extracting features from each image and then a multi-

class support vector machine (MSVM) is applied using the result of the HOG of

images to perform the classification process. In the second proposed system, the

convolution neural network (CNN) is used through which recognition of static hand

gestures is accomplished according to a special structure of this algorithm that

consisting of several layers.

The Previous works and researches in that field had a lot of complexity with

different accuracy. The obtained results, the second proposed system which adopted

DL by using the CNN model outperforms the first system in terms of performance

and accuracy, the accuracy rate obtained from the second proposed system was

(99.71%) for American Sign Language (ASL) and (99.03%) for Arabic sign

language (ArSL), While the accuracy rate obtained from the first proposed system

was (95.58%) and (96.16%) for ArSL.

I

Subject Page No.

List of Contents. I-IV

List of Abbreviations. V-VI

List of Tables. VII-VIII

List of Figures. IX-XI

List of Algorithm. XII

Chapter One: General Introduction

1.1 Introduction. 1

1.2 Overview of Hand gesture Recognition. 2-4

1.3 Related Works. 4-8

1.4 Problem Statement. 9

1.5Aim of the Thesis. 9

1.6 The Organization of the Study. 10

Chapter Two: Theoretical Background

2.1 Introduction. 11

2.2 Data Acquisition. 11

2.3 Image Preprocessing . 12

2.3.1 Scale Modification 12-13

2.3.2 Conversion RGB images to Grayscale 13

2.4 Feature Extraction. 13-14

2.4.1 Histogram of Oriented Gradients (HOG). 14- 17

2.4.2 Features Normalization. 17

2.4.3 Principal Component Analysis (PCA). 18

List of Contents

II

2.5 Gesture classification . 19

2.6 Machine Learning Algorithms (ML). 19-20

2.6.1 Support Vector Machine (SVM) . 20-22

2.6.1.1 Linear SVM 22-23

2.6.1.2 Non-Linear SVM 23-25

2.7 Deep Learning Algorithms (DL). 25-26

2.7.1 Convolutional Neural Network (CNN) . 26-27

2.7.2 Basic Structure of CNN. 27-34

2.7.3 The Network Training . 34-35

2.7.4 Back Propagation Algorithm (BP) 36

2.7.4.1 Adaptive Momentum (Adam) 36

2.7.4.2 Nesterov-accelerated Adaptive Moment (Nadam) 36-37

2.7.4.3 Root Mean Square Propagation (RMSProp) 37-38

2.8 Evaluation Measures . 39-41

Chapter Three: Proposed System Design

3.1 Introduction. 42

3.2 The Proposed System Design. 43- 44

3.3 Image Acquisition Stage. 44-45

3.4 Image Preprocessing Stage. 45

3.5 The First Proposed system: (Multi-Class Support Vector Machine

Algorithm (MSVM)).
46

3.5.1 Feature Extraction. 47-49

3.5.2 Z- Score Normalization. 49

3.5.3 Principal Component Analysis (PCA). 50-51

3.6 Recognition Stage Using MSVM Algorithm. 51-52

III

3.6.1 MSVM Training. 52-53

3.6.2 MSVM Testing. 53

3.6.3 Recognition for ASL and ArSL hand gesture image in the First

Proposed system (Performance Measurement).
53

3.7 The Second Proposed System using CNN Algorithm. 53- 56

3.7.1 Feature Extraction Stage . 56

3.7.2 Design Convolution Neural network (CNN) Structure. 56-60

3.7.3 CNN Training . 60- 63

3.7.4 CNN Testing . 63-64

Chapter Four: Experimental Results and Discussion

4.1 Introduction. 65

4.2 Implementation Environment. 65

4.3 Dataset Acquisition . 66-68

4.4 Evaluation of First Proposed System .
68

4.4.1 Result of Image Pre-Processing.
68

4.4.2 Results of Implementation the Feature Extraction using

Histogram of Oriented Gradients (HOG) Algorithm.
68-72

4.4.3 Results of Implementation of Z- Score Normalization.
72-75

4.4.4 Results of Principal Component Analysis (PCA). 75-78

4.4.5 Result of Training and Testing Using MSVM Algorithm.
78

4.4.5.1 Result of MSVM Training
78-79

4.4.5.2 Result of MSVM Testing
80-83

4.4.6 Hand Gesture Recognition in the First Proposed System.
83

IV

4.5 Evaluation of the Second Proposed System (Using CNN).
84-86

4.5.1 Result of the Second Proposed System (Using CNN).
86-88

4.5.2 Result of the CNN Training. 89-91

4.5.3 Result of the CNN Testing. 91-93

4.5.4 Hand Gesture Recognition in the Second Proposed System 93-94

4.6 Comparison, Between the First Proposed System with the Second

Proposed System.
94-95

4.7 Proposed system vs. Related Works. 95-97

Chapter Five: Conclusions and Suggestions for Future Work

5.1 Conclusions. 98-99

5.2 Suggestions for Future Work. 99-100

References

 101-112

 113 الخلاصة باللغة العربية

V

Abbreviations Description

1V1 One-Versus-One.

1VR One-Versus-Rest.

AC Accuracy.

Adam Adaptive Momentum.

AF Activation Function.

AI Artificial Intelligence.

ANN Artificial Neural Networks.

ArSL Arabic Sign Language.

ASL American Sign Language.

BP Back Propagation.

CM Confusion Matrix.

CNN Convolution Neural Network.

CV Computer Vision.

DA Discriminant Analysis.

DCC Deep Convolution Network.

DCT Discrete Cosine Transform.

DL Deep Learning.

DNN Deep Neural Network.

EEG Electroencephalography.

EOH Edge Orientation Histogram

FC Fully Connected.

FN False Negative.

FP False Positive.

HCI Human-Computer Interaction.

HGR Hand Gestures Recognition.

VI

HMM Hidden Markov Models.

HOG Histogram Of Oriented Gradients.

KNN K-Nearest Neighbor.

LBP local binary patterns.

LR Logistic Regression.

ML Machine Learning.

MLP Multilayer Perceptron.

MSE Mean Squared Error .

MSVM Multi-Class Support Vector Machine.

Nadam Nesterov-Accelerated Adaptive Moment.

NB Naïve Bayes.

NN Neural Network.

PCA Principal Component Analysis.

PReLU Parametric Relu.

ReLU Rectified Linear Unit.

RF Random Forests.

RGB Red Green Blue.

Rmsprop Root Mean Square Propagation.

ROI Region Of Interest.

SVM Support Vector Machines.

Tanh Hyperbolic Tangent Function.

TN True Negative.

TP True Positive.

VII

Table No. Description Page

Table (1.1) Comparison of Related Works
8

Table (4.1) The Distribution of Hand Gesture Images.
68

Table (4.2) Example of HOG Features for ASL Images.
70

Table (4.3) Example of HOG Features for ArSL Images.
71

Table (4.4) Example of Histogram for Original Features to ASL..
72-73

Table (4.5) Example of Histogram for Original Features to ArSL.
74

Table (4.6) Example of PCA Features for ASL Images.
75-76

Table (4.7) Example of PCA Features for ArSL.
76-77

Table (4.8) Comparing accuracy with data ratios for ASL.
79

Table (4.9) Comparing accuracy with data ratios for ArSL.
79

Table (4.10) The AC of test data for all classes for ASL. 80-81

Table (4.11) The AC of test data for all classes for ArSL. 81-82

Table (4.12) Proposed System Design CNN Layers for ASL. 84

Table (4.13) Proposed System Design CNN Layers for ArSL. 86

Table (4.14)
The AC and loss for each training in 10-Epoch for ASL. 87

Table (4.15)
The AC and loss for each training in 10-Epoch for ArSL. 87

Table (4.16)
 Comparison of the layers of the CNN and the AC rate

for ASL.
88

VIII

Table (4.17) Comparison of the layers of the CNN and the AC rate

for ArSL.
88

Table (4.18) Comparing the AC with number of epoch for ASL. 90

Table (4.19) Comparing accuracy with data ratios for ASL. 93

Table (4.20) Comparing accuracy with data ratios for ArSL. 93

Table (4.21) The AC comparison between MSVM and CNN

algorithms.
95

Table (4.22) Comparing the first proposed system with previous

studies for ASL.
96

Table (4.23) Comparing the first proposed system with previous

studies for ArSL.
96

Table (4.24) Comparing the second proposed system with previous

studies for ASL.
97

Table (4.25) Comparing the second proposed system with previous

studies for ArSL.
97

IX

Figure No. Description Page

Figure (1.1) Sensor-Based Data Glove. 3

Figure (1.2) Using Computer Vision Techniques. 3

Figure (2.1) Method of bicubic interpolation. 13

Figure (2.2) Cells are grouped into larger spatial regions (Blocks). 16

Figure (2.3) Classification of the most common ML algorithms. 20

Figure (2.4) The SVM hyperplane between two classes. 21

Figure (2.5) Multi-Class Support Vector Machine. 22

Figure (2.6) The relationship between AI, DL and ML. 26

Figure (2.7) The General Structure of the CNN System. 27

Figure (2.8) Convolutional Layer. 28

Figure (2.9) Sigmoid Function. 30

Figure (2.10) Hyperbolic Tangent Function. 31

Figure (2.11) types of ReLU Transformation. 32

Figure (2.12) Two Classic Pooling Methods. 34

Figure (2.13) Dropout Neural Network. 35

Figure (2.14) A confusion matrix. 39

Figure (3.1) Stages of Hand gesture recognition (HGR). 42

Figure (3.2) Block Diagram of General Proposed Systems. 43

Figure (3.3) The block diagram for the first proposed system. 46

Figure (3.4)
Block Diagram of Extraction Features using HOG

Algorithm.
49

X

Figure (3.5) Block Diagram of Second Proposed System. 54

Figure (3.6) Structure of the CNN algorithm. 57

Figure (4.1) The Alphabets of the American Sign Language. 60

Figure (4.2) The Alphabets of the Arabic Sign Language. 66

Figure (4.3) Randomly Samples After Preprocessing. 69

Figure (4.4) HOG Features for ASL Images. 70

Figure (4.5) HOG Features for ArSL Images.
72

Figure (4.6) Histogram for Original Features to ASL. 73

Figure (4.7) Histogram for Original Features for ArSL. 75

Figure (4.8) PCA Features for ASL. 76

Figure (4.9) PCA Features for ArSL. 78

Figure (4.10) CM for ASL Using MSVM.
82

Figure (4.11) CM for ArSL Using MSVM.
83

Figure (4.12)

AC and Loss Validation Change Against Training

Epochs (75) for ASL. 89

Figure (4.13)
AC and Loss Validation Change Against Training

Epochs for ArSL.
90

Figure (4.14)
AC and Loss Validation Change Against Training

Epochs (150) for ASL.
91

Figure (4.15) CM for ASL Using CNN. 92

Figure (4.16) CM for ArSL Using CNN. 92

Figure (4.17)
The chart shows the AC comparison between MSVM

and CNN algorithms.
95

XI

Algorithm No. Description Page

Algorithm (3.1) Conversion RGB image to gray-scale. 45

Algorithm (3.2) Feature Extraction using HOG Algorithm. 48

Algorithm (3.3) PCA to Extract Feature. 50-51

Algorithm (3.4) Multi-Class Support Vector Machine Classifier. 54

Algorithm (3.5) CNN Training Algorithm to Classify Hand Gesture

Images.
55

Algorithm (3.6) Softmax layer function. 60

List of Algorithms

Chapter One

GENERAL INTRODUCTION

Chapter One General Introduction

1

CHAPTER ONE

GENERAL INTRODUCTION

1.1 Introduction

 Gesture recognition in today's technologies is an emerging topic. The major

objective of this is to use mathematical algorithms for human-computer

interaction (HCI), Typically Gestures may arise from any movement or condition

of the body, however generally come from the face or the hand ([1], [2]).

Hand gestures play an important role in communicating human thoughts and

feelings, and Sign language is a formal type of hand gestures that are used as a

communication device, including visual movements and signs. For the culture of

the deaf and speech-impaired. Sign language makes it possible to use several parts

of the body such as the fingers, hand, arm, head, torso, or face to communicate

details. In the hearing population, sign language is not common, however,

although fewer are capable of understanding it. Which creates a real obstacle of

contact between both the deaf and the rest of humanity, a question that still has

to be completely addressed ([3], [4]).

The deaf and dumb people have been disconnected from the community, and

it is impossible for average people to learn sign language. Not only for deaf and

dumb individuals, sign language learning has been adopted, but also as a medium

for common people to communicate with them ([5], [6]).

 Many of the general assets of sign languages around the world are held by

ArSL. Its documentation, though, is in a comparatively early process. ArSL also

has many nation versions and dialects as most other sign languages [7].

 The literature includes several recommended solutions for the recognition of

the automated sign language. ArSL, however, has garnered little attention from

academics, unlike American Sign Language (ASL) [7].

Chapter One General Introduction

2

1.2 Overview of Hand gesture Recognition

Gesture recognition is a sufficient way to understand and follow human

language and to assist in communication and interaction between the user and the

computer. Gesture recognition is useful for communicating what they cannot

communicate with speech or writing text. The best way to express something

meaningful is with gestures [1]. Hand gestures recognition (HGR) is still a large

research field that is classified according to the meaning of a gesture and the

technologies for implementing these gestures [8]. The type of HGR system that

is developed is determined by different taxonomies: environmental factors, a

system for capturing gestures could be more or less effective, depending on a

variety of factors, including the skills of the individual performing the gesture,

the effectiveness of the capture systems, the type of gesture (static or dynamic),

and the purpose for which the system was designed [9]. Virtual worlds, smart

surveillance, sign language translation, medical systems, and other domains all

have HGR applications. However, one of the most important applications have

developed is sign language based on machine learning (ML) algorithms using

hand gestures [10].

Two types of HGR techniques have been described, recognition based on

vision and sensor which linking one or more types of sensors, the gesture data is

collected using sensor-based recognition. These sensors are connected to a hand

that records the hand's positioning and then analyzes the data gathered for gesture

recognition. The data glove is an example of sensor-based gesture recognition.

Sensors are shown in Figure (1.1), there are certain limitations to base

recognition. First, it is necessary to establish the correct hardware, which is really

costly. Second, it impedes normal hand gestures. Thus, the weaknesses of sensor-

Chapter One General Introduction

3

based techniques necessitated the creation of vision-based recognition techniques

[11].

Figure (1.1): Sensor-Based Data Glove [11].

 The images of the hands are captured using vision-based methods, which use

one or more cameras. Different vision types are shown in Figure (1.2). Stereo

cameras, monocular cameras, fish eye cameras, flight time cameras, infrared

cameras, and other types of cameras are all available that can be used to capture

images. Vision-based techniques use different algorithms for image recognition

to achieve hand posture and hand movement. To get the hand position, some

vision-based techniques use colored markers. Yet, the limits of vision-based

recognition is often influenced by shifts in illumination and cluttered

backgrounds, see ([12], [13]).

Figure (1.2): Using Computer Vision Techniques [11].

Chapter One General Introduction

4

In general, gestures are divided into two categories: static gestures and

dynamic gestures. Hand forms are typically used to describe static gestures,

while hand motions are used to describe dynamic gestures[14].

HGR systems that rely on geometric features such as fingertips, finger

directions, and hand contours are only accurate in situations where they are not

occluded or the lighting is not too dark. Shape, color, and texture are present, but

they are not sufficiently important for recognition. To define features, images or

transformed images are used as the input. The recognizer then implicitly and

automatically selects features from the image or transformed image [14].

1.3 Related Work

 Advanced tools and strategies have greatly enhanced ML algorithms that is a

set of learning methods designed to represent structured data that has

successfully been applied to the field of image classification to the extent that

they can overwhelm human performance. This section reviews the previous

studies that used convolutional neural network (CNN) and Support Vector

Machine (SVM) to recognize hand gestures for Different Datasets.

S. Nagarajan and T. S. Subashini (2013) [5]: proposed a consistent HGR

system for ASL based on the features of Edge Orientation Histogram (EOH) and

multi-class support vector machine (MSVM). The database of the image contains

a total of 720 images in 24 categories of the American Sign Language (ASL)

alphabet, each category contains 30 images. The input sign language alphabets'

edge graph count is extracted features and applied to the MSVM for

categorization. The average accuracy of the system was 93.75%, the system failed

to classify some alphabets. as well as the absence of the letters "J" and "Z" in the

data set used because these two gestures are dynamic and include movement.

Chapter One General Introduction

5

O. K. Oyedotun and A. Khashman (2016) [15]: proposed application of deep

learning (DL) for the complete (24 ASL) hand gestures acquired from Thomas

Moeslund database to the topic of hand gesture recognition. The complicated role

of classifies hand signals at reduced error levels has been demonstrated by more

biologically based and deep neural networks, including convolution neural

networks (CNN) and stacked denoizing autoencoders.The networks considered

are based on the data collected and checked. Recognition scores of 91.33% and

92.83%, the data does not contain the two-letter 'j' and, 'z' and the model can

obtain higher accuracy if used in another data set

V. Bheda and N. D. Radpour (2017) [16]: proposed a model for using deep

convolutional networks (DCN) to classify images, the data set ASL was a

collection of 25 images for each alphabet and the digits. CNN architecture

consisting of multiple convolutional and dense layers. The accuracy was 67% of

letters of the alphabet, and 70% for digits. The number of images for each

character can be increased to further improve the system's accuracy.

S. Masood et al. (2018) [17]: presented the application of CNN for recognizing

hand gestures. used 36 different categories, 26 classes for ASL and 10 classes for

Numerals (0-9). Accuracy was 96%. The system failed to classify the zero and

'W’ alphabet as ‘O’ and six respectively.

Reema Alzohairi et al. (2018) [18]: aimed to recognize ArSL alphabets

automatically using Methodology focused on images Especially, An accurate

ArSL alphabet recognizer is being designed through the use of numerous visual

descriptors. In the extraction process, the extracted visual descriptors are used as

input for the One Versus Rest analysis (1VR). As a result, the ArSL gesture

models learned 1VR using histogram of oriented gradients (HOG) descriptors are

Chapter One General Introduction

6

used. The database contains 30 classes (7 images for each character), image is

focused and resize to 200x200 pixels in size. The system accuracy 63.5 %. The

system has an issue with a limited dataset for the training algorithm. The number

of images for each character can be increased to further improve the system's

accuracy.

R. Ahuja et al. (2019) [19]: proposed a model that used CNN layers and digital

image processing techniques. Open CV was used to track down additional

execution methods such as image preprocessing. The archive, which was used to

test 24 ASL hand gestures, contains 47,445 photographs, of which 33000 (70%)

were used in the training collection and 14445 (30%) were used for testing. The

results showed that was accurate at 99.7%. It is attributed that the system detected

24 a letter instead of 26 the absence of the two letters "J" and "Z" in the data set

used in the model.

S. Hayani et.al (2019) [20]: proposed a model using CNN. This system will

detect numbers and letters when fed with a real dataset. Utilized the dataset of

images which contained 2,030 images of numbers, and 5,839 images of the 28

different ArSL classes, and the result was an accuracy of 90.02 percent. More

accurate results can be obtained by increasing the number of CNN layers and the

number of images used for each letter.

T. Goswami and S. R. Javaji (2020) [21]: suggested a model that relies on a

CNN to recognize and classify hand gestures. The dataset uses 24 classes (27,455

images) to ASL (A-Z), with size (28x28). DL technology based on CNN learns

and automatically extracts features to classify each gesture. The proposed model

has a test accuracy of 99%. It is attributed that the system detected 24 a letter

Chapter One General Introduction

7

instead of 26 the absence of the two letters "J" and "Z" in the data set used in the

model.

M. M. Kamruzzaman (2020) [22]: proposed a system to detect hand signs with

CNN automatically to dataset (ArSL), the system was trained for 100 epochs by

optimizer with a cost function. The system is then connected to its signature stage,

where a hand sign has been translated with 90% accuracy to Arabic speech. That

can be improved by increasing the number of images, as only 100 images were

used for each letter.

 A.Sharma et al. (2020) [23]: proposed a system that used Many various

techniques for pretreatments such as HOG, local binary patterns (LBP), and

principal component analysis (PCA). This dataset ASL contains 29 classes (3000

image). These methods were successfully implemented to obtain effective results

accuracy of Multilayer Perceptron (MLP) 96.96%, K-Nearest Neighbor (KNN)

95.81%, Random Forests (RF) 92.69%, Support Vector Machines (SVM)

85.25%, Logistic Regression (LR) 84.59%, and Naïve Bayes (NB) 72.23%.

Chapter One General Introduction

8

 Table (1.1): Comparison of Related Works.

No. Author(s),Year Ref.

No.

Algorithm

for

Classificat

ion

Dataset Size

(Images

Number)

Accuracy

1. S. Nagarajan and T. S.

Subashini (2013)

[5] MSVM 720 images in

24 categories

ASL

93.75%,

2. O. K. Oyedotun and

A. Khashman (2016)

[15] CNN 1440 for

training , 600

for testing

ASL

92.83%

3. V. Bheda and N. D.

Radpour (2017)

[16] CNN 650 Images ,

25 images

from 5 people

for each

alphabet

ASL

67%

4. S. Masood et al.

(2018)

[17] CNN 2524 ASL

gestures

96%

5. Reema Alzohairi et al.

(2018)

[18] MSVM 210

ArSL

63.5 %.

6. R. Ahuja et al. (2019) [19] CNN 47,445 images

for 24 classes

ASL

99.7%

7. S. Hayani et.al (2019) [20] CNN 5839 images

of 28 class

ArSL

90.02%

8. T.Goswami and S. R.

Javaji (2020)

[21] CNN 27,455 images

for 24 classes

ASL

99%

9. M. M. Kamruzzaman

(2020)

[22] CNN 100 images

for each

alphabet (32

classes)

ArSL

90%

10. A.Sharma et al. (2020) [[23] MSVM 3000 images

ASL

85.25

Chapter One General Introduction

9

1.4 Problem Statement

 About 70 million people (deaf and dumb) use sign language as their first or

mother tongue all over the world and unfortunately they cannot communicate

with the general public because they do not understand the meaning of sign

language gestures and on the other hand they are unable to understand natural

language.

 Indeed, it is very important to support this category of society in view of the

great development in the world of technology and software, and as a result, it is

necessary to prepare systems capable of translating signals into text or speech.

If these systems are put in place, it will greatly help them to understand what is

going on around them in an easy and simple way.

 For the sake of the above, several researchers have proposed the development

and implementation of automated systems or human-computer interaction (HCI)

to help deaf people and the general public communicate.

1.5 Aim of the Thesis

 This thesis aims to build a strong to recognize hand gesture system for ASL

and ArSL sign language to help the deaf and dumb people more easily with

computer vision applications using multi-class support vector machine (MSVM)

classing was designed and applied as the most important algorithm of ML

algorithms in the first proposed system. Furthermore, the CNN model is utilized

in the second proposed system which is the most powerful algorithm for DL for

making a comparison between these techniques to determine the best one in

achieving a high degree of accuracy.

Chapter One General Introduction

10

1.6 The Organization of the Thesis

 This thesis is organized into four chapters, in addition to the one already

described, and is structured as follows:

 Chapter Two describes of the theoretical background of the main systemses

that used for the hand gesture recognition based on ML.

 Chapter Three presents the details of the proposed recognition and

classification algorithms that are used to design the proposed system and the

implementation of each one.

 Chapter Four gives the experimental results obtained from the

implementation of the proposed system.

 Chapter Five discusses results, conclusions and lists a number of suggestions

for future studies.

Chapter Two

THEORETICAL BACKGROUND

Chapter Two Theoretical Background

11

 CHAPTER TWO

 THEORETICAL BACKGROUND

2.1. Introduction

This chapter provides an overview of the theoretical background of the

main approaches used in this thesis, Recognition of static hand gestures is a

natural medium used for human-computer interaction (HCI), is a very active area

of research in computer vision and in Machine Learning (ML) [1].

Various techniques are available for hand gesture recognition in ML and

deep learning (DL) as Support vector machine (SVM) and Convolutional Neural

Network (CNN) which are the main methods that will be discussed in this thesis

to perform feature extraction and classification.

2.2 Data Acquisition

HGR and HCI, in general, have been the subject of extensive research in

recent decades. Based on the data collection process, the majority of experiments

have taken one of two methods.

In the first approach, the signer is used to interacting with instruments

such as data gloves, location trackers, motion sensors, and accelerometers to

gather data on hand movements. Furthermore, the second approach was captured

using cameras and various imaging instruments (there was no need to touch the

signer's body and limit his/her movement). The first solution has the

disadvantage of being expensive and inconvenient for the signer. These

disadvantages were avoided in the second approach's studies [24].

Chapter Two Theoretical Background

12

2.3 Image Preprocessing

The HGR system's initial stage is image preprocessing that removes the

unwanted noise.

In the hand gesture preprocessing is the initial step to be performed.

Preprocessing requires preparing the images using various techniques such as

scale modification, normalization, and noise reduction for feature extraction

[25].

2.3.1 Scale Modification

 There are several ways to scale modifications, and one of them is to use

interpolation to resize images. It's a method of increasing or decreasing the

number of pixels in a digital image. Interpolation is a technique for the size of

an image by generating new pixel values and filling in the gaps with other

algorithms. The average value of nearly all pixels is used to replace this newly

generated pixel. Interpolation is a technique for estimating the significance of

unknown data using two or more known data.

There are many types of interpolation, the most important of which are: nearest-

neighbor interpolation, Bilinear interpolation, and Bicubic interpolation. Nearest

Neighbor Interpolation is the easiest method for interpolation in that every

unknown pixel is given an intensity value equivalent to the neighboring pixel. A

new scaled image can be created. When an image is expanded, an empty space

is created in the original image. The empty spaces will be replaced with the

nearest pixels. Bilinear interpolation is another method used for resizing images.

Bilinear interpolation is a linear interpolation extension that reduces visual blur

when a fractional zoom is measured. The definition of this approach is to select

midpoint pixels that are used in the nearest four pixels, the value of which is

calculated. The intermediate pixel is created by the closest four-pixel

interpolation. The most efficient method is Bicubic Interpolation. Bicubic

interpolation operation is chosen when the speed does not important in the

Chapter Two Theoretical Background

13

process. The pixel B (r', c') is formed with interpolation of the nearest 4 x 4 pixels

that begin with A (r, c) and ending to A (r+2,c+2). The original image has the

two-scale factors denoted as 𝑆𝑟 and 𝑆𝑐 of A. 𝑆𝑟 and 𝑆𝑐 are the rows and column

scale factors correspondingly as shown in Figure (2.1) [32].

Figure (2.1): Method of bicubic interpolation [26].

2.3.2 Conversion RGB images to Grayscale

 This operation is done by dividing all RGB values by 255, Equation (2.1)

which is used to convert an RGB image to grayscale is as follows[5].

Where R: Red, G: Green, and B: Blue.

2.4 Feature Extraction

 Selecting accurate features is important for gesture recognition because the

forms, motion, and textures in human gestures are plentiful. Self-occlusion and

lighting conditions can make geometric features such as fingertips, finger

directions, and hand contours inaccessible and inaccurate. Another important

thing to keep in mind is that color, silhouette, and texture cannot perform

recognition tasks on their own. To name features explicitly is difficult images or

images that have been transformed or changed in some way are used as input.

 Grayscale= (R+ G + B) / 255 ….... (2.1) [5].

Chapter Two Theoretical Background

14

The classifier then uses features that have been implicitly and automatically

derived [27].

 Three different feature extraction methods are used, resulting in three

different results for each class, which are compared to one another that were a

histogram of oriented gradients (HOG), features extracted from the Discrete

Cosine Transform (DCT), and features extracted from a pre-trained CNN. The

advantages of the feature extraction methods are the reasons why they are used

in this thesis. HOG with ML algorithms and CNN algorithms are used in this

thesis[28].

2.4.1 Histogram of Oriented Gradients (HOG)

 HOG, created by Dalal and Triggs [29], is one of the most widely used

methods for identifying human bodies in computer vision and recognition. It

takes a photo and breaks it up into small square cells. It then computes a

histogram of gradient directions or image edges based on the differences

between cells. Normalized local histograms have been used to make the HOG's

contrast-detection feature more accurate, and this is why the HOG's performance

doesn't vary as a result of different lighting conditions. Due to simple

computations, it is a quick descriptor as compared to other descriptors. It has

also been demonstrated that HOG is a good descriptor for detection [30].

Moreover, HOG feature extraction has the advantage of lower complexity in

terms of computational time and greater accuracy as compared to popular feature

extraction [31]. HOG feature extraction mainly includes two stages (Histogram

Extraction of Oriented Gradient and Construction of HOG Descriptor ([28],

[32]).

1. Histogram Extraction of Oriented Gradient

 At this point, based on each pixel in the image, gradients are extracted and

turned into an angular histogram, which is then used as an image texture feature

Chapter Two Theoretical Background

15

vector. At pixel, the horizontal and vertical derivatives (i,j) of image I(i,j) are

computed as follows:

The magnitude of gradient is:

𝐆(𝐢, 𝐣) = √𝐆𝐢(𝐢, 𝐣)𝟐 + 𝐆𝐣(𝐢, 𝐣)𝟐 ………….. (2.4)

The direction of gradient is:

𝛂𝟎(𝐢, 𝐣) = 𝐭𝐚𝐧−𝟏 [
𝐆𝐣(𝐢,𝐣)

𝐆𝐢(𝐢,𝐣)
]

where Gi(i, j), Gj(i, j) are at pixel (i,j), the horizontal and vertical derivatives are

given, α0 ∋ [
−𝜋

2
, 𝜋

2
] [33].

2. Construction of HOG Descriptor

 The input image is divided into small square cells, and the differences are

used to compute a histogram of gradient directions or image edges [13]. Based

on the orientation of the gradient element centered on it, each pixel calculates a

weighted vote for an edge orientation histogram channel, and the votes are

accumulated into orientation bins over local spatial regions (cells). The

orientation bins are evenly spaced from 0 to 180 degrees (“unsigned”) [15].

 Block normalization is used to improve invariance to lighting, shadowing,

and other factors by correcting local contrast differences. It means that an

intensity measure is computed over a slightly larger spatial area, referred to as a

block, and the result is then used in every block to normalize the cell histograms.

The four adjacent block feature vectors are then linked to form a superb block.

Finally, the HOG feature of the image is built by scanning the image block by

block by combining the vectors of all superblocks [15]. As a result of the

overlapping of these blocks, some cells are included in more than one block [16].

………….… (2.5)

Chapter Two Theoretical Background

16

The process of grouping cells into larger spatial(blocks) regions is depicted in

Figure (2.2).

Figure (2.2): Cells are grouped into larger spatial regions (Blocks) [34].

For block normalization, there are several different normalization schemes.

When we defined v as a vector non-normalized containing all histograms in a

given block, ||v||1, ||v||2 .be its 1-norm and 2- norm, respectively and e be some

small constant (its value has no influence on the results), then the normalization

factor can be obtained from equations (2.6) [34]:

………….… (2.6)

Chapter Two Theoretical Background

17

The HOG of sample images is subjected to principal component analysis

(PCA). A linear SVM classifier is trained using selected principal components.

During the classification process, a feature vector of a testing image is extracted

using HOG-PCA, and the qualified classifier is then used to predict the sign

using HOG-PCA features from the testing image [3].

2.4.2 Features Normalization

Normalization is a data operation method used to improve a classifier's

accuracy. Following the feature subtraction process, various normalization

methods may be used to improve the performance [35]. This procedure entails

translating attributes into a type that places them within a particular range. The

normalization method is particularly useful for classification algorithms such as

the K-Nearest Neighbor (KNN) and Neural Network algorithms (NN), where the

process of features normalization aids in the acceleration of the training step.

There are several methods for feature normalization [36] such as z-score

normalization which was used in the proposed system.

 Z-Score Normalization

This method begins by calculating the average values of the features,

followed by calculating the standard deviation of the features, and then

normalization is performed using this equation [35]:

𝒁 =
𝐟𝐢 – 𝛍

𝛔𝐟

where fi refers for feature values, 𝛍 for mean of features, and 𝛔𝐟 for standard

deviation, which can be calculated using the equation below:

where n denoted the number of possible values in each feature [37].

………….… (2.7)

………….… (2.8)

Chapter Two Theoretical Background

18

2.4.3 Principal Component Analysis (PCA)

 PCA means reducing large data sets dimensions by translating a wide range

of variables into a smaller one first, then reducing the dimensionality of the

smaller one by leaving a large majority of the information in the original wide

set[38].

 Naturally, reducing the number of variables in a data set decreases accuracy;

however, the key to dimensionality reduction is to sacrifice some accuracy for

simplicity. Because ML algorithms can analyze data more easily and quickly

without having to deal with extraneous variables, smaller data sets are easier to

explore and imagine[38].

 To summarize, PCA's basic concept is to minimize the number of variables

in a data set while retaining as much information as possible [38].

(a) Utilize PCA to reduce the dimensions of the original features and to obtain

a set of features.

(b) Calculate the "covariance matrix" from the data using the formula below:

𝐶 = (𝑋 − �̅�) (𝑋 − �̅�)T

where the hand gesture data matrix is 𝑋, and the mean vector of the data

matrix is �̅�.

(c) Use the equation below to compute the matrix of eigenvectors 𝑉 and the

diagonal matrix of eigenvalues 𝐷:

 𝑉−1𝐶𝑉 = 𝐷

(d) By taking the inner product in the data matrix, sorted eigenvectors, and

sorting the eigenvectors in descending order of eigenvalues in D, the

data is projected on these eigenvector directions.

 Projected data = [𝑉𝑇 (𝑋 − 𝑥) 𝑇] 𝑇

 where 𝑉 is of 𝑛×𝑛 dimension, and each row of it is an eigenvector. The

features can be obtained [39].

………….… (2.9)

 ………….… (2.10)

………….… (2.11)

Chapter Two Theoretical Background

19

2.5 Gesture classification

 The HGR system's final stage is gesture recognition, which involves feeding

an input feature vector extracted from the feature extraction process into a

suitable classifier. ML based classifiers have grown in popularity in recent years,

owing to their flexibility and proclivity to learn new behaviors. ANN, hidden

Markov models (HMM), and help vector machines are all well-studied

classification algorithms. Since each classification technique has advantages and

disadvantages, a classifier's output cannot be determined solely by the algorithm

employed. Some algorithms may work well with one collection of data but not

with another ([3], [9]).

 Gesture recognition presents the most difficult and challenging tasks in the

fields of image processing, computer vision , and image analysis [40].

 A DL technique based on CNN is used to recognize each gesture by

automatic learning and extracting features [32].

2.6 Machine Learning Algorithms (ML)

 ML is a branch of Artificial Intelligence (AI) that deals with the creation of

systems that rely on data or information. Classification is a set of models or

functions that distinguishes between classes of data or concepts with the goal of

being used as a class prediction model for an unknown class of objects [41].

 ML is a set of methods that can automatically detect patterns in data, and then

use the uncovered patterns to predict future data, or to perform other kinds of

decision making under uncertainty [42].

 Figure (2.3) [43] categorizes classification into supervised and unsupervised

ML techniques. Supervised machine learning is a technique for teaching a

system to recognize patterns in input data, which can then be used to forecast

future data. Classified training data is used to find a feature by applying

supervised machine learning on the training data. Unsupervised machine

Chapter Two Theoretical Background

20

learning is used to draw inferences from data that is not labeled. Since there is

no classified answer, there is no incentive or penalty weightage for the data to

be classified into one of the possible classes [3].

 Generally, there are many classifier algorithms, such as SVM, Discriminant

Analysis (DA), Naïve Bayes (NB), Random Forest (RF), k- NN, and NN

algorithms, with each having a different method to predict or choose the set to

which a particular observation belongs [44].

Figure (2.3): Classification of the most common ML algorithms [43].

2.6.1 Support Vector Machine (SVM)

 SVM is a supervised ML approach. It determines the best hyperplane to use

to separate the data points. The margin surrounding the separating hyperplane is

maximized by SVM. In order to determine the best hyperplane, optimization

techniques are used [22]. SVM is a linear classifier that aims to maximize the

difference between two sets of data. It classifies by creating an N-dimensional

hyperplane that divides the input data into two groups, then probing for an

optimal number of dimensions. Supervised learning, for classification and

regression tasks, has become more popular in recent years as it avoids overfitting

Chapter Two Theoretical Background

21

even for new datasets. Many other classification tasks besides

electroencephalography (EEG) signal classification, such as handwritten

character recognition, face recognition, and more, have used SVM to be

successful. SVM was created by Vapnik [5] in 1998 and is a new type of machine

learning that uses the kernel and support vector for learning. By selecting a

kernel function, kernel machines provide a flexible framework that may be used

for various tasks and domains. Binary classification problems were addressed

using a one-versus-all technique, which improved the original SVM design.

When it comes to multiclass labels, MSVM considers them to be made up of

multiple two-class labels and uses classifiers to overcome issues. To deal with

the multiclass problem, a new multiclass classifier is built using the classifier's

outputs. The one-versus-all technique entails building one SVM per class that is

trained to discriminate samples from one class from samples from all other

classes. In general, the maximum output of all SVMs is used to classify an

unknown pattern [5].

 SVM, a binary typed classifier basis of the supervised learning approach for

classifying data into two classes by drawing a hyperplane as Figure (2.4) [45].

When it's about non-linear and multiclass data set, SVM added with an extension

and in that case, it's called MSVM as shown in Figure (2.5) [46].

Figure (2.4): The SVM hyperplane between two classes[45].

Chapter Two Theoretical Background

22

Figure (2.5): MSVM [46].

 SVM algorithm is divided into two kinds Linear and non-Linear SVM that

illustrate in the following section:

2.6.1.1 Linear SVM

 If the linear SVM hyperplane, then SVM is defined as linear SVM, e.g. if z

represents pairs training (xi, yi) when i=1,2...z, with category labels y (1, -1) the

direct equation is defining the hyperplane:

 𝑊. 𝑥 + 𝑏 = 0

 where W is a vector of weight, W= {w1, w2, wn}, b is a bias, and x represent

attributes. The data classification is considering as equation.

 𝑓(𝑤. 𝑥. 𝑦) = 𝑠𝑔𝑛(𝑤. 𝑥. 𝑏)

where 𝑠𝑔𝑛 :the signum function is the derivative of the absolute value function

, f(x) is the function of a hyperplane in m dimensions thus is got as a series of

every point x. 𝑥 ∋ ℝ𝑚 that fulfils the equation f (x)= 0 such that the function

hyperplane f(x) functions as a classifier linear predicting class y for each

presented point x, depended on the subsequent rule decision:

………….… (2.12)

………….… (2.13)

Chapter Two Theoretical Background

23

𝑊𝑇. 𝑥 + 𝑏 ≥ 1 = +1

𝑊𝑇. 𝑥 + 𝑏 < 0 𝑓𝑜𝑟 𝑦 = −1

 Maximizing the margin is constrained optimization trouble that the Lagrange

method can solve. A Lagrange multiplier (αi – i) explains every training point xi

. So, we have

ai = 0 ⇒ has no influence on the hyperplane.

ai > 0 ⇒ these points support vectors that are nearest to the hyperplane.

 Also, can calculate weight and bias when obtaining the αi value, the weight

calculation using the following formula:

 𝑊 = ∑ 𝛼𝑖𝑥𝑖

 Points with (= 0) do not consider SVM, therefore the average of the SVM

that this is () not equal to zero must take. When support vector with (= 0)

does not play any role in deciding [47], [48].

2.6.1.2 Non-Linear SVM

 In most cases, the linear classification does not consider the appropriate

classification approach for the non-linear classification used in such situations,

where a non-linear kernel function will be used. Linear SVM is fast to train and

implement, but with many training examples and not too many features they

appear to underperform on complicated datasets. In many applications, non-

linear SVM can be more consistent in quality across different problems and the

preferred choice, although they lack critical power.

A. Kernel Function

 A function’s kernel is used to transfer testing samples and training to a high-

dimensional feature space. This section describes function’s kernel to replace

functions of mapping. Since the kernel computation is more efficient than the

function of mapping, and computation time is normally saved when functions of

mapping are replaced with the use of kernels. SVM uses the kernel function K

(xn, xi) to transform the raw data space into a higher-dimensional new space. It

………….…(2.14)

………….… (2.15)

………….… (2.16)

Chapter Two Theoretical Background

24

employs the dot product transformation function ϕ(x) equation (2.17). The goal

is the information that can be collected feasibly and has been translated to a

higher dimension. The hyperplane function can be written in formula form

(2.18).

 𝐾(𝑥𝑛. 𝑥𝑖) = ∅ (𝑥𝑛)∅ (𝑥𝑖)

𝑓(𝑥𝑖) = ∑ 𝛼𝑛𝑦𝑛
𝑁
𝑛=1 𝐾(𝑥𝑛. 𝑥𝑖)+b

 where is a Lagrange multiplied, is support vector information, and 𝑦𝑛 is

a membership class label (+1, −1) with n = 1, 2, 3, …, N where N is the number

of class [47], [49].

 B- Examples of kernels

The most public example of the SVM higher dimensionality kernel that is

commonly used for the SVMs classification are:

1. Linear kernel which is describes as equation:

K(xn , xi) = (xn , xi)

2. Polynomial kernel which is describe as equation:

K (xi , xj) = ((xn , xi) +C) d

3. Radial Basis Kernel Function (RBF) which is describes as equation:

K (xi . xj) = e
−‖xi , xj‖

2

2σ2

4. Sigmoid kernel function which is describe as equation:

K (xi ,xj) = tanh (K (xi , xj) + 𝜃

where and are parameters of the specific kernels [47], [49].

C- Multi-Class SVM

 SVM algorithm was designed to differentiate between two classes, but

there are times when more than two classes must be categorized. Multiclass

classification problems (k > 2) are usually broken down into a series of

binary problems that can be solved directly using a generic support vector

machine. The one-versus-rest (1VR) and one-versus-one (1V1) systems are

………….… (2.17)

………….… (2.18)

………….… (2.19)

………….… (2.20)

………….… (2.21)

………….… (2.22)

Chapter Two Theoretical Background

25

two representative multi-class SVM organization schemes. Both (1VR) and

(1V1) are examples of Error-Correcting Output Codes (ECOC), which

break down a multi-class problem into a predefined collection of binary

issues [50].

1. One-Versus-Rest (1VR)

Binary classifiers are separated using the (1VR) technique for k-classification

constructs. The binary classifier m-th is trained to use the mth type information

as examples, with the remaining forms being k 1 and negative examples. During

the evaluation, the binary classifier with the highest output value determines the

class label. The (1VR) strategy's unbalanced learning collection is a major flaw.

Assuming that total forms have an equal number of examples to train, the rate

of plus to minus examples in each individual classifier is 1k-1. The initial

problem's equilibrium is missed in this case [48].

2. One-Versus-one (1V1)

 Decomposing 1V1 or pairwise classification is another classic technique

for multi-type classification. It evaluates all possible pairwise classifiers,

resulting in individual binary classifiers k X (k - 1)/2. When each classifier is

introduced in an example of a test, the one who has won class receives one

vote, and the best test is classified with the most votes for class. The classifier

sizes created by the 1V1strategy are almost all larger than the rest strategy's

against-one. However, the QP measure is smaller in each classifier, allowing

for faster training. However, when compared to the one-versus-rest approach,

the 1V1 strategy is more symmetrical [48].

2.7 Deep Learning Algorithms (DL)

 DL is a research field ML [32] in AI as Figure (2.6) [51] that has Deep neural

networks (DNN) are networks capable of unsupervised learning from

unstructured or unlabeled input, and it is a form of ML that enables computers

Chapter Two Theoretical Background

26

to learn from experience and understand the world in terms of a hierarchy of

concepts [22] [52].

Figure (2.6): The Relationship Between AI, DL and ML[51].

 DL was a class of learning methods developed to represent data with complex

structures by combining numerous non-linear changes. The NN that is linked to

form DNN is the fundamental building blocks of DL [5].

 DL algorithms are one promising avenue of research into the automated

extraction of complex data representations (features) at high levels of abstraction

[5].

 DL is often carried out using NN architecture. The term "deep" refers to the

total number of layers in the network, the deeper the network. In terms of

precision, DL is unrivaled. Advanced tools and methods have dramatically

improved DL algorithms to the point where they can outperform human

performance, in the near future, because there is very little engineering work

required, it will have many more successes [53].

2.7.1 Convolutional Neural Network (CNN)

 CNN is an excellent tool for mapping image data into higher-level

representations. CNN uses the pixel data it has been given as input to extract

features and computes the inference about the pixels [54]. It take this name from

the mathematical linear operation between matrixes which is called convolution

[55]. The general structure of the CNN system is viewed in Figure (2.7) [56].

Chapter Two Theoretical Background

27

Figure (2.7): The General Structure of the CNN System [56].

 In recent years, CNN had already been used successfully for automatic

feature learning. It performed admirably in image categorization, object

recognition, and even recognition of human behavior. This outstanding

performance can be due to the availability of huge datasets containing millions

of samples [3], [11].

2.7.2 Basic Structure of CNN

 CNN has shown success in picture categorization tasks. Convolutional layer,

subsampling or pooling layer, and fully connected layer are the three types of

layers in a CNN. Normally, multiple of the above-mentioned layers are stacked

to create the whole CNN architecture. The hierarchical characteristics are

extracted from a CNN employing the three types of layers. In a CNN, the bottom

layers collect low-level features, while the top layers collect and learn higher-

level features; this is important for classification tasks, the following explain

these layers: [22].

1. Input Layer: the input layer contains the pixel values of the image that enter

CNN.

2. Convolution Layers: The convolution layer as shown in Figure (2.8)[57] is

the key element of a convolution network; whose parameters consist of a set of

learnable kernels [32]. To get the feature map of this layer, the previous layer's

feature map is convoluted with a learned convolution kernel, and the result is

Chapter Two Theoretical Background

28

output through an activation function (AF). Each output's graph may be linked

to the result of convolution of numerous input feature graphs, allowing the

weights to be shared[58].

 The number of input images equals the number of output photos, and the

resulting image's dimension is reduced. Convolution is applied to each image,

and the image's width and length are compressed to acquire more detailed image

information[58].

Figure (2.8): Convolutional Layer [57].

 All convolution the layers use filters with different size to extract features

and pass the feature map to the next layer. The final layer uses filter to extract

the prior feature and pass it to the Softmax AF to output [59].

 To change the behavior of a convolutional layer, three main parameters must

be modified in a CNN. Filter size, stride, and padding are the three parameters.

The output size for each convolution layer can be calculated as equations

expressed follows:

No. parameters=output channels* (input channels* window size + 1)

 Where output channels denoted to features maps that result from convolution

layer, input channels denoted to previous layer, window size it means filter size,

and 1 refer to stride size

𝑶𝒖𝒕𝒑𝒖𝒕𝒔𝒊𝒛𝒆 =
𝒊𝒏𝒑𝒖𝒕𝒔𝒊𝒛𝒆 − 𝒇𝒊𝒍𝒕𝒆𝒓𝒔𝒊𝒛𝒆 + 𝟐 ∗ 𝒑𝒂𝒅𝒅𝒊𝒏𝒈𝒔𝒊𝒛𝒆

𝑺𝒕𝒓𝒊𝒅𝒆 𝒔𝒊𝒛𝒆
+ 𝟏

 …… (2.23)

 …… (2.24)

Chapter Two Theoretical Background

29

where output size= the size of the output Convolution layer, input size= the size of

input image, padding refers to the extra rows and columns of pixels on an image

matrix, Stride denotes how many steps we are moving in each step in

convolution. By default, it is one, and filter size= the size of filter [22], [60].

 The convolution layer's output is created by combining the multiple feature

maps. After that, the output is sent through the AF, which generates nonlinear

output [22].

 3. Non-linear Layer (Activation Function)

 Weighted sums of input and biases are used to calculate the total input for a

neuro and whether or not it is capable of being fired. It manipulates the presented

data using gradient processing, most commonly gradient descent, and then

outputs the parameters of the presented data to the neural network. In some

journals, these AFs are referred to as a transfer function ([40], [44]).

 AFs are used to control the outputs of out NNs in a variety of domains,

including object recognition and classification [43]. They are either linear or

nonlinear in nature, depending on the function they represent. To convert linear

equations into nonlinear equations, the process must join the AF. Below is a list

of some of the most popular AF ([40], [44]).

A- Sigmoid Function

 The Sigmoid AF is also referred to as the logistic function or squashing

function in some studies. Its research resulted in three sigmoid AF variants for

use in DL applications. The Sigmoid is a nonlinear adaptive function that is

frequently used in feedforward neural networks. It is a bounded differentiable

real function with positive derivatives in all directions and a certain amount of

smoothness, defined for real input values. The equation for the Sigmoid function

is[61]:

𝐬𝐢𝐠𝐦𝐨𝐢𝐝(𝒙) = 𝒇 (𝒙) = (
𝟏

𝟏+𝒆−𝒙)

where x is the input. With a range between 0 and 1 as shown in Figure (2.9), the

sigmoid function can be used to predict posterior probabilities [62].

 ……….… (2.25)

Chapter Two Theoretical Background

30

The sigmoid function is typically used as the output prediction in DL

architectures and is found in the output layers. The concept has proved to be

useful in a variety of classification tasks, including binary classification,

modeling logistic regression tasks, and other neural network problems [46].

The main advantages of sigmoid functions are that they are simple to

understand and that they are commonly used in shallow networks. Neural

networks with random starting weights should avoid the Sigmoid AF [62].

Figure (2.9): Sigmoid Function [62].

B- Hyperbolic Tangent Function (Tanh)

 Another type of AF used in DL is the hyperbolic tangent function, DL

application variations of which are used Tanh is a zero-centered hyperbolic

tangent function, whose range is from -1 to 1.as shown in Figure (2.10). The

tanh function's output is given by the equation:

 𝒇(𝒙) = (
𝒆𝒙− 𝒆−𝒙

 𝒆𝒙+𝒆−𝒙
)

In comparison to the sigmoid function, the tanh function became the preferred

function because it provides better training performance for multi-layer NN. The

tanh function, on the other hand, was unable to solve the sigmoid functions'

vanishing gradient problem. The function's main benefit is that it produces zero-

centered output, which aids the back-propagation process[62].

 ……….… (2.26)

Chapter Two Theoretical Background

31

 The tanh function has the property of only being able to achieve when x is set

to 0, the gradient is set to 1. During computation, as a result of this, the tanh

function produces some dead neurons. The activation weight, which is rarely

used as a result of zero gradient, is called a dead neuron. The tanh function's

limitation prompted more AF research to find a solution, resulting in the rectified

linear unit (ReLU) AF[62].

 The tanh functions have primarily applied to natural language processing and

speech recognition tasks using recurrent neural networks (RNN) [62].

Figure (2.10): Hyperbolic Tangent Function [62].

C- Rectified Linear Units (ReLU):

 Nair and Hinton proposed the ReLU activation function in 2010, and It has

the most widely used AF for DL applications, with cutting-edge results. The

ReLU is the most popular and successful fast learning AF. In DL, it outperforms

the Sigmoid and Tanh AF in terms of performance and generalization. Figure

(2.11) shows the two AF ReLU and Parametric ReLU(PReLU), which preserves

the features of linear models, making them easy to optimize by means of

gradient-descent methods [64].

Chapter Two Theoretical Background

32

Figure (2.11): types of ReLU Transformation [64].

Each input element is subjected to a threshold operation, and values less than

zero are set to zero, giving the following equation for the ReLU:

𝑹𝒆𝑳𝑼(𝑿) = 𝒇(𝒙) = 𝐦𝐚𝐱(𝟎. 𝒙) = 𝒇(𝒙) = {
𝒙𝒊 𝒙𝒊 ≥ 𝟎
𝟎 𝒙𝒊 < 𝟎

 This function corrects inputs that are less than zero by forcing them to zero

and thus eliminating the vanishing gradient problem that plagued previous

types of AFs. With typical applications in object classification and speech

recognition, the ReLU function has been combined with another AF in the

network's output layers to form the hidden units of DNN[65].

 The primary advantage of using rectified linear units in computation is that

they ensure faster computation by omitting exponentials and divisions, resulting

in an overall increase in computation speed. Another feature of the ReLU is that

it squishes the values between zero and maximum, resulting in sparsity in the

hidden units. However, when compared to the sigmoid function, the ReLU has

the disadvantage of easily overfitting, despite the fact that the dropout technique

has been used to reduce the effect of overfitting in ReLUs and rectified networks

have improved DNN performance[62].

…….… (2.27)

Chapter Two Theoretical Background

33

 However, Nair and Hinton (2010) asserted that the ReLU has proven itself in

multiple DL architectures due to its simplicity and reliability, including restricted

Boltzmann machines and CNN architectures[62].

 When compared to sigmoid and tanh, ReLU is significantly more reliable and

significantly speeds up convergence by six times, but it is far more delicate in

real-world applications. While this disadvantage cannot be completely

eliminated, it can be countered by adjusting the learning rate to the desired level.

[62].

D - Softmax Function

 In neural computing, there are several AFs including the Softmax function.

A big part of computer programming involves dealing with probability

distributions. Softmax, a function that can be applied to multiple classes to

generate an output of a range of probabilities between zero and one, with the

total probability sum equal to 1. A variant of the Softmax function is

implemented by way of the equation below:

𝒇(𝒙𝒊) =
𝒆𝒙𝒊

∑ 𝒆𝒙𝒊𝒌
𝒋=𝟏

where Xi is the input layer value, this normalization of the total amount of

outputs to one can be defined as the likelihood of the input belonging to class i,

j =1,2,3,…k , k is the number of classes in the multi-class classifier. and therefore

the softmax output 𝑓(𝑥𝑖)[62].

 Multi-class models calculate class probabilities using the Softmax function,

with the target class holding the highest likelihood. In nearly all of the output

layers of DL architectures, the Softmax function is used. The primary difference

between the Sigmoid and Softmax classifiers is that the Sigmoid classifier is a

binary classifier, whereas the Softmax classifier is a multivariate classifier [62].

4. Pooling layers The max function or average function is the pooling layer,

as shown in Figure (2.12), and the max pooling function is the most common

function utilized in this layer. In a local window, the max function computes the

……...… (2.28)

Chapter Two Theoretical Background

34

high-level feature. The polling layer was employed to lower the size of the

features and the amount of time it took to compute them [66].

Figure (2.12): Two Classic Pooling Methods [67].

 Max pooling is a common pooling approach that takes sub regions of the

feature map, preserves their highest value, and discards all other values [21].

5. Fully Connected Layer (FC)

 As with a standard multilayer neural network, CNNs are composed of one or

more fully connected convolutional layers [68].

 Dense or fully connected layers classify the features recovered by the

convolutional layers, which are then down sampled by the pooling layers. Every

node in a dense layer is connected to every other node in the previous layer [21].

 The feature map matrix is represented as a vector. All of the levels are

completely interconnected. These feature maps are then integrated to form the

final CNN model [69].

2.7.3 The Network Training

 Training is a weight-contact process. Most training systems start with

random numbers for the matrix of weight. Then it is adjusted on a weight basis.

The weight adjustment process is repeated in an acceptable way until the error

limit is acceptable. The training aims, when applied to the network inputs, to

produce the desired outcomes (or at least consistent) [70].

 Dropout regularizes neural network training by preventing co-adaptation of

model parameters. Thus reducing overfitting with limited training data [70].

Chapter Two Theoretical Background

35

 Dropout can also be used as an ensemble averaging method. Instead then

training multiple independent networks and weighing the results together to

reduce variance in the estimation as shown in Figure (2.13), dropouts have the

same tendency but with a single, larger network [71].

 In addition, the fully linked layers have been subjected to a dropout learning

technique with the same goal of reducing overfitting ([72], [73]).

.

 A- standard Neural Network B-After applying dropout

 Figure (2.13): Dropout Neural Network [71].

2.7.4 Back Propagation Algorithm (BP)

 Backpropagation is used to simulate how internal machine parameters change

over time and are applied to demonstrate each layer in turn. The deep

convolutional network (DCN) has made significant advancements in the

processing of video, images, audio, voice, and text [9], BP methodologies help

for the easy working of models [44].

 The optimization algorithms are used to perform back-propagation in deep

neural network learning. Taking one training sample at a time and passing it to

the neural network. Furthermore, each iteration records the fault[74].

 DL architectures have benefited greatly from the innovation and perfection

of new optimization algorithms. In large part, NN is an optimization problem in

which we use a stable training trajectory and rapid convergence to find the global

optimum[74].

 Optimization algorithms reduce the error function, and they employ a

numeric scanning function of the model's constitutional responsibility

parameters to compute objective values from the set of predictors accessed

Chapter Two Theoretical Background

36

within it. The bias values and neural network weights used in computing the

output values are internal learnable parameters. Optimizers are crucial in

lowering the loss incurred throughout the network training process, as well as in

the neural network model during training. There are a variety of enhancers, and

one of them was used in this thesis[74]:

2.7.4.1 Adaptive Momentum (Adam)

 Adam Optimizer is a stochastic enhancement method that requires first-order

gradients and a small memory specification. From the examination of the first

and second moments of the gradients, the Optimizer derives discrete flexible

learning rates for various parameters [74].

The mathematically notation for Adam are as equation follows:

where η:’ Initial learning rate’, gt : ‘Gradient at time t along ωj’, xt : Exponential

average of gradient along ωj, yt : Exponential average of squares of gradient

along ωj, and δ1, δ2: Hyper parameters[75].

2.7.4.2 Nesterov-accelerated Adaptive Moment (Nadam)

 Nesterov and Adam's optimizer are abbreviated as Nadam. In contrast to the

implementation that the company initially implemented, the Nesterov

component is a more efficient modification. The model training process is

accelerated using an exponential decay that depends on the moving average of

the gradients. The Nadam optimizer converges more rapidly and is preferable

for the pre-training phase when the Adam optimizer is not yet fully trained.

Nadam adds Nesterov steps ahead to the gradient to bring the equations up to

date by using the equations in the following:

𝒙𝒕 = 𝜹𝟏 + 𝒙𝒕−𝟏 − (𝟏 − 𝜹𝟏) ∗ 𝒈𝒕 (1)

𝒚𝒕 = 𝜹𝟐 + 𝒚𝒕−𝟏 − (𝟏 − 𝜹𝟐) ∗ 𝒈𝒕
𝟐 (2)

∆𝒘𝒕 = 𝛈
𝒙𝒕

√𝒚𝒕+𝜺
∗ 𝒈𝒕

𝟐 (3)

𝒘𝒕+𝟏 = 𝒘𝒕 + ∆𝒘𝒕 (4)

……….(2.29)

Chapter Two Theoretical Background

37

�̂�𝒕 ←
𝒈𝒕

𝟏 − ∏ 𝜷𝟏𝒊
𝒕
𝒊=𝟏

𝒎𝒕 = 𝜷𝟏𝒎𝒕−𝟏 + (𝟏 + 𝜷𝟏)𝒈𝒕

�̂�𝒕 =
𝒎𝒕

𝟏 − ∏ 𝜷𝟏𝒊
𝒕+𝟏
𝒊=𝟏

𝒗𝒕 = 𝜷𝟐𝒗𝒕−𝟏 + (𝟏 − 𝜷𝟐)𝒈𝒕
𝟐

�̂�𝒕 =
𝒗𝒕

𝟏− 𝜷𝟐
𝒕

where (m) and (v) initialized to zero and default values (taken from Keras) is α =

(0.002), β₁ = 0.9, β₂ = 0.999, ε = 10⁻8 [76], [77].

2.7.4.3 Root Mean Square Propagation (RMSProp)

 Geoff Hinton proposed RMSprop, which is an adaptive learning rate

approach. To address Adagrad's declining learning rates, RMSprop and Adadelta

were created. RMSprop is used to update Adadelta's vector using the following

equation:

The learning rate is also divided by an exponentially decaying average of

squared gradients by RMSProp. Hinton suggests 𝜺 to be 0.9. Furthermore, 0.001

is a decent default number for the learning rate n [77].

 The error for the present state of the model must be estimated repeatedly as

part of the optimization method. This necessitates the selection of an error

function, sometimes referred to as a loss function, that may be used to estimate

the model's loss and update the weights to lower the loss on the next assessment.

There are a lot of loss functions to pick from, and it can be difficult to know

which one to use, or even what a loss function is and what role it plays in neural

network training [78].

 ……….… (2.30)

 ……….… (2.31)

 ……….… (2.32)

 ……….… (2.33)

 ……….… (2.34)

 ……….… (2.35)

 ……….… (2.36)

https://keras.io/optimizers/#nadam

Chapter Two Theoretical Background

38

 The cost error or loss function is a metric for measuring CNN model error in

Deep neural networks. When training neural network models, the two primary

types of loss functions to use are cross-entropy and mean squared error [78].

 The Cross-Entropy Error:

The cross-entropy error is often utilized in classification problems since miss-

classification penalties are significant, The input pattern to be examined is n,

while the output node's index is J The training algorithm's goal is to minimize

the function represented in the equation below:

 𝑱 = ∑ {−𝐝𝐢 𝐌𝐢 = 𝟏𝐥𝐧(𝐲𝐢) − (𝟏 − 𝐝𝐢)𝐥𝐧 (𝟏 − 𝐲𝐢)}𝑴
𝒊=𝟏

where yi is the softmax layer's output value, di is the training data's right output

value, and M is the output node number [78].

 The Mean Squared Error (MSE):

MSE is the most commonly used loss function for regression. The loss is

the mean overseen data of the squared differences between true and predicted

values, the squaring is necessary to remove any negative signs. It also gives

more weight to larger differences. It’s called the mean squared error as you’re

finding the average of a set of errors calculated as equation[78]:

𝑴𝑺𝑬 =
𝟏

𝒏
 ∑ (𝒚𝒊 − 𝒚𝒊 ̂)

𝟐
𝒏

𝒊=𝟏

In other words, the MSE is the mean
𝟏

𝒏
 ∑ 𝒏

𝒊=𝟏 of the squares of the

errors (𝒚𝒊 − 𝒚𝒊 ̂)
𝟐.

 Cross-entropy loss is useful because it has two major advantages. The first

is that depth ambiguities no longer cause mixed depth pixels to be preferred.

Second, optimizing cross-entropy leads to much faster convergence than

optimizing MSE, which is hampered by gradients that go to zero near the

solution [78].

 ……….… (2.37)

 ……….… (2.38)

https://www.statisticshowto.com/mean/
https://www.statisticshowto.com/arithmetic-mean/

Chapter Two Theoretical Background

39

2.8 Evaluation Measures

 The performance of the baseline of the ML algorithms was assessed using a

variety of measurements. A confusion matrix (CM) is an ML construct that

stores information about a classification system's actual and expected

classifications. A CM has two dimensions: one is indexed by the object's actual

class, and the other is indexed by the classifier's predicted class [61]. The basic

shape of a CM for a multi-class classification problem is shown in Figure (2.14)

[79], with the classes A1, A2, and An. The number of samples categorized as

class Aj but really belonging to class Ai is represented by Nij in the confusion

matrix[79].

Figure (2.14): A confusion matrix [79].

A number of measures of classification performance can be defined based on

the confusion matrix. Some common measures of performance are calculated as

follows: [79]

A. Accuracy or Classification Rate:

 Accuracy refers to the relationship between the actual true classification

numbers and the total number of test samples applied during training and

testing, and the calculation equation as[80]:

 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑭𝑷+𝑻𝑵+𝑭𝑵

 ……….… (2.39)

Chapter Two Theoretical Background

40

B. Recall:

 The recall indicates (also called Sensitivity) the measure of the

completeness of the classifiers, which is the relationship between the correct

positive prediction numbers and the total positive prediction number, and the

calculation equation as[81]:

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷+𝑭𝑵

C. Specificity:

 Specificity is denoted The ratio of true negatives to total negatives in the

data, and the calculation equation as:

 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =
𝑻𝑵

𝑻𝑵+𝑭𝑷

D. Precision:

 Precision denotes a classifiers’ exactness measure, and it is the ratio of

true positives to the total predicted positives, and the calculation equation

(2.26) is [81]:

 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷+𝑭𝑷

E. F1-score:

F1 score (F-measure) is used to evaluate the detection results, the balance

between precision and recall is also transmitted.

 Only when the Precision and Recall numbers are both high does the F1-

score become high, the calculation equation (2.27) as following [81]:

 𝐅𝟏 − 𝐒𝐂𝐎𝐑𝐄 =
𝟐 𝐗 (𝐏𝐫𝐞𝐜𝐞𝐢𝐬𝐢𝐨𝐧 𝐗 𝐑𝐞𝐜𝐚𝐥𝐥)

𝐏𝐫𝐞𝐜𝐞𝐢𝐬𝐢𝐨𝐧+ 𝐑𝐞𝐜𝐚𝐥𝐥

 where truth positive is the TP, false positive is FP, the true negative is TN, and

false negative is FN, each one has a specific meaning in the confusion matrix

as it is shown below:

 True Positive (TP): is the number of class examples correctly recognized.

 True Negative (TN): is the number of examples correctly identified as not

belonging to the class.

 ……….… (2.40)

 ……….… (2.401

 ……….… (2.42)

 ……….… (2.43)

Chapter Two Theoretical Background

41

 False Positive (FP): is the examples that were either incorrectly assigned

to the class or were not assigned to the class at all.

 False Negative (FN): those that were not identified as class examples, see

([80], [81]).

Chapter Three

PROPOSED SYSTEM DESIGN

Chapter Three Proposed system Design

42

 CHAPTER THREE

 PROPOSED SYSTEM DESIGN

3.1 Introduction

 This work tries to contribute to providing the two proposed hand gesture

recognition (HGR) systems using Machine Learning (ML) and Deep Learning

(DL)algorithms will be discussed in this chapter, using the Convolution Neural

Network (CNN) and Support Vector Machine (SVM). It will begin by

presenting and discussing the system's general block diagram. In addition, this

chapter will go through the system's architecture in detail, as well as the

proposed algorithms for the various stages of the system.

 Data acquisition, image preprocessing, feature extraction, and gesture

recognition are the stages that the techniques used in this thesis are divided into

as viewed in Figure (3.1), the progress of the algorithm, they are critically

examined and their merits are evaluated at each step overall, the purpose of this

thesis is to introduce readers to the field of automatic gesture and sign language

recognition and to serve as a springboard for future research in this field.

Figure (3.1): Stages of Hand gesture recognition (HGR).

Data Acquisition

Image Preprocessing

Feature Extraction

Gesture Classification

Chapter Three Proposed system Design

43

3.2 The Proposed System Design

 The two proposed systems aim to Static HGR for American sign language

(ASL) and Arabic sign language (ArSL), Two different datasets are used to

evaluate each proposed system.

 In human-computer interaction, the two offered systems play a major role

due to the increasing numbers of deaf and hard-of-hearing people in the

community.

 According to Figure (3.2), the system will be divided into two parts

depending on the classification method. Each proposed system used a different

dataset. Through this system and at the end, hand gestures for ASL and ArSL

will be recognized and classified by applying the stages of the proposed

methodology of the system, the general block diagram of the system for Static

HGR and it will be explained later.

 Figure (3.2): Block Diagram of General Proposed Systems

Chapter Three Proposed system Design

44

 Figure (3.2) illustrates the major stages of a general diagram that will be

applied to the two used proposed systems. In this general diagram, the stage

(image acquisition) and (image pre-processing) are common stages between

the two proposed systems and will be discussed in detail later. In the first

proposed system, there are several stages that will have been carried out after

image acquisition and image pre-processing, these include feature extraction

and the recognition stage.

In the second proposed system, after the image acquisition and image

pre-processing stage, the CNN structure has been built, and after that training

and testing operations will use the dataset to complete the recognition process.

Before explaining the two proposed, the joint stage between these two proposed

systems stages will be explained.

3.3 Image Acquisition Stage

 The difficulty of this work is to create a dataset that requires the availability

of high-quality cameras at very high prices and also the difference in the

representation of the gesture from one person to the other because of the

difference in skin color and lighting, these are the main reasons that make it

very difficult to create a data set consisting of thousands of the different images

of hand gestures. For these reasons, we resort to the famous and approved

website safe, which is freely available to all researchers, and which contains

thousands of images such as kaggle and mendeley.

 In order to classify hand gesture images by using the proposed systems, the

dataset was collected from different sources, the first data set is a collection of

images of 26 alphabets from ASL and the second dataset images for the 32

ArSL.

 The image for a computer is a three-dimensional matrix (width x Height

channel), and values range between (0-255), The input images that used in the

Chapter Three Proposed system Design

45

proposal system for hand gesture recognition whose size has been 200 x 200 x

3 for ASL, and 64 x64 x3 for ArSL.

 The input layer consists of three layers because the dataset is RGB color

images are red, green, and blue in JPG file format, so each color has a specific

layer.

3.4 Image Preprocessing Stage

 The image size is resized before it enters the ML algorithms for

classification, the images are resized from 200x 200 to 224 x 224 image size

for ASL and from 64x 64 to 224 x 224 image size for ArSL, the process of

optimizing both input and variables aids in the acceleration of the training

process. While preserving the integrity of the data without compromising the

original image data, image conversion must be performed as the Algorithm

(3.1), convert all of the image values in our system to grayscale by dividing all

of the RGB values by 255.

Algorithm (3.1): Conversion RGB image to gray-scale

Input: Color Image (RGB image)

Output: Gray-Scale Image

Steps:

 Begin

Step (2): Read hand gesture. image

Step (3): Rows = image. Height

Step (4): Columns = image. Width

Step (5): Loop for i=0 to Rows

Step (6): Loop for j=0 to Columns

Step (7): Find pixel =Image (i , j)

Step (8): Compute the GP by using the equation (2.1)

Step (9): End for j

Step (10): End for i

Step (11): Return Gray Scale image (GI)

End Algorithm

Chapter Three Proposed system Design

46

3.5 The First Proposed system: (Multi-Class Support Vector

Machine Algorithm (MSVM))

MSVM is a ML algorithm that is considered to be one of the most

popular. depending on chapter two, the definition, details, and equations are

presented (2.6.1.2). This section employs MSVM for classification after all

stages of the system have been completed; these stages are depicted in Figure

(3.3) as a block diagram.

Figure (3.3): The block diagram for the first proposed system.

Chapter Three Proposed system Design

47

3.5.1 Feature Extraction

 The hand gesture images use to have a uniform background and are lighter

in color than the hand gesture image, which made it easier to work with the

hand and separate it from the background.

 After converting RGB images to grayscale, work begins to determine the

region of interest (ROI) in the hand gesture image using Histogram of Oriented

Gradients (HOG) analysis is detected, the proposed system applies HOG

algorithm on Dark gradient areas to extract HOG features as illustrated in

Algorithm (3.2). The input of HOG algorithm is hand gesture image after

applied to it a preprocessing operation.

 The actual process of determines ROI involves separating the hand gesture

from its background image. The complexity of this step would depend on the

type of background that we are dealing with.

 ROI is defined as the border region of the fingers, which is highlighted in

white while the rest of the image is highlighted in black as shown in the next

chapter.

 The set of features extracted from the ROI of the hand gesture image using

HOG algorithm are normalized using the Z-Score technique and then saved in

the dataset. In addition, the proposed system calculated sigma for each feature’s

columns, and then saving in the dataset as shown in Figure (3.4), which

representing Standard Deviation, that is a measure of the extent to which data

varies from the mean, which has an important role to increase the accuracy of

classification.

Chapter Three Proposed system Design

48

Algorithm (3.2) Feature Extraction using HOG Algorithm.

Inputs: Data Set Image

Outputs: Features

Begin

Step1: For each image in data set do

Step2: Resize Image to 224X224.

Step3: Calculating Gradients Magnitude and direction (x and y)

 A-Calculating Magnitude

For each Pixel in image do

Get neighbor pixel call [left, right, top, bottom]

dx =right - left //according to equation (2.2)

dy =bottom - top //according to equation (2.3)

Magnitude=√𝑑𝑥2+𝑑𝑦2 //according to equation (2.4)

Endfor

 B-Calculating Orientation

 For each Pixel in image do

Get dx , dy from pixel

Ori =tan−1(𝑑𝑦/𝑑𝑥) //according to equation (2.5)

 Endfor

Step4: Create Histograms using Orientation

A- split image to blooks, each block size 8*8 pixel

B- Use (“unsigned” gradient) when the orientation bins(bin) are evenly

spaced over 0◦– 180◦, size of each bin is (4), therefore, number of

bin is (45).

C- PI= 3.14

For each block from image do

For each pixel in block do

bin = N * (Qri + PI) / (PI*2) //bin represent (x-axis)

if (bin < N) then bin = bin

else bin = 0;

hist[bin] += 1; //hist[bin] represent (y-axis)

Endfor

Endfor

 Step5: Normalize gradients using L2-norm Block normalization, by finding

the summation of all hist[bin] then divided each value of hist[bin]

on the summation according to equation (2.6) call result.

 Step6: Save result to data set features

 End for

End

Chapter Three Proposed system Design

49

Figure (3.4): Block Diagram of Extraction Features using HOG Algorithm.

3.5.2 Z- Score Normalization

The goal of Z-Score Normalization is to normalize features HOG to

bring their values closer together; the results of this stage are saved in the

dataset and are displayed in chapter four.

Chapter Three Proposed system Design

50

3.5.3 Principal Component Analysis (PCA)

 The main purpose of PCA is to reduce the dimensionality of large datasets

reducing a large set of variables into a smaller set that still includes most of the

information from the large set.

 The accuracy of a data set is reduced as the number of variables is reduced;

nonetheless, the answer to dimensionality reduction is to exchange some

accuracy for simplicity. Because ML algorithms can evaluate data more readily

and rapidly without having to deal with superfluous factors, smaller data sets

are easier to examine and display.

 After stage HOG. The extracted features were then subjected to

dimensionality reduction using PCA was used to extract the principal variable

among the random variables illustrated in Algorithm (3.3), and as displayed in

the next chapter.

 Algorithm (3.3): PCA to Extract Feature.

Inputs: number of features, Y =number class , k =dimension reduction

space

Outputs: Features that have the highest contrast

Begin

Step 1: Compute the mean vectors for the different classes from the dataset

Step 2: Computing the scatter matrices:

A- Computing the Covariance Matrix call A as equation (2.9)

B- Between-class scatter matrix SB

 𝑆𝐵 = ∑ 𝑁𝑖(𝑚𝑖 −𝑛
𝑥𝜖𝐷 𝑚)(𝑚𝑖 − 𝑚)𝑇

 where m is the overall mean, mi is sample mean, and Ni sizes of the

respective classes.

Step 3: Compute the eigenvectors (e1, e2 ,... , ed) and corresponding

eigenvalues (λ1,λ2,...λd) for the scatter matrices. Av=λv

Chapter Three Proposed system Design

51

and A= 𝑆𝑤
−1𝑆𝐵 ,V=Eigenvector , λ=Eigenvalue as equation

(2.10) and (2.11)

Step 4: Sort the eigenvectors by decreasing eigenvalues and choose k

eigenvectors with the largest eigenvalues to form a d × k

dimensional matrix W (where every column represents an

eigenvector)

Step 5: Calculate the eigenvalues for ∁= [𝛌1 > 𝛌2 … . > 𝛌N]

Step 6: Use this d × k eigenvector matrix to transform the samples onto the

new subspace. This can be summarized by the matrix

multiplication Y=X × W where X is an n × d dimensional matrix

representing the n samples, and Y is the transformed n ×

k−dimensional.

END

3.6 Recognition Stage Using MSVM Algorithm

 This stage is the last stage in the first proposed system. The Recognition

process is the summary of the work through which the decision is made. The

MSVM algorithm is chosen, as it is one of the well-known traditional

algorithms of supervised learning of machine learning algorithms. This

algorithm is explained in detail with its equations in chapter two, section (2.6).

The extracted features from the previous stages will be adopted at this stage. In

the previous stage, 1296 important features were extracted from each image in

the dataset. They were saved in a database.

 In this database, the 1296 features that were extracted before the HOG method

are also stored and after that used PCA to reduce these features and MSVM to

classify for 26 classes ASL and 32 classes for ArSL.

Chapter Three Proposed system Design

52

Algorithm (3.4): Multi-Class Support Vector Machine Classifier

3.6.1 MSVM Training

 At this stage, the proposed system has 26 classes of different types of hand

gesture images for ASL, and 32 classes of different types of hand gesture

images for ArSL to be recognized In general, the SVM algorithm classifies

only two classes, but here it has more than two classes. For this reason, the

multiclass MSVM method type One Versus Rest (1VR) system is used, which

is explained in section (2.6.1.B.1). The main idea is to express the problem

oppositely: rather than writing "class A vs. class B vs. class c " the issue can be

written "class A against the rest, class B against the rest,", n, ultimately n

differential learning issues are the inverse to "class n against the rest. In the

training phase, the images obtained on the MSVM algorithm are entered, in

order to be classified in any class for any hand gesture. Each SVM binary

classifier is trained to utilize a vector of training data, every row associates with

features extracted as an investigation from a class. Following the training stage,

Input: Training set Features for Hand gesture images.

Output: Class name.

Begin

 Step 1: Establish the training label for all training sets and identify 26

classes for ASL and 32 ArSL.

Step 2: Specify the kernel function ((Linear kernel), as calculated in

the second chapter in the equation (2.19).

Step 3: Segregated data to 1 against all classes

Step 4: Passes testing set on MSVM depended on the hyperplane to

identify the class name.

Step5: Return the class name

 End

Chapter Three Proposed system Design

53

the multi-class MSVM model is able to decide the right class for the input

features vector.

3.6.2 MSVM Testing

 The classifier was a trained MSVM model that produced an independent

test dataset that was categorized according to the classifier's test accuracy. A

specific group is used randomly for this stage, which is the testing stage, in

order to estimate and evaluate the quality of the model training that has been

proposed. Each row of the previously extracted feature vector was categorized

and unlabeled in this stage, whereas the labeled rows are in the training stage.

The classified system was developed using data from the training stage as well

as the feature vector. Each feature is associated with a specific column in this

sample, resulting in a matrix of samples. Because the number of columns

represent the number of features, the sample size must be divided by the same

batch size as the training data.

3.6.3 Recognition for ASL and ArSL hand gesture image in the First

Proposed system (Performance Measurement)

To perform the classification process, there are several forms available online

or offline. Based on the previous steps and the training dataset, the Offline form

was used to perform the recognition of static hand gesture images for ASL and

ArSL to find the accuracy as shown in chapter four.

3.7 The Second Proposed System using CNN Algorithm

 CNN is one of the most effective methods for a higher-level representation

of image data. CNN learns how to extract features from image pixel data and

attempts to return inference about pixels. CNN processes the input image and

classifies it into different classes.

 After passing the image through a sequence of convolutional, nonlinear,

pooling, and fully connected layers, the output is generated. The first layer's

Chapter Three Proposed system Design

54

output is used as the second layer's input. This happens with each new

convolutional layer.

 The diagram for the second proposed system to classify and recognize the

hand gesture image will be displayed in Figure (3.5). Then the Algorithm (3.5)

for CNN training will be shown. In this algorithm, the processes that occurred

to classify and recognize the hand gesture image with preprocessing were

presented starting from the first stage.

Figure (3.5): Block Diagram of Second Proposed System

Chapter Three Proposed system Design

55

Algorithm (3.5): CNN Training Algorithm to Classify Hand Gesture Images

Input: Hand Gesture Images After Preprocessing

Output: Classification For Hand Gesture Images

Begin

Step (1): Splitting the data into two parts, 80% for training and 20% for

 the testing.

Step (3): Implement CNN algorithm.

Step (4): CNN design which consisting 4 CNN with several layers, each

CNN consists as:

a. Input layer: RGB image after preprocessing.

b. Convolution layer: Multiple filters were used with size 3*3.

c. Nonlinear layer (Activation layer): Using Rectified linear units

(ReLU) ………as Equation (2.2).

d. Pooling layer: Using Max-pooling layer with size (2*2).

e. Dropout layer to exclude 25%,50%, 25%, and 25% Respectively of

neurons to reduce overfitting.

f. Flatten layer: converts the two-dimensional matrix data to a vector,

thereby allowing the final output to be processed by standard fully

connected layers.

g. two Dense or fully connected layers perform classification on the

features extracted,

h. Dropout layer.

i. Softmax layer ….by using Equation (2.28).

Step (5): For each pattern in the training dataset:

a. Input current pattern (input Image with Label).

b. Calculate the real output of the CNN through Softmax layer

c. Calculate the error rate by comparing the real output with the desired

output.

d. Compare the performance goal with the error rate:

 1. If the performance goal was not meet, change the connection

 weights by using the back-propagation learning algorithm.

 2. Else, go to next image pattern.

 e. Stop condition:

 1. If the performance goal was meeting with validation data or

 the maximum iteration was achieved, go to step (7).

 2. Else, repeat step (5).

Step (6): Return the CNN with the optimum weight.

END.

Chapter Three Proposed system Design

56

 We also practically increased the data by training the model on more

images.

 After completing from image preprocessing stage, split the data set 80%,

70% and 60% for training and 20%, 30%, 40% for validation data For

comparison and selection of the best results as we will see the variance of the

results in Chapter (4).

3.7.1 Feature Extraction Stage

 The CNN had already been used successfully for automatic feature learning.

It performed admirably in image categorization, object recognition, and even

recognition of human behavior, and used for extracting features in an

automated way as its outcome is very satisfiable because it has several dynamic

parameters to train up the machine easily.

 The Convolution layer used Multiple filters with size 3X3 to repeatedly

gather information about the image, however, the information obtained is only

a small portion of the image area each time.

 CNN's apply a variety of filters to an image's raw pixel data to extract and

acquire higher-level features, which the system can ultimately employ for

classification.

3.7.2 Design Convolution Neural network (CNN) Structure

 The structure is designing in Figure (3.6) to suit the proposed system and

after changing many of the parameters and testing it, by choosing this design

for the network for obtaining the best result.

Chapter Three Proposed system Design

57

Figure (3.6): Structure of the CNN algorithm

 As shown in Figure (3.6) above, the structure of the CNN algorithm consists

of several layers for each layer a specific task and a different structure, the

structure is designed as follows:

1. Input Layer: RGB image in JPG file format after preprocessing stage.

2. Convolution Layer: The convolution layer is often called the extractor layer

because the image features are extracted from it. First and foremost, part of the

image is connected by sliding the filter to the next receiving field of the same

input image via a stride and performs the same operation again with the

Convolution Layer. We repeat the same process over and over until the whole

Chapter Three Proposed system Design

58

image is passed through. The output is the next layer's input; stride shows how

many steps we take every step of the process. It's one by default.

 The values are calculated according to the equation that was calculated

according to equation (2.23), that clarifies the work of the convolution layer.

 In the second proposed system, four convolution layers are used. In the first

convolution layer, 32 filters were used with dimension 3*3, the second 64

filters were used to dimension 3*3, the third convolution layer, 128 filters were

used dimension 3*3, and in the fourth convolution layer, 256 filters were used

to 3*3 dimension, as shown in Figure (3.6). Choosing the number of filters in

each of the convolution layers, based on several experiments that prove the best

result that obtained of these numbers that were used in each level.

3. Non-linear Layer (Activation Function)

 A non-linear transformation is implemented to the input by the CNN, it is

also called Activation function (AF), and the node AF describes the node

output provided by the input or input set. Rectified Linear Unit (ReLU), which

was explained previously in section (2.7.2.3). In this function, negative values

in the matrix resulting from the previous step are converted to 0 and positive

values remain the same. It also showed with its calculation in the previous

chapter in the equation (2.27). We are used in the proposed system after each

level of the convolution layers, and with fully connected layers after flatten

layer were shown in Figure (3.6).

4. Pooling Layer

 Another building block to the CNN is a pooling layer; the purpose of this

layer used to decrease feature size and calculation time required, and the

number of parameters and the calculation of the network.

 In the interpretation, pooling layers are invariant as being convolution

layers, since their calculations have been explained in detail in section (2.7.2.4).

Average pooling and max-pooling layers are the most frequently used systems.

The max pooling layer is used in the proposed system with the size (2*2).

Chapter Three Proposed system Design

59

 Max pooling was chosen because it gives better results. It takes the highest

value in the matrix specified for pooling and passes the process to all the values

of the matrix and therefore has another matrix with fewer dimensions.

 The two-dimensional matrix data is then converted to a vector by a layer

called Flatten, allowing the final output to be processed by standard fully

connected layers to obtain the next layers.

5. Fully Connected Layer

 The final layers of a CNN are frequently fully connected layers, the major

difference is that the inputs would be in the form that CNN earlier stages would

build. In the two neighboring layers, the neurons in a fully connected network

were connected directly to each other.

 The first fully connected layer with the ReLU AF contains 512 neurons. The

second fully connected layer with the ReLU AF contains 250 neurons, followed

by a dropout layer that excludes 25% of neurons to reduce overfitting.

6. Softmax Layer

 The output layer, which has a Softmax activation function and has 26

neurons for ASL and 32 neurons for ArSL, one for each hand gesture

recognition class, is the final stage of the CNN structure. The mapping of the

data to the final classes for hand gesture recognition is the output. The Softmax

AF is according to equation (2.28).

 So, what this implies is that every neuron in the fully connected layers can

collect input data components over time that would help it to predict the right

class value in the softmax layer afterward are shown in Figure (3.6). The

objective of this layer is to summarize the weights of the features from the prior

layers and show the value of per class, as was explained in section (2.7.2.). In

the proposed system, 26 classes for ASL dataset and 32 classes for the ArSL

dataset, will be produced from this process because according to the data used

for training and determining the number per classes that have been extracted

from this stage. These classes will be in the form of value for each class linked

Chapter Three Proposed system Design

60

to the fully connected layer image and Softmax will be made for them in the

last step as seen in Figure (3.6).

Algorithm (3.6): Softmax layer function

3.7.3 CNN Training

 Training a network is the process of obtaining kernels in convolution layers

and weights in fully connected layers that reduce differences on a training

dataset between output predictions and specified area truth labels. The training

process begins with reading the model name, epoch number, and batch size

from the user. The system then reads the dataset and generates the dataset

augmentation. The system begins training the network using the number of

epochs specified by the user earlier. The training will generate a probability

value for each of the 26 ASL classification classes and 32 ArSL classification

Input: Fully Connected Layer Values Zi .

Output: Softmax probabilities value for 32 classes for ArSL, and for 26

classes for ASL.

Begin

Step (1): Calculate the exponential for every input in fully connected layer

 𝒆𝒛𝒊 ← 𝒆

Step (2): Calculate the exponential summation for two class of input fully

 connected layer ∑ 𝒆𝒛𝒊2
𝑗=1

Step (3): Calculate the soft max function (𝑦𝑖) by using equation (2.28)

 for classes after calculating the exponential for each class in

 step (2), and divide each of them by the sum of the classes after

 calculating the exponential for them in step (3), to predicate a true

 class that has the highest probability.

Step (5): Return softmax probabilities value for the classes of hand gesture

recognition (yi)

End algorithm

Chapter Three Proposed system Design

61

classes, with the class with the highest probability value being the classification

class predicted by the algorithm. The training results are then saved as a model

file for further use. After completing the training, the system will store the

model and plot the training results.

 There are three parameters in this training that run continuously during the

procedure: learning rate, batch size, and optimizer. The learning rate is 0.0001,

and this option specifies the network layer constants for learning speed. While

the batch size option determines the overall quantity of data used in a single

training batch, the size of the batch that was applied in the proposed system of

various sizes.

 The memory capacity of the device that is used to conduct the training

process is used to determine batch size. Also the optimizer is (Nadam) as

explained in section (2.7.4.2).

 The training stage needs three things for training, which are the training set

that is obtained from the dataset, the layers in which the network was built, and

the different training options that were made for training. Also, this structure

has a very important function for evaluating the training process, which is the

Loss function, which will also be used.

a. Training Set

 The data are in two categories: training data and validation data. The data

are divided using the Python function " validation split=0.20)", which splits the

data randomly according to the percentages calculated by the user. To achieve

a better method, it was randomly divided and not chained, and data were

randomly taken from the dataset to make identification and classification later

better and stronger. After checking all ratios, the data were divided in the

proposed method so that the training data would be 80% and the validation data

would be 20%. As will be seen in the chapter (4).

Chapter Three Proposed system Design

62

b. Layers (designing)

 The layers are supposed to be developed during the training stage of the

CNN structure, and Images will be passed over all these layers to extract

features and learn from them so that the classification is done using the

extracted features.

c. Loss Function

 A loss function, also known as a cost function, can be used to determine the

accuracy between the network's performance estimations and given region

truth labels., which aids in the optimization of CNN parameters. The main goal

here is to reduce the failure of a CNN by optimizing its parameters (weights).

A CNN combines the target (actual) result and the expected value with errors

to calculate the loss using the loss function. In this thesis, we use the cross-

entropy error as explained in section (2.7.4.3).

d. Training Option (training algorithm)

 In order for the training process to be completed, that need multiple options

that were used in this process using a Python program by parameters that are

created in the training process these options are:

1. Nesterov-accelerated Adaptive Moment (Nadam)

 The method is utilized in the data training process, due to its good properties

that fulfill the purpose of training. It is an optimization method utilized to train

CNN and ML systems. Nadam is an optimization algorithm that can be used to

iteratively change network weights depending on training data, and its tool

helps move vectors of gradients in the true directions and thus contributes to

faster convergence. It is one of the most famous optimization algorithms and it

is used to train several states of the art systems. They were explained in the

previous chapter in section (2.7.3.2).

2. Max Epoch

 The “Epoch” is a metric of how many times all training vectors are once

utilized to update the weights. Concurrently in one epoch in the learning

Chapter Three Proposed system Design

63

algorithm, before the weights are upgraded. The maximum number of epochs

used for training is 150 epochs. In addition, tried with a different number of

epochs with the different batch sizes, as shown in the next chapter.

3. Validation Data

 It is the details that will be used to validate the training throughout. This

may be an image data store with categorical labels. AMini-Batch data store

with defined responses, or a table with a cell array X, Y. Where X is a numerical

array with the input data and Y is a return array, unless image paths or images

are in the first column. This option was used for validation data in the proposed

system. The testing set refers to the community that was used in the subsequent

testing process, while the dataset refers to a collection of datasets that have

been labeled.

3.7.4 CNN Testing

 The testing dataset is utilized to offer an unbiased final design fit assessment

based on the training data set. The system now employs the groups that were

trained in the previous phase of CNN, and the features were extracted from

learning the network when the dataset was transmitted through the hand gesture

image on this network. The dataset that was assigned to the research phase was

also used.

 The classification of hand gesture images has been completed. The training

stage comes before the testing stage, which means that the network is trained

when some image of a hand gesture is inserted. Since the network was

previously learned and practiced, the types of hand gestures can be determined.

So, the key distinction between training and testing is that test data is unlabeled,

while training data is classified. This feature in Python is used in the proposed

framework, scores = model. Evaluate (X _test, y _test) assigns each row of the

dataset to one of the training classes. Both the sample and training arrays must

have the same column size. Training the Group is a group element, and the

individual values decide groups, and each factor specifies the group the related

Chapter Three Proposed system Design

64

training row belongs to. We have arrived at the final stage, which is the

classification and recognition of static hand gesture images.

Chapter Four

EXPERIMENTAL RESULTS

AND DISCUSSION

Chapter Four Experimental and Results Discussion

65

CHAPTER FOUR

EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Introduction

 In this chapter, the implementation and experimental results of the

proposed system were presented and described. This proposed system "hand

gesture recognition based on machine learning techniques" is divided into two

different subsystems according to the used algorithms. The first proposed

system that was previously explained consists of several stages; the outcomes

of these stages will be presented with the final results of classification using

the multi-class support vector machine (MSVM) algorithm, the second

proposed system is based on the convolution neural network (CNN)

algorithm. In addition to the results of these two systems will be presented

and a comparison will be made between the results of the two systems.

Moreover, a comparison with related works will be presented. The same

dataset was used in the two subsystems.

4.2. Implementation Environment

 Hand gesture image classification system using CNN and MSVM is

implemented under a specific system requirement such as the Windows-10

operating system, Hardware processor: Core i7- CPU 8550U, 200 GHz, and

(8GB) RAM. Python (3.7.10 64-bit) programming language with Tensor

Flow backend, CNN programs implemented on Kaggle server.

Chapter Four Experimental and Results Discussion

66

4.3 Dataset Acquisition

 The proposed system used two data set images, the first data set is a

collection of images of 26 classes from the American Sign Language (ASL)

as shown in Figure (4.1) from “Kaggle is a Google subsidiary that operates

as a community of data scientists and developers and is one of the best data

collection sites. It also has a large community where you can discuss data,

find available code, and create your own projects. It was founded in 2010 with

the goal of becoming the first platform to host predictive analytics and data

mining challenges and competitions”, Every downloaded image is recorded

to RGB color space at 200 * 200 sizes and saved in JPG format in file named

(ASL data) and stored on the computer.

Figure (4.1): The Alphabets of the American Sign Language[82].

Chapter Four Experimental and Results Discussion

67

The second dataset images of the 32 Arabic sign language (ArSL) and

alphabets as shown in Figure (4.2) from “Mendeley Data is a safe cloud-

based repository where you can keep your data and share, view, and cite it

from anywhere". Every downloaded image is recorded to RGB color space at

64* 64 sizes and saved in JPG format in an uncompressed file named (ArSL

data) and stored in the computer.

Figure (4.2): The Alphabets of the Arabic Sign Language[83]

 The two datasets that are used in the two proposed system have distributed

as Table (4.1) shows the distribution of hand gesture images.

Chapter Four Experimental and Results Discussion

68

Table (4.1): The Distribution of Hand Gesture Images.

Date

Set

Type

Number

Of

Class

Number

Images For

Each class

For

Training

Number

Images For

Each class

For Testing

Number

Images For

Training

Number

Images For

Testing

ASL 26 750 150 19500 3900

ArSL 32 750 150 24000 4800

4.4 Evaluation of First Proposed System

 The first proposed system that was explained in the third chapter, which

consists of several stages, each stage, and its results, up to the final results will

be shown, it the classification stage with the MSVM algorithm.

4.4.1 Result of Image Pre-Processing

 At this stage, the images will be converted from RGB to grayscale and

resize all images in ASL and ArSL to 224x224 size.

4.4.2 Results of Implementation the Feature Extraction using Histogram

of Oriented Gradients (HOG) Algorithm

 After convert the RGB image to grayscale, then at this stage using the HOG

to determine the border region of the fingers, which is highlighted in white

while the rest of the image is highlighted in black as the Figure (4.3) that

shown randomly samples from the data set , after that using HOG algorithm

as illustrated in the algorithm (3.2) extract 1296 feature, compute sigma for

10 feature for one image in each class of 26 for ASL are shown in Table (4.2)

and Figure (4.4). Also, compute sigma for 10 features for one image in each

class of 32 for ArSL are shown in Table (4.3) and Figure (4.5), using equation

(2.8).

Chapter Four Experimental and Results Discussion

69

A: Orginal images B: Gray scale C:Afer using HOG

Figure (4.3): Randomly Samples After Preprocessing

Chapter Four Experimental and Results Discussion

70

Table (4.2) Example of HOG Features for ASL Images

 Fe1 Fe2 Fe3 Fe4 Fe5 Fe6 Fe7 Fe8 Fe9 Fe10

A 0.2356 0.0367 0.014 0.0859 0.3033 0.1831 0.0101 0.0006 0.0019 0.0063

B 0.1958 0.03 0.0117 0.0603 0.2746 0.1081 0.0132 0 0.0007 0.0172

C 0.2194 0.0472 0.014 0.0744 0.303 0.2436 0.005 0.0037 0.0029 0.0063

D 0.3055 0.0362 0.0195 0.0818 0.3366 0.2014 0.0072 0.0012 0.0011 0.0098

E 0.2197 0.035 0.0105 0.071 0.297 0.2041 0.0063 0.0013 0 0.0048

F 0.1163 0.022 0.0056 0.0448 0.2238 0.0902 0.0047 0.0006 0 0.0027

G 0.2417 0.014 0.0205 0.0074 0.2802 0.0527 0.007 0.0019 0 0.0425

H 0.144 0.0711 0.0823 0.054 0.2657 0.2092 0.0082 0.0003 0.0663 0.0023

I 0.357 0.062 0.037 0.0157 0.357 0.0607 0.0111 0.0029 0.0438 0.0056

J 0.3251 0.0541 0.0274 0.0084 0.328 0.0763 0.02 0.0093 0.1123 0.0053

K 0.1404 0.0218 0.0202 0.0177 0.2282 0.057 0.0121 0.1441 0.1635 0.0378

L 0.294 0.0691 0.0417 0.0092 0.366 0.123 0.0115 0.0026 0.2059 0.0073

M 0.2394 0.022 0.0262 0.0088 0.2785 0.07 0.0089 0.0025 0.1078 0.0066

N 0.2064 0.0196 0.0257 0.0106 0.297 0.0597 0.0066 0.0025 0.1267 0.0097

O 0.3358 0.0335 0.043 0.0103 0.3571 0.0856 0.0153 0.0027 0.2081 0.0099

P 0.2504 0.0677 0.0377 0.0101 0.3654 0.0754 0.0107 0.0028 0.24 0.0035

Q 0.2687 0.0507 0.0255 0.0689 0.3475 0.1082 0.0091 0.0031 0.14 0.0068

R 0.3456 0.058 0.0388 0.0908 0.3456 0.0548 0.0098 0.0062 0.0737 0.0082

S 0.1817 0.0558 0.0305 0.0249 0.3358 0.0954 0.0333 0.01 0.2428 0.0062

T 0.1922 0.0411 0.0234 0.0106 0.2908 0.0756 0.0157 0.0132 0.1344 0.0041

U 0.2606 0.0455 0.0293 0.0546 0.2662 0.0582 0.0105 0.007 0.0852 0.1706

V 0.3244 0.0487 0.0308 0.0589 0.3299 0.0329 0.0096 0.0021 0.0639 0.0057

W 0.2203 0.0353 0.0215 0.0306 0.3248 0.0538 0.0063 0.002 0.0452 0.005

X 0.2647 0.0387 0.0224 0.0609 0.2904 0.05 0.0099 0.0026 0.0246 0.0057

Y 0.3497 0.0583 0.035 0.1127 0.3506 0.0848 0.0077 0.0032 0.0703 0.005

Z 0.3571 0.0505 0.0306 0.0679 0.3571 0.0585 0.0107 0.0023 0.0014 0.0075

Figure (4.4): HOG Features for ASL Images.

0

0.1

0.2

0.3

0.4

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

HOG Result

Fe1 Fe2 Fe3 Fe4 Fe5

Fe6 Fe7 Fe8 Fe9 Fe10

Chapter Four Experimental and Results Discussion

71

Table (4.3) Example of HOG Features for ArSL Images

 Fe1 Fe2 Fe3 Fe4 Fe5 Fe6 Fe7 Fe8 Fe9 Fe10

ain 0.0386 0 0.0007 0 0.0201 0.0046 0.0058 0 0 0.0391

al 0.0207 0 0.0006 0 0.0098 0 0.021 0.0009 0 0.0216

aleff 0.007 0 0.0018 0.0007 0.0168 0 0.0004 0 0 0.0102

bb 0.068 0 0.0146 0.0033 0.0414 0 0 0 0 0.0059

dal 0.0171 0 0.0203 0.0009 0.0167 0 0.0066 0 0 0.0093

dha 0.0973 0.0558 0.0598 0.0211 0.0104 0 0.0016 0.006 0.0073 0.093

dhad 0.0805 0 0 0 0.0245 0 0.0049 0 0 0.0805

fa 0.036 0.0217 0.036 0.006 0.0065 0 0.0003 0 0 0.0076

gaaf 0.0242 0.0029 0.0184 0.0273 0.1042 0.0185 0.0212 0.0067 0.0027 0.0169

ghain 0.0045 0 0 0 0.0545 0.0017 0.0184 0 0 0.0078

ha 0.009 0 0.0042 0.0027 0.0932 0 0.0051 0 0 0.009

haa 0.021 0 0.0674 0.0054 0.0969 0 0.0011 0 0 0.0105

jeem 0.0277 0 0.0013 0 0 0 0.0013 0 0 0.0333

kaa 0.0445 0 0.0043 0 0.0046 0 0.0027 0 0 0.012

khaa 0.1866 0.0282 0.0179 0 0.0046 0.0013 0.0081 0.0167 0.0042 0.2431

la 0.0108 0 0 0 0.0843 0.0025 0.0089 0.0038 0 0.0142

laam 0.1204 0 0.0053 0 0.0103 0 0.0106 0.0021 0 0.0508

meem 0.0113 0 0.0051 0 0.0234 0.0022 0.0006 0 0 0.0218

nun 0.0719 0.0013 0.0008 0 0.0258 0.0054 0.0212 0.0013 0 0.0473

ra 0.0276 0.0043 0.0233 0.0057 0.0518 0.0041 0.011 0.0011 0 0.0145

saad 0.0215 0 0.0034 0 0.0287 0 0.0017 0 0 0.0593

seen 0.0227 0.0045 0.0094 0.0025 0.0193 0.01 0.0203 0.0007 0.0017 0.0226

sheen 0.0234 0 0.0008 0 0.0026 0 0.0045 0 0 0.0003

ta 0.0181 0.027 0.056 0.0238 0.0082 0 0.0003 0 0 0.0823

taa 0.0185 0.002 0.0908 0.0777 0.1179 0 0 0 0 0.0194

thaa 0.0051 0 0.0195 0.001 0.0265 0.001 0.0026 0 0 0.0202

thal 0.0261 0.0052 0.0318 0.0322 0.0686 0 0.009 0 0 0.0807

toot 0.028 0 0.0251 0 0.0186 0 0.0057 0.001 0 0.0289

waw 0.014 0 0.0015 0 0.0069 0 0.0015 0 0 0.0063

ya 0.0033 0 0 0 0.0167 0 0.0009 0 0 0.0013

yaa 0.1015 0.0023 0.0043 0 0.0041 0 0 0 0 0.0656

zay 0.0049 0 0 0 0.0448 0.0006 0.0077 0.0019 0.0009 0.0046

Chapter Four Experimental and Results Discussion

72

Figure (4.5): HOG Features for ArSL Images.

4.4.3 Results of Implementation of Z- Score Normalization

 As discussed in section (3.5.2), Z-score normalization aims to make the

features and their sigma that are belonging to one class to be more closely

related, but at the same time separate them from the other class, to avoid the

overlapping of features classes and increase the accuracy(AC) of the proposed

system in the classification stage. Table (4.4) and Figure (4.6) clarify the

histogram for original features that extract after using Z-score normalization

for ASL images of 26 classes and Table (4.5) and Figure (4.7) clarifies the

histogram for original features that extract after using Z-score normalization

for ArSL of 32 classes.

Table (4.4): Example of Histogram for Original Features to ASL.

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

A 0.73 0.01 -0.5 2.36 -0 -0.3 -0.8 -0.9 -1 -0.2

B 0.31 -0.3 -0.6 1.3 -0.9 -1.1 -0.7 -0.9 -1.1 0.23

C 0.56 0.57 -0.5 1.88 -0 0.37 -1 -0.7 -1 -0.2

D 1.47 -0 -0.2 2.19 0.98 -0.1 -0.9 -0.9 -1.1 -0

E 0.56 -0.1 -0.7 1.74 -0.2 -0 -1 -0.9 -1.1 -0.2

F -0.5 -0.8 -1 0.65 -2.4 -1.3 -1 -0.9 -1.1 -0.3

G 0.8 -1.2 -0.2 -0.9 -0.7 -1.7 -0.9 -0.8 -1.1 1.17

H -0.2 1.83 3.2 1.04 -1.1 0.01 -0.9 -0.9 0.4 -0.3

0

0.05

0.1

0.15

0.2

0.25

0.3
ai

n al

al
ef

f

b
b

d
al

d
h

a

d
h

ad fa

ga
af

gh
ai

n h
a

h
aa

je
e

m

ka
a

kh
aa la

la
am

m
ee

m

n
u

n

ra

sa
ad

se
en

sh
ee

n ta ta
a

th
aa

th
al

to
o

t

w
aw ya ya

a

za
y

HOG Result

Fe1 Fe2 Fe3 Fe4 Fe5 Fe6 Fe7 Fe8 Fe9 Fe10

Chapter Four Experimental and Results Discussion

73

I 2.01 1.35 0.74 -0.6 1.59 -1.6 -0.8 -0.7 -0.1 -0.2

J 1.67 0.93 0.21 -0.9 0.73 -1.4 -0.5 -0.3 1.42 -0.2

K -0.3 -0.8 -0.2 -0.5 -2.2 -1.6 -0.8 8.86 2.55 1

L 1.35 1.73 0.99 -0.8 1.86 -0.9 -0.8 -0.8 3.49 -0.1

M 0.77 -0.8 0.14 -0.8 -0.7 -1.5 -0.9 -0.8 1.32 -0.2

N 0.43 -0.9 0.12 -0.8 -0.2 -1.6 -0.9 -0.8 1.74 -0.1

O 1.78 -0.2 1.06 -0.8 1.6 -1.3 -0.6 -0.8 3.54 -0

P 0.89 1.65 0.77 -0.8 1.84 -1.4 -0.8 -0.8 4.25 -0.3

Q 1.08 0.75 0.11 1.65 1.31 -1.1 -0.9 -0.7 2.03 -0.2

R 1.89 1.14 0.83 2.56 1.25 -1.6 -0.8 -0.5 0.56 -0.1

S 0.17 1.02 0.38 -0.2 0.96 -1.2 -0 -0.3 4.31 -0.2

T 0.28 0.24 -0 -0.8 -0.4 -1.4 -0.6 -0 1.91 -0.3

U 0.99 0.48 0.31 1.06 -1.1 -1.6 -0.8 -0.5 0.82 5.96

V 1.67 0.65 0.39 1.24 0.79 -1.9 -0.8 -0.8 0.34 -0.2

W 0.57 -0.1 -0.1 0.07 0.63 -1.6 -1 -0.8 -0.1 -0.2

X 1.04 0.12 -0.1 1.32 -0.4 -1.7 -0.8 -0.8 -0.5 -0.2

Y 1.93 1.16 0.62 3.47 1.4 -1.3 -0.9 -0.7 0.49 -0.2

Z 2.01 0.74 0.38 1.61 1.59 -1.6 -0.8 -0.8 -1 -0.1

Figure (4.6) Histogram for Original Features to ASL.

Chapter Four Experimental and Results Discussion

74

Table (4.5) :Example of Histogram for Original Features to ArSL.

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

ain 0 -0.2 -0.5 -0.3 -0.8 -0.1 -0.4 -0.3 -0.2 0.02

al -0.3 -0.2 -0.5 -0.3 -0.9 -0.3 -0 -0.2 -0.2 -0.3

aleff -0.5 -0.2 -0.5 -0.3 -0.8 -0.3 -0.5 -0.3 -0.2 -0.5

bb 0.5 -0.2 -0.2 -0.1 -0.5 -0.3 -0.5 -0.3 -0.2 -0.6

dal -0.4 -0.2 -0 -0.2 -0.8 -0.3 -0.4 -0.3 -0.2 -0.5

dha 1 3.44 0.98 1 -0.9 -0.3 -0.5 0.19 0.11 1.04

dhad 0.71 -0.2 -0.6 -0.3 -0.7 -0.3 -0.4 -0.3 -0.2 0.8

fa -0 1.19 0.37 0.07 -0.9 -0.3 -0.5 -0.3 -0.2 -0.6

gaaf -0.2 -0 -0.1 1.39 0.34 0.81 -0 0.25 -0.1 -0.4

ghain -0.6 -0.2 -0.6 -0.3 -0.3 -0.2 -0.1 -0.3 -0.2 -0.6

ha -0.5 -0.2 -0.4 -0.1 0.2 -0.3 -0.4 -0.3 -0.2 -0.5

haa -0.3 -0.2 1.17 0.04 0.25 -0.3 -0.5 -0.3 -0.2 -0.5

jeem -0.2 -0.2 -0.5 -0.3 -1 -0.3 -0.5 -0.3 -0.2 -0.1

kaa 0.1 -0.2 -0.4 -0.3 -1 -0.3 -0.5 -0.3 -0.2 -0.5

khaa 2.52 1.62 -0.1 -0.3 -1 -0.3 -0.3 1.07 -0 3.86

la -0.5 -0.2 -0.6 -0.3 0.08 -0.2 -0.3 0.01 -0.2 -0.4

laam 1.39 -0.2 -0.4 -0.3 -0.9 -0.3 -0.3 -0.1 -0.2 0.24

meem -0.5 -0.2 -0.4 -0.3 -0.7 -0.2 -0.5 -0.3 -0.2 -0.3

nun 0.57 -0.1 -0.5 -0.3 -0.7 -0 -0 -0.2 -0.2 0.18

ra -0.2 0.05 0.04 0.05 -0.3 -0.1 -0.3 -0.2 -0.2 -0.4

saad -0.3 -0.2 -0.5 -0.3 -0.7 -0.3 -0.5 -0.3 -0.2 0.4

seen -0.3 0.06 -0.3 -0.1 -0.8 0.28 -0 -0.2 -0.1 -0.3

sheen -0.3 -0.2 -0.5 -0.3 -1 -0.3 -0.4 -0.3 -0.2 -0.7

ta -0.3 1.54 0.88 1.17 -0.9 -0.3 -0.5 -0.3 -0.2 0.84

taa -0.3 -0.1 1.78 4.48 0.52 -0.3 -0.5 -0.3 -0.2 -0.3

thaa -0.6 -0.2 -0.1 -0.2 -0.7 -0.3 -0.5 -0.3 -0.2 -0.3

thal -0.2 0.1 0.26 1.69 -0.1 -0.3 -0.3 -0.3 -0.2 0.81

toot -0.2 -0.2 0.09 -0.3 -0.8 -0.3 -0.4 -0.2 -0.2 -0.2

waw -0.4 -0.2 -0.5 -0.3 -0.9 -0.3 -0.5 -0.3 -0.2 -0.6

ya -0.6 -0.2 -0.6 -0.3 -0.8 -0.3 -0.5 -0.3 -0.2 -0.7

yaa 1.07 -0.1 -0.4 -0.3 -1 -0.3 -0.5 -0.3 -0.2 0.52

zay -0.5 -0.2 -0.3 -0.2 -1 -0.3 -0.5 -0.3 -0.2 -0.6

Chapter Four Experimental and Results Discussion

75

Figure (4.7): Histogram for Original Features for ArSL

4.4.4 Results of Principal Component Analysis (PCA)

 As discussed in section (3.5.3), Dimensionality reduction using PCA is a

well-established and effective technique, but it has the limitation of requiring

knowledge of the data statistics as illustrated in Algorithm (3.3). The features

can be obtained in the data matrix sorted eigenvectors matrix as Table (4.6)

and Figure (4.8), also Example of PCA Features for ASL Images, and Table

(4.7) Example of PCA Features for ArSL Images, and Figure (4.9):

Table (4.6): Example of PCA Features for ASL Images

 Fe1 Fe2 Fe3 Fe4 Fe5 Fe6 Fe7 Fe8 Fe9 Fe10

A 0.731 0.0138 -0.52 2.36 -0.0075 -0.269 -0.821 -0.903 -1.03 -0.177

B 0.314 -0.339 -0.648 1.3 -0.862 -1.06 -0.71 -0.943 -1.06 0.228

C 0.561 0.566 -0.518 1.88 -0.0148 0.373 -1 -0.688 -1.01 -0.18

D 1.47 -0.0119 -0.218 2.19 0.984 -0.0749 -0.922 -0.86 -1.05 -0.0465

E 0.564 -0.077 -0.713 1.74 -0.194 -0.0467 -0.954 -0.854 -1.07 -0.236

F -0.522 -0.765 -0.979 0.654 -2.37 -1.25 -1.01 -0.902 -1.07 -0.313

G 0.796 -1.19 -0.165 -0.896 -0.695 -1.65 -0.931 -0.814 -1.07 1.17

H -0.231 1.83 3.2 1.04 -1.13 0.0077 -0.886 -0.922 0.399 -0.327

I 2.01 1.35 0.735 -0.554 1.59 -1.57 -0.787 -0.745 -0.0991 -0.203

J 1.67 0.934 0.21 -0.854 0.728 -1.4 -0.472 -0.31 1.42 -0.215

K -0.269 -0.776 -0.184 -0.469 -2.24 -1.6 -0.751 8.86 2.55 0.998

L 1.35 1.73 0.992 -0.821 1.86 -0.906 -0.772 -0.765 3.49 -0.142

Chapter Four Experimental and Results Discussion

76

M 0.772 -0.766 0.144 -0.839 -0.746 -1.47 -0.863 -0.775 1.32 -0.168

N 0.425 -0.888 0.118 -0.761 -0.193 -1.58 -0.944 -0.772 1.74 -0.0517

O 1.78 -0.159 1.06 -0.778 1.6 -1.3 -0.638 -0.757 3.54 -0.0444

P 0.887 1.65 0.771 -0.786 1.84 -1.41 -0.799 -0.755 4.25 -0.284

Q 1.08 0.754 0.107 1.65 1.31 -1.06 -0.854 -0.729 2.03 -0.158

R 1.89 1.14 0.831 2.56 1.25 -1.63 -0.832 -0.523 0.563 -0.108

S 0.165 1.02 0.38 -0.172 0.962 -1.2 -0.002 -0.261 4.31 -0.183

T 0.276 0.243 -0.0081 -0.762 -0.38 -1.41 -0.625 -0.0422 1.91 -0.259

U 0.994 0.479 0.313 1.06 -1.11 -1.59 -0.807 -0.463 0.818 5.96

V 1.67 0.648 0.394 1.24 0.785 -1.86 -0.838 -0.803 0.344 -0.201

W 0.571 -0.0597 -0.113 0.0673 0.634 -1.64 -0.956 -0.806 -0.0697 -0.228

X 1.04 0.12 -0.0604 1.32 -0.39 -1.68 -0.826 -0.763 -0.525 -0.199

Y 1.93 1.16 0.622 3.47 1.4 -1.31 -0.904 -0.727 0.487 -0.228

Z 2.01 0.741 0.384 1.61 1.59 -1.59 -0.8 -0.783 -1.04 -0.133

Figure (4.8): PCA Features for ASL

Table (4.7): Example of PCA Features for ArSL

 Fe1 Fe2 Fe3 Fe4 Fe5 Fe6 Fe7 Fe8 Fe9 Fe10

ain 0.002 -0.238 -0.535 -0.296 -0.768 -0.058 -0.4 -0.304 -0.166 0.0241

al -0.303 -0.238 -0.539 -0.296 -0.904 -0.346 -0.018 -0.232 -0.166 -0.306

aleff -0.537 -0.238 -0.507 -0.252 -0.811 -0.346 -0.535 -0.304 -0.166 -0.519

bb 0.5025 -0.238 -0.178 -0.092 -0.486 -0.346 -0.546 -0.304 -0.166 -0.6

dal -0.365 -0.238 -0.032 -0.242 -0.813 -0.346 -0.381 -0.304 -0.166 -0.537

Chapter Four Experimental and Results Discussion

77

dha 1.001 3.4367 0.9798 1.0005 -0.896 -0.346 -0.505 0.1904 0.1095 1.0372

dhad 0.7141 -0.238 -0.553 -0.296 -0.71 -0.346 -0.422 -0.304 -0.166 0.8007

fa -0.043 1.1925 0.3688 0.0745 -0.948 -0.346 -0.538 -0.304 -0.166 -0.568

gaaf -0.244 -0.046 -0.081 1.3865 0.343 0.806 -0.014 0.2471 -0.064 -0.393

ghain -0.58 -0.238 -0.553 -0.296 -0.313 -0.242 -0.085 -0.304 -0.166 -0.565

ha -0.503 -0.238 -0.445 -0.131 0.1981 -0.346 -0.419 -0.304 -0.166 -0.543

haa -0.298 -0.238 1.1745 0.0374 0.2468 -0.346 -0.518 -0.304 -0.166 -0.514

jeem -0.184 -0.238 -0.52 -0.296 -1.033 -0.346 -0.514 -0.304 -0.166 -0.086

kaa 0.1016 -0.238 -0.443 -0.296 -0.973 -0.346 -0.479 -0.304 -0.166 -0.487

khaa 2.5212 1.6221 -0.095 -0.296 -0.973 -0.266 -0.342 1.0653 -0.008 3.8582

la -0.471 -0.238 -0.553 -0.296 0.0802 -0.187 -0.324 0.0096 -0.166 -0.444

laam 1.3934 -0.238 -0.417 -0.296 -0.897 -0.346 -0.279 -0.131 -0.166 0.2428

meem -0.464 -0.238 -0.422 -0.296 -0.724 -0.21 -0.532 -0.304 -0.166 -0.302

nun 0.5683 -0.15 -0.532 -0.296 -0.693 -0.011 -0.014 -0.194 -0.166 0.178

ra -0.186 0.0472 0.0434 0.0542 -0.349 -0.087 -0.271 -0.215 -0.166 -0.439

saad -0.289 -0.238 -0.467 -0.296 -0.654 -0.346 -0.504 -0.304 -0.166 0.4022

seen -0.27 0.0559 -0.312 -0.14 -0.779 0.2798 -0.037 -0.243 -0.102 -0.288

sheen -0.257 -0.238 -0.532 -0.296 -0.999 -0.346 -0.433 -0.304 -0.166 -0.706

ta -0.347 1.5428 0.8827 1.1703 -0.926 -0.346 -0.538 -0.304 -0.166 0.8353

taa -0.341 -0.108 1.776 4.4832 0.5242 -0.346 -0.546 -0.304 -0.166 -0.348

thaa -0.569 -0.238 -0.052 -0.232 -0.684 -0.282 -0.481 -0.304 -0.166 -0.332

thal -0.211 0.1018 0.2623 1.6873 -0.127 -0.346 -0.321 -0.304 -0.166 0.8058

toot -0.18 -0.238 0.0907 -0.296 -0.787 -0.346 -0.404 -0.222 -0.166 -0.169

waw -0.418 -0.238 -0.514 -0.296 -0.942 -0.346 -0.508 -0.304 -0.166 -0.593

ya -0.599 -0.238 -0.553 -0.296 -0.813 -0.346 -0.523 -0.304 -0.166 -0.687

yaa 1.072 -0.087 -0.442 -0.296 -0.979 -0.346 -0.546 -0.304 -0.166 0.5214

zay -0.573 -0.238 -0.553 -0.296 -0.442 -0.306 -0.353 -0.146 -0.131 -0.625

Chapter Four Experimental and Results Discussion

78

Figure (4.9): PCA Features for ArSL.

4.4.5 Result of Training and Testing Using MSVM Algorithm

 After the process of extracting features, the system reached the

classification stage. In this stage, the static hand gesture images are classified

according to the features that were extracted, and the MSVM algorithm was

previously explained in the Algorithm (3.4). In order to complete the

classification process, the system needs two stages that have been explained

previously, which are the training stage and the testing stage. The results of

these two stages will be displayed in order to them recognition and classify

the hand gesture images. The training results will be displayed first and then

the test results.

4.4.5.1 Result of MSVM Training

This operation was explained previously in section (3.6.1). Training

process for images is done in MSVM method after performing the operations

and to recognize static hand gesture images for ASL and ArSL. The average

Chapter Four Experimental and Results Discussion

79

AC of all classes in the training stage for ASL is equal to (95.58%), and for

ArSL is equal to (96.16%).

It is important to note that the percentage used in our thesis was not

chosen at random; instead, different data ratios were tested, with the best result

being 80% to training and 20% of the test data set, which is especially

important for the testing process that relies on it in the classification process.

Comparing accuracy with data ratios for ASL is shown in Table (4.8), and

comparing accuracy with data ratios for ArSL is shown in Table (4.9).

The AC and AC of each class in training were calculated according to

equation (2.38).

Table (4.8): Comparing accuracy with data ratios for ASL

Dataset (%)

(training: testing)

The AC for

training

The AC for

testing

The Total

time

80:20 95.58% 96% 2H

70:30 95.23% 95% 2:30H

60:40 94.47% 94% 3H

Table (4.9): Comparing accuracy with data ratios for ArSL

Dataset (%)

(training: testing)

The AC for

training

The AC for

testing

The Total

time

80:20 96.16% 96% 3:30H

70:30 96.125% 96% 4H

60:40 96% 96% 4:30H

Chapter Four Experimental and Results Discussion

80

4.4.5.2 Result of MSVM Testing

 This stage is an examination of the system by testing it with the remainder

of the data that is not labeled in order to classify the static hand gesture images

as explained in the previous chapter. At this stage also the results display as

shown in Table (4.10) each class's results accuracy for ASL, and Table (4.11)

each class's results accuracy for ArSL. the AC for ASL of testing is equal to

(96%) and the AC for ArSL of testing also is equal to (96%).

Table (4.10): The AC of test data for all classes for ASL.

class No. Precision Recall F1- Score Support

A 0.94 0.96 0.95 140

B 0.92 0.95 0.94 142

C 0.99 1.00 1.00 139

D 0.96 0.97 0.97 162

E 0.94 0.94 0.94 136

F 0.99 1.00 0.99 148

G 0.96 0.99 0.97 157

H 0.98 0.099 0.98 149

I 0.97 0.97 0.97 144

J 0.99 0.96 0.98 142

K 0.96 0.96 0.96 157

L 0.99 1.00 1.00 164

M 0.94 0.91 0.93 150

N 0.93 0.93 0.93 144

O 0.98 0.96 0.97 165

P 1.00 1.00 1.00 158

Q 1.00 0.99 1.00 156

R 0.89 0.96 0.92 158

S 0.94 0.95 0.94 157

T 0.98 0.98 0.98 154

Chapter Four Experimental and Results Discussion

81

U 0.85 0.85 0.85 150

V 0.89 0.85 0.87 149

W 0.96 0.93 0.94 147

X 0.97 0.93 0.95 146

Y 0.96 0.97 0.97 136

Z 1.00 0.99 1.00 150

Accuracy 0.96 3900

Table (4.11): The AC of test data for all classes for ArSL.

class No. Precision Recall F1- Score Support

ain 0.94 0.99 0.96 140

al 0.99 0.98 0.98 143

aleff 0.98 0.98 0.98 143

bb 0.98 0.99 0.98 161

dal 0.94 0.98 0.96 146

dha 0.91 0.95 0.93 156

dhad 0.98 0.99 0.98 160

fa 0.9 0.95 0.92 136

gaaf 0.95 0.99 0.94 150

ghain 0.99 0.95 0.97 157

ha 0.94 0.93 0.94 153

haa 0.97 0.96 0.96 160

jeem 0.97 0.94 0.95 155

kaa 0.95 0.9 0.93 145

khaa 0.97 0,94 0.95 149

la 0.94 0,98 0.96 154

laam 0.99 0.96 0.97 149

meem 0.97 0.99 0.98 157

nun 1.00 0.97 0.99 155

ra 0.96 0.94 0.95 164

saad 0.97 0.94 0.95 153

Chapter Four Experimental and Results Discussion

82

seen 0.93 0.98 0.95 134

sheen 0.99 0.98 0.98 145

ta 0.94 0.95 0.95 167

taa 0.94 0.96 0.95 140

thaa 0.92 0.92 0.92 154

thal 0.99 0.99 0.99 154

toot 0.98 0.97 0.97 140

waw 0.98 0.98 0.98 139

ya 0.99 0.99 0.99 141

yaa 0.99 0.99 0.99 156

zay 0.98 0.92 0.95 144

Accuracy 0.96 4800

 A confusion matrix (CM) is a summary of prediction results on a

classification problem, the number of correct and incorrect predictions are

summarized with count values and broken down by each class. This is the key

to the confusion matrix as shown in Figure (4.10) CM for ASL and Figure

(4.11) CM for ArSL.

Figure (4.10): CM for ASL Using MSVM

Chapter Four Experimental and Results Discussion

83

Figure (4.11): CM for ArSL Using MSVM

4.4.6 Hand Gesture Recognition in the First Proposed System

 Following conducting the training and testing processes of the system, the

process of static HGR is carried out. The recognition mechanism in the first

proposed system using MSVM algorithm for classification. Then conducting

all the previous operations that were mentioned, hand gesture is recognized

and classified. However, the AC in detection is not high due to the lack of AC

of the test and training well. The reasons have been explained, and for this

reason, a second proposed system has been built that is better than the first

system.

Chapter Four Experimental and Results Discussion

84

4.5 Evaluation of the Second Proposed System

 The second proposed system that was explained in the third chapter, which

consists of several stages, each stage and its results, up to the final results will

be shown by CNN as shown in Figure (3.1) and the procedure shown in

Algorithm (3.5). This section explores the performance results of CNN. Table

(4.12) shows the main CNN structure that has been used in the proposed

system for ASL and Table (4.13) show the main CNN structure that has been

used in the proposed system for ArSL.

Table (4.12): Proposed System Design CNN Layers for ASL.

 The first layer is the convolution layer, it has 32 filters, each with three

channels, which has a filter size of 3x3 and a stride of 1. It is meaning

every 3x3 square of an input image is treated as a separate filter. There

is no zero-padding in this layer, so the number of outputs equals the

Chapter Four Experimental and Results Discussion

85

number of inputs; note that the number of parameters in this layer can

be calculated using equation (2.23).

 Conv1: number of input channels is 3, the number of output channels

equal 32. No. of parameters= 32*(3*(3*3) +1) =896.

 Conv2: number of input channels is 32, the number of output channels

is 64.

No. of parameters=64*(32*(3*3) +1) =18496. The rest of Convolution

layers applied the same formula.

 We used the image from the first layer first and divided it into 3 x 3

squares in step 1. There are still 32 filters as before, even though the 224

x 224 matrix is now 111 x 111. Notice that there is no parameter in this

layer, as mentioned in chapter three. So, these processes repeated for layer

(3 to 12).

 Finally, in layer 13 we flatten the network takes inputs from the previous

pooling layer 12*12*256= 36864, and that need 512 nodes for the first

denes layer, while in second denes need 250 nodes and after that dropout

(0.5) for calculated classification by softmax function to 26 classes

Chapter Four Experimental and Results Discussion

86

Table (4.13): Proposed System Design CNN Layers for ArSL

 The explanation of Proposed System Design CNN Layers for ArSL is the

same as the explanation of Proposed System Design CNN Layers for ASL

above except calculated classification by soft max function to 32 classes.

4.5.1 Result of the Second Proposed System (Using CNN)

 The experiment was conducted by setting a different number of training

epoch to get the most accurate result. As in Table (4.14) for ASL and Table

(4.15) for ArSL, it can be seen that from epoch 1 to 10 for example it shows

that the AC of selection and verification increased while the loss and

verification loss decreased.

Chapter Four Experimental and Results Discussion

87

Table (4.14): The AC and loss for each training in 10-Epoch for ASL

Epoch Time Loss Training

AC

Validation

Loss

Validation

AC

1 20s 655ms/step 3.2609 0.0436 3.2580 0.0282

2 14s 467ms/step 3.2301 0.0589 3.2243 0.0641

3 12s 410ms/step 3.0899 0.0977 3.1264 0.0908

4 15s 488ms/step 2.8174 0.1647 2.8856 0.1733

5 17s 567ms/step 2.3330 0.2848 2.4617 0.2618

6 11s 379ms/step 1.9682 0.3730 2.1750 0.3285

7 18s 592ms/step 1.5320 0.4965 1.9823 0.3708

8 11s 374ms/step 1.2730 0.5718 1.5165 0.4905

9 12s 396ms/step 1.0436 0.6478 1.4587 0.4954

10 11s 376ms/step 0.8797 0.6960 1.4192 0.5203

Table (4.15): The AC and loss for each training in 10-Epoch for ArSL

Epoch

ARSL

Time Loss Training

AC

Validation

Loss

Validation

AC

1 80s 2s/step 3.4716 0.0336 3.4659 0.0312

2 41s 1s/step 3.4593 0.0392 3.4234 0.0640

3 14s 356ms/step 3.1734 0.0985 2.8529 0.1513

4 12s 300ms/step 2.5103 0.2410 2.0817 0.4046

5 15s 374ms/step 1.7688 0.4475 1.7890 0.5535

6 13s 315ms/step 1.1995 0.6177 1.1967 0.6392

7 12s 310ms/step 0.8231 0.7349 0.9526 0.6969

8 12s 312ms/step 0.6314 0.8062 0.7692 0.7435

9 13s 319ms/step 0.4871 0.8468 0.6839 0.7735

10 13s 324ms/step 0.4076 0.8732 0.6833 0.7771

 The main problem that occurred during training is that it takes a long time, and

also the speed and characteristics of the computer play a big role in the time spent

Chapter Four Experimental and Results Discussion

88

on network training. In Table (4.14) and Table (4.15), the (Time) column

represents for training the size the data set in each epoch.

 The structure that was explained in chapter three, section (3.7.2), shows the use

(4CNN) layers, which leads to reduce the number of transactions and increasing

the AC of the training, testing, and validation gradually to get the best results, as

shown in Table (4.16) for ASL, and Table (4.17) for ArSL.

Table (4.16): Comparison of the layers of the CNN and the AC rate for

ASL

Table (4.17): Comparison of the layers of the CNN and the AC rate for

ArSL

 CNN

layers

number

Number of

Parameters

The AC

training

The AC for

testing

The AC for

validation

CNN1 15,882,714 99.89% 81,54% 71,35%

CNN2 6,578,714 99.64% 86.5% 79,60%

CNN3 2,589,338 99.68% 89.27% 84.21%

CNN4 1,049,498 99.03% 89.38% 86.69%

CNN

numbers

Number of

Parameters

The AC rate

for all classes

in training

The AC rate

for all classes

in testing

The AC rate

for all classes

in validation

CNN1 15,881,208 99.10% 96.20% 64.41%

CNN2 6,577,208 99.28% 97.43% 68.33%

CNN3 2,587,832 99.02% 97.07% 69.51%

CNN4 1,047,992 98.76% 98% 77.21%

Chapter Four Experimental and Results Discussion

89

4.5.2 Result of the CNN Training

 At this stage, the network training process was conducted to learn about the

features of each static hand gesture image and recognize it at the recognition

stage. When the network is trained and all images pass on the CNN of all layers

in order to teach this network, this is the main purpose of the training process.

 In the training process also, there is the process to calculate the consistency

between the network's output estimates by forwarding propagation and

assigned area truth labels by using the loss function that has been explained in

the previous two chapters. In Figure (4.12) a chart will be displayed the loss

function and the AC for ASL, and in Figure (4.13) for ArSL. The loss function

which is descending to the bottom, in contrast to the AC that goes from the

bottom to the up. In addition, the number of epochs was used in the training

process is 75 epochs, as for the number of iterations is 30 for each epoch

iterations for ASL, to extract the total number of iterations by multiplying 75 *

30 and the result was 2250 iterations.

 After that, it was noted that one of the related work s had obtained a higher

AC of the proposed system, so we increased the number of epochs to reach the

closest result, and according to the Table (4.18), where 150 epochs were used

epochs, as for the number of iterations is 75 for each epoch iterations for ASL,

to extract the total number of iterations by multiplying 150 * 75 and the result

was 11,250 iterations while the related work used 33,000 iterations.

Figure (4.12): AC and Loss Validation Change Against Training Epochs

(75) for ASL.

Chapter Four Experimental and Results Discussion

90

Figure (4.13): AC and Loss Validation Change Against Training Epochs for

ArSL.

 In Figure (4.14) a chart will be displayed the loss function and the AC for

ASL when used epoch (150).

Table (4.18): Comparing the AC with number of epoch for ASL.

Epoch

Iteration

for

Epoch

The AC

training

The AC

for testing

The AC for

validation

Total

Rum

Time

75 30 98.76% 98% 78.33% 21m

90 40 99.08% 96.85% 80.03 40m

100 50 99.43% 98.179% 81.03 54m

120 60 99.52% 97.615% 81.21% 1H

150 75 99.71% 98.717% 83.95% 2H

Chapter Four Experimental and Results Discussion

91

Figure (4.14): AC and Loss Validation Change Against Training Epochs

(150) for ASL.

 In addition, the number of epochs was used in the training process is 90

epochs, as for the number of iterations is 40 for each epoch iterations for ArSL,

to extract the total number of iterations by multiply 90 * 40 and the result was

3600 iterations.

 4.5.3 Result of the CNN Testing

 In this stage, the results of the testing were displayed. This process was

explained in the previous chapter and how the convolutional neural network is

tested in order to be used for the process of Recognition of static hand gesture

images. In the testing stage, excellent results were obtained and presented as a

confusion matrix (CM) as well as shown in Figure (4.15), which shows the

results of the AC of each class of the 26 classes in the testing stage for ASL,

and in the Figure (4.16), which shows the results of the AC of each class of the

32 classes in the testing stage for ArSL.

Chapter Four Experimental and Results Discussion

92

Figure (4.15): CM for ASL Using CNN.

Figure (4.16): CM for ArSL Using CNN.

Chapter Four Experimental and Results Discussion

93

 It is important to note that the percentage used in our thesis was not chosen

at random; instead, different data ratios were tested, with the best result being

80% for training and 20% for the test data set, which is especially important

for the testing process that relies on it in the classification process. Comparing

accuracy with data ratios for ASL is shown in Table (4.19), and Comparing

accuracy with data ratios for ArSL is shown in Table (4.20).

Table (4.19): Comparing accuracy with data ratios for ASL

Dataset (%)

(training: testing)

The AC for

training

The AC for

testing

The AC for

validation

Total

Run

Time

80:20 98.76% 98% 77.21% 21m

70:30 98.35% 95.89% 68.56 26m

60:40 98.96% 90.28% 38.63% 31m

Table (4.20): Comparing accuracy with data ratios for ArSL

Dataset (%)

(training: testing)

The AC for

training

The AC for

testing

The AC for

validation

Total

Run

Time

80:20 99.03% 89.38% 86.69% 22m

70:30 99.17% 89.02% 82.61% 28m

60:40 99.24% 89.20% 82.63% 32m

4.5.4 Hand Gesture Recognition in the Second Proposed System

 The last stage in the second proposed system is the Recognition stage of

static hand gesture images, which is the most important stage of the system.

When the network has been trained and tested so that any image that is chosen

will be classified according to the 26 classes for ASL and 32 classes for ArSL,

Chapter Four Experimental and Results Discussion

94

furthermore after obtaining high and excellent results in the training and

testing, thus Recognition AC will be very high and the errors are almost non-

existent or very rare.

4.6 Comparison, Between the First Proposed System with the

Second Proposed System

The comparison between the two proposed systems is very important in

order to show the strengths and weaknesses of each of them. Initially, when

choosing this topic which is the recognition of static hand gesture for ASL and

ArSL, at first, the MSVM algorithm was used in the first proposed system, but

after getting the results of AC, notes may be can obtain of the best result with

another algorithm, then begin to searching for an alternative system is better

than the first proposed system in order to obtain a high recognition AC and

very few errors, unlike the first proposed system. After experiments and

research, the CNN algorithm was chosen in the second proposed system for

classification the hand gesture images. It is worth noting that the same dataset

was used, as well as the same data division for training and testing, which is

80% for training and 20% for testing for both algorithms.

1- The high AC acquired from the second proposed system in the training and

testing stages for each of the 26 ASL and 32 ArSL classes, as well as the AC

rate in these two stages, as shown in the Table (4.21) and Figure (4.17) that

shows the AC comparison between MSVM and CNN algorithms.

 2- Because the first proposed system requires a long additional time to extract

the features from the images, the time taken for the training process in the first

proposed system using the MSVM method is longer than the time taken in the

second proposed system using the CNN algorithm. This is also a benefit of the

CNN algorithm, which extracts its features inside, reducing the need for

additional time.

Chapter Four Experimental and Results Discussion

95

Table (4.21): The AC comparison between MSVM and CNN algorithms

DATA SET

Algorithm

 The AC for

training

The AC for

testing

Total Run time

ASL

MSVM

95.58% 96% 2H

ArSL 96.16% 96% 3:30H

ASL

CNN

99.71% 98.717% 2H

ArSL 99.03% 89.38% 22m

Figure (4.17): The chart shows the AC comparison between MSVM and

CNN algorithms

4.7 Proposed system vs. Previous Studies

 Following the achievement of high AC results on a large dataset of hand

gesture images and the classification of many classes, a comparison was made

between:

1- The first proposed system with our previous studies for ASL, Table (4.22)

show comparing the first proposed system with previous studies.

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

102.00%

ASL ArSL ASL ArSL

MSVM CNN

The AC for training The AC for testing

Chapter Four Experimental and Results Discussion

96

2- The first proposed system with our previous studies for ArSL, Table (4.23)

show comparing the first proposed system with previous studies.

3- The second proposed system with our previous studies for ASL, Table (4.24)

show comparing the second proposed system with previous studies.

4- The second proposed system with our previous studies for ArSL, as the table

(4.25) show comparing the second proposed system with previous studies.

Table (4.22): Comparing the first proposed system with previous studies for

ASL

Table (4.23): Comparing the first proposed system with previous studies for

ArSL

Researcher(s),

year

Ref.No. Classification

algorithm

The size of

dataset

AC

S. Nagarajan

and T. S.

Subashini

(2013)

[5] MSVM 720 images in 24

categories

93.75%,

A.Sharma et al.

(2020)

[23] MSVM 3000 images 85.25

Our Proposal

(2021)

 MSVM 19,500 images

26 classes

95.58%

Researcher(s),

year

Ref.No. Classification

algorithm

The size of

dataset

AC

Reema Alzohairi

et al. (2018)

[18] MSVM 210 63.5 %.

Our Proposal

(2021)

 MSVM 24,000 images

32 classes

96.16%

Chapter Four Experimental and Results Discussion

97

Table (4.24): Comparing the second proposed system with previous studies

for ASL

Researcher(s),

year

Ref.No. Classification

algorithm

The size of

dataset

AC

O. K. Oyedotun

and A.

Khashman

(2016)

[17] CNN 1440 for training ,

600 for testing

92.83%

V. Bheda and N.

D. Radpour

(2017)

[16] CNN 650 Images , 25

images from 5

people for each

alphabet

67%

S. Masood et al.

(2018)

[19] CNN 2524 ASL gestures 96%

R. Ahuja et al.

(2019)

[19] CNN 47,445 images for

24 classes

99.7%

T.Goswami and

S. R. Javaji

(2020)

[21] CNN 27,455 images for

24 classes

99%

Our Proposal

(2021)

 CNN 19,500 images

26 classes

99.71%

Table (4.25): Comparing the second proposed system with previous studies

for ArSL

Researcher(s),

year

Ref.No. Classification

algorithm

The size of

dataset

AC

S. Hayani et.al

(2019)

[20] CNN 5839 images of 28

class

90.02%

M. M.

Kamruzzaman

(2020)

[22] CNN 100 images for

each alphabet (32

classes)

90%

Our Proposal

(2021)
 CNN 24,000 images

32 classes

99.03%

Despite using more images for the two proposed systems, all of these tables

show high AC.

Chapter Five
CONCLUSIONS AND SUGGESTIONS

FOR FUTURE WORK

Chapter Five Conclusions and Suggestions for Future Work

98

CHAPTER FIVE

CONCLUSIONS AND SUGGESTIONS FOR

FUTURE WORK

5.1 Conclusion

 In this chapter, the proposed system is summarized; the following conclusions

were taken from a collection of test results. Some of those conclusions are listed

in the following:

1-The testing results from experimentation on the American Sign Language

(ASL) and Arab Sign language (ArSL) Datasets indicate that this method is very

effective with high accuracy with significantly less time compared to other

methods.

2- The proposed system is a reliable methodology to identify and classify static

hand gestures with accurate and faster resultsو also the system succeeded in

recognizing the dynamic hand gestures of the two letters j and z in which all

previous studies failed to identify and by using CNN and MSVM.

3- The increase in the number of epochs was not random, but rather with the goal

of increasing accuracy, which negatively affected the increase in the total run

time.

4- In preprocessing stage in the second proposed system, to remove the

imperfections in the structure of the image, the best value is chosen for the filter

size that fits the image which is [3*3] for two reasons, firstly is to speed up the

operation, secondly is producing image more smoothing.

5- In the feature extraction stage by using the HOG algorithm and PCA, the

accuracy of the system increased, when increasing the number of features extracts

from each sample until access to 1296 features from each image.

Chapter Five Conclusions and Suggestions for Future Work

99

6 - The proposed system has been improved classification accuracy by using the

Z-score normalization method, which makes the features and their sigma that are

belonging to one class to be more closely related, but at the same time separate

them from the other class, to avoid overlapping all features classes that which

effect on the accuracy rate of the proposed system negatively.

 In addition, the comparison revealed the main reason for the low accuracy of

the first proposed system, which is related to the number of classifiers that were

classified as well as the large size of the data set. In conclusion of the comparison,

it was proved that the second proposed system is the best, fastest, accurate, and

most powerful way to recognize and classifies static hand gestures.

5.2 Suggestions for Future Work

 The proposed system of static hand gestures recognition of ASL and ArSL is

a flexible system and there are many suggestions that can be performed for future

work as follows:

1. Design an expert system that can recognize static hand gestures for ASL and

ArSL in an automated way depending on multiple techniques and presents

ways to use computer vision technologies to assist the deaf and hard-of-

hearing communicate more effectively.

2. Applying the system to other various types of sign language as Spanish,

Italian, German, and French ... etc., or another dataset as the dataset of digit

number for Arabic and English to make the system more comprehensive.

3. Using various machine learning techniques such as (KNN, Native Bayes,

etc...) with a comparison between them, also other optimizers for the proposed

system to obtain a better accuracy rate.

4. Applying the system to recognize static hand gestures using one hand in Real-

time.

Chapter Five Conclusions and Suggestions for Future Work

100

5. Applying the system to recognize static hand gestures using two hands.

6. Applying the system to recognize dynamic gestures such as waving or

wagging a finger can make HCI much more intuitive

101

Reference

[1] B. Abhishek, K. Krishi, M. Meghana, M. Daaniyaal, and H. S. Anupama,

“Hand gesture recognition using machine learning algorithms,”

Comput. Sci. Inf. Technol., vol. 1, no. 3, pp. 1734–1737, 2020, doi:

10.11591/csit.v1i3.p116-120.

[2] S. C. Mesbahi, J. Riffi, M.A. Mahraz and H. Tairi, “Hand gesture

recognition based on convexity approach and background

subtraction”, 2018 International Conference on Intelligent Systems and

Computer Vision (ISCV). doi:10.1109/isacv.2018.8354074 .

[3] M. Jin, C. Zaid, O. Mohamed, and H. Jaward, “A review of hand gesture

and sign language recognition techniques,” Int. J. Mach. Learn. Cybern.,

vol. 0, no. 0, p. 0, 2017, doi: 10.1007/s13042-017-0705-5.

[4] M. A. Almasre and H. A. Al-Nuaim, “Using The Hausdorff Algorithm to

Enhance Kinect’s Recognition of Arabic Sign Language Gestures,”

Nuaim Int. J. Exp. Algorithms, no. 7, p. 1, 2017.

[5] S. Nagarajan and T. S. Subashini, “Static Hand Gesture Recognition for

Sign Language Alphabets using Edge Oriented Histogram and Multi

Class SVM,” International Journal of Computer Applications, vol. 82, no.

4. pp. 28–35, 2013, doi: 10.5120/14106-2145.

[6] A. Abraham, P. Krömer, and V. Snášel, “SIFT-based Arabic Sign

Language Recognition System,” Afro-European Conf. Ind. Adv. Proc.

First Int. Afro-European Conf. Ind. Adv. AECIA 2014 Adv. Intell. Syst.

Comput., vol. 334, no. November, 2014, doi: 10.1007/978-3-319-13572-4.

102

[7] T. Aujeszky and M. Eid, “A gesture recogintion architecture for Arabic

sign language communication system”, Multimed. Tools Appl., vol. 75,

no. 14, pp. 8493–8511, 2016, doi: 10.1007/s11042-015-2767-2.

[8] P. Shah, K. Pandya, H. Shah, and J. Gandhi, “Survey on Vision based

Hand Gesture Recognition” , International Journal of Computer Sciences

and Engineering, vol. 7, no. 5, pp. 281–288, E-ISSN: 2347-2693, 2019.

[9] P. Parvathy, K. Subramaniam, G. K. D. P. Venkatesan, P. Karthikaikumar,

J. Varghese, and T. Jayasankar, “Development of hand gesture

recognition system using machine learning,” J. Ambient Intell. Humaniz.

Comput., 2020, doi: 10.1007/s12652-020-02314-2.

[10] V. Gajjar, “Hand Gesture Real Time Paint Tool – Box : Machine

Learning Approach” 2017 IEEE Int. Conf. Power, Control. Signals

Instrum. Eng., pp. 856–860, 2017.

[11] M. Oudah, M.,A.Al-Naji, & J.Chahl, (2020), “Hand Gesture Recognition

Based on Computer Vision: A Review of Techniques”, Journal of

Imaging, 6(8), 73. doi:10.3390/jimaging6080073.

[12] M. K. Ahuja and A. Singh, “Static vision based Hand Gesture

recognition using principal component analysis,” Proc. 2015 IEEE 3rd

Int. Conf. MOOCs, Innov. Technol. Educ. MITE 2015, pp. 402–406, 2016,

doi: 10.1109/MITE.2015.7375353.

[13] M. M. Islam, S. Siddiqua, and J. Afnan, “Real time Hand Gesture

Recognition using different algorithms based on American Sign

Language” 2017 IEEE Int. Conf. Imaging, Vis. Pattern Recognition,

icIVPR 2017, 2017, doi: 10.1109/ICIVPR.2017.7890854.

103

[14] H. Hasan, and S. Abdul-Kareem, “Static hand gesture recognition using

neural networks”, 2012 RETRACTED ARTICLE: Static hand gesture

recognition using neural networks. Artificial Intelligence Review, 41(2),

147–181. doi:10.1007/s10462-011-9303-1

[15] O. K. Oyedotun and A. Khashman, “Deep Learning In Vision-Based

Static Hand Gesture Recognition”, Neural Comput. Appl., vol. 28, no.

12, pp. 3941–3951, 2017, doi: 10.1007/s00521-016-2294-8.

[16] V. Bheda and N. Dianna Radpour, “Using Deep Convolutional Networks

for Gesture Recognition in American Sign Language”, Available online

https//arxiv.org/abs/1710.06836v3 (accessed 15 August 2018).

[17] S. Masood, H. C. Thuwal, and A. Srivastava, “American sign language

character recognition using convolution neural network”, Smart Innov.

Syst. Technol., vol. 78, no. October, pp. 403–412, 2018, doi: 10.1007/978-

981-10-5547-8_42.

[18] R. Alzohairi, R. Alghonaim, W.Alshehri, S.Aloqeely, M. Alzaidan, and O.

Bchir “Image based Arabic Sign Language Recognition System”, Int.

J. Adv. Comput. Sci. Appl., vol. 09, no. 03, pp. 185–194, 2018, [Online].

Available: www.ijacsa.thesai.org.

[19] R. Ahuja, D. Jain, D. Sachdeva, A. Garg, and C. Rajput, “Convolutional

neural network based American sign language static hand gesture

recognition”, Int. J. Ambient Comput. Intell., vol. 10, no. 3, pp. 60–73,

2019, doi: 10.4018/IJACI.2019070104.

[20] S. Hayani, M. Benaddy, O. El Meslouhi, and M. Kardouchi, “Arab Sign

language Recognition with Convolutional Neural Networks”,

Proceedings of 2019 International Conference of Computer Science and

Renewable Energies, ICCSRE 2019, doi: 10.1109/ICCSRE.2019.8807586.

104

 [21] T. Goswami and S. R. Javaji, “CNN Model for American Sign Language

Recognition”, in ICCCE 2020 Proceedings of the 3rd International

Conference on Communications and Cyber Physical Engineering.

[22] M. M. Kamruzzaman, “Arabic Sign Language Recognition and

Generating Arabic Speech Using Convolutional Neural Network”,

Wirel. Commun. Mob. Comput., vol. 2020, doi: 10.1155/2020/3685614.

[23] A. Sharma, A. Mittal, S. Singh, and V. Awatramani, “Hand Gesture

Recognition using Image Processing and Feature Extraction

Techniques”, Procedia Comput. Sci., vol. 173, pp. 181–190, 2020, doi:

10.1016/j.procs.2020.06.022.

 [24] M. Al-Hammadi, G. Muhammad, W. Abdul, M. Alsulaiman, and M. S.

Hossain, “Hand Gesture Recognition Using 3D-CNN Model”, IEEE

Consum. Electron. Mag., vol. 9, no. 1, pp. 95–101, 2020, doi:

10.1109/MCE.2019.2941464.

[25] S. Veluchamy, L.R. Karlmarx and J. Jeya Sudha, “Vision Based

Gesturally Controllable Human Computer Interaction System”, in

2015 International Conference on Smart Technologies and Management for

Computing, Communication, Controls, Energy and Materials (ICSTM), p.

pp.8-15.

 [26] M.B. Hisham, S.N. Yaakob, R.A. Raof, A.B. Nazren, and N.M. Wafi, “An

Analysis of Performance for Commonly Used Interpolation Method”,

American Scientific Publishers Advanced Science Letters, United States of

America, 2016 .

105

[27] H. Badi, S. Kareem, and S. Husien, “Feature Extraction Technique for

Static Hand Gesture Recognition”, Editor: A. Chaudhary, Recent Trends

in Hand Gesture Recognition DOI: 10.15579/gcsr.vol3.ch2, GCSR Vol. 3,

pp. 19-41, 2015.

[28] M. Lorentzon, “Feature extraction for image selection using machine

learning’’, M.s.C Thesis in Electrical Engineering Department of Electrical

Engineering, Linkoping University, 2017.

[29] N. Dalal and B. Triggs, “Histograms of oriented gradients for human

detection“, in Computer Vision and Pattern Recognition, 2005. CVPR

2005. IEEE Computer Society Conference on, 2005, vol. 1, pp. 886–893.

[30] A. Challa, “Automatic Handwritten Digit Recognition On Document

Images Using Machine Learning Methods”, thesis :Master of Science in

Computer Engineering January 2019, Faculty of Computing, Blekinge

Institute of Technology, 371 79 Karlskrona, Sweden.

[31] M. HafizurRahman and J. Afrin, “Hand Gesture Recognition using

Multiclass Support Vector Machine”, International Journal of Computer

Applications, vol. 74, no. 1. pp. 39–43, 2013, doi: 10.5120/12852-9367.

 [32] W. Zhang, “Dynamic Hand Gesture Recognition Based on 3D

Convolutional Neural Network Models”, 2019 IEEE 16th Int. Conf.

Networking, Sens. Control, pp. 224–229, 2019.

[33] Y. Liu, Y. Ge, F. Wang, Q. Liu, D. Zhang, and G. Lu, “A Rotation

Invariant Hog Descriptor For Tire Pattern Image“, Classification

Center for Image and Information Processing , Xi an University of Posts &

Telecommunications No . 618 , Chang ’ an West Road , Xi ’ an City ,

Shaanxi Province , China, pp. 2412–2416, 2019.

106

[34] M. A. Hajizadeh and H. Ebrahimnezhad, “Classification of age groups

from facial image using Histograms of Oriented Gradients”, 2011 7th

Iran. Conf. Mach. Vis. Image Process. MVIP 2011 - Proc., pp. 0–4, 2011,

doi: 10.1109/IranianMVIP.2011.6121582.

[35] M. Turkoglu and D. Hanbay, “Recognition of plant leaves: An approach

with hybrid features produced by dividing leaf images into two and

four parts”, Appl. Math. Comput., vol. 352, pp. 1–14, 2019, doi:

10.1016/j.amc.2019.01.054.

[36] H. Kamel, D. Abdulah, and J. M. Al-Tuwaijari, “Cancer Classification

Using Gaussian Naive Bayes Algorithm”, Proc. 5th Int. Eng. Conf. IEC

2019, pp. 165–170, 2019, doi: 10.1109/IEC47844.2019.8950650.

[37] X. Duanmu, “Image retrieval using color moment invariant”,

ITNG2010 - 7th Int. Conf. Inf. Technol. New Gener., pp. 200–203, 2010,

doi: 10.1109/ITNG.2010.231.

[38] M. Zhang, W. Cheng, and Y. Wang, “Multiple-Fault Classification for

Hot-Mix Asphalt Production by Machine Learning”, J. Constr. Eng.

Manag., vol. 144, no. 5, p. 04018024, 2018, doi: 10.1061/(asce)co.1943-

7862.0001470.

 [39] S. Dong, D. Sun, B. Tang, Z. Gao, W. Yu, and M. Xia, “A fault diagnosis

method for rotating machinery based on PCA and Morlet kernel

SVM”, Math. Probl. Eng., vol. 2014, 2014, doi: 10.1155/2014/293878.

[40] D.B A and M.K , “Image Processing Techniques for Hand Gesture and

Sign Recognition”, International Research Journal of Engineering and

Technology (IRJET), vol. Volume: 06, no. Issue: 01, 2019, [Online].

Available: www.irjet.net.

107

[41] C. Maharani, D. A., Fakhrurroja, H., Riyanto, & Machbub, “Hand Gesture

Recognition Using K-Means Clustering and Support Vector Machine”,

IEEE Symp. Comput. Appl. Ind. Electron. (ISCAIE)., 2018, [Online].

Available: doi:10.1109/iscaie.2018.8405435.

[42] K. P. Murphy, “Machine Learning, a Probabilistic Perspective”, J.

homepage https//www.tandfonline.com/loi/ucha20, no.0933–2480, p. 1104

pages,[Online]. Available: https://doi.org/10.1080/09332480.2014.914768.

[43] T. Le Duc, R. G. Leiva, P. Casari, and P. O. Östberg, “Machine learning

methods for reliable resource provisioning in edge-cloud computing:

A survey”, ACM Comput. Surv., vol. 52, no. 5, 2019, doi:

10.1145/3341145.

[44] M. A. Almasre and H. Al-Nuaim, “Comparison of four SVM classifiers

used with depth sensors to recognize arabic sign language words,”

Computers, vol. 6, no. 2, 2017, doi: 10.3390/computers6020020.

 [45] E. García-Gonzalo, Z. Fernández-Muñiz, P. J. G. Nieto, A. B. Sánchez, and

M. M. Fernández, “Hard-rock stability analysis for span design in entry-

type excavations with learning classifiers”, Materials (Basel)., vol. 9, no.

7, pp. 1–19, 2016, doi: 10.3390/ma9070531.

[46] M. Awad, Y. Motai, J. Näppi, and H. Yoshida, “A Clinical Decision

Support Framework for Incremental Polyps Classification in Virtual

Colonoscopy”, Algorithms, vol. 3, no. 1, pp. 1–20, 2010, doi:

10.3390/a3010001.

[47] G. W. Naji, and J. M. Al-Tuwaijari, “Satellite Images Scene Classification

Based Support Vector Machines and K-Nearest Neighbor”, Diyala

Journal for Pure Science 15, No. 03, PP. 70-87, 2019.

https://www.iasj.net/iasj/search?query=au:%22Ghaidaa%20Waleed%20Naji%22

108

[48] F. F. Chamasemani and Y. P. Singh, “Multi-class Support Vector

Machine (SVM) classifiers - An application in hypothyroid detection

and classification”, Proceedings - 2011 6th International Conference on

Bio-Inspired Computing: Theories and Applications, BIC-TA 2011. pp.

351–356, 2011, doi: 10.1109/BIC-TA.2011.51.

[49] M. Achirul Nanda, K. Boro Seminar, D. Nandika, and A. Maddu, “A

comparison study of kernel functions in the support vector machine

and its application for termite detection”, Information, 9(1),5,

doi:10.3390/info9010005 .

[50] B. Scholkopf, C. J.C. Burges, and A. J. Smola, “Advances in kernel

methods: support vector learning’’, book, 1999.

[51] J. Patterson, and A. Gibson, “Deep Learning’’, book, Released August

2017 Publisher(s): O'Reilly Media, Inc. ISBN: 9781491914250.

 [52] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald,

and E. Muharemagic, “ Deep learning applications and challenges in big

data analytics. Journal of Big Data’’, https://doi.org/10.1186/s40537-

014-0007-7Deep learning , Journal of Big Data, vol. 2, no. 1. p. 1, 2015,

[Online]. Available: http://www.journalofbigdata.com/content/2/1/1.

[53] M. Mustafa, “A study on Arabic sign language recognition for

differently abled using advanced machine learning classifiers ”, Journal

of Ambient Intelligence and Humanized Computing. 2020, doi:

10.1007/s12652-020-01790-w.

[54] L. T. Bhavanam and G. N. Iyer, “On the Classification of Kathakali Hand

Gestures Using Support Vector Machines and Convolutional Neural

Networks”, in 2020 International Conference on Artificial Intelligence and

Signal Processing (AISP).

109

[55] S. Albawi, T. A. M. Mohammed, and S. Alzawi, “Understanding of a

Convolutional Neural Network,” Ieee. 2017, [Online]. Available:

https://wiki.tum.de/display/lfdv/.

 [56] X. Kang, B. Song, and F. Sun, “A deep similarity metric method based

on incomplete data for traffic anomaly detection in IoT”, Applied

Sciences (Switzerland), vol. 9, no. 1. 2019, doi: 10.3390/app9010135.

 [57] S. M. Anwar, M. Majid, A. Qayyum, M. Awais, M. Alnowami, and M. K.

Khan, “Medical Image Analysis using Convolutional Neural Networks:

A Review” J. Med. Syst., vol. 42, no. 11, 2018, doi: 10.1007/s10916-018-

1088-1.

[58] G. Li et al., “Hand gesture recognition based on convolution neural

network” Cluster Comput., 2017, doi: 10.1007/s10586-017-1435-x.

[59] X. Jiang, Y. Wang, W. Liu, S. Li, and J. Liu, “CapsNet, CNN, FCN:

Comparative performance evaluation for image classification”,

International Journal of Machine Learning and Computing, vol. 9, no. 6. pp.

840–848, 2019, doi: 10.18178/ijmlc.2019.9.6.881.

[60] S. Skansi, “Introduction to Deep Learning from Logical Calculus to

Artificial Intelligence”, Springer, 2018, uundergraduate Topics in Computer

Science, https://doi.org/10.1007/978-3-319-73004-2.

[61] G. Castaneda and P. Morri, and T. M. Khoshgoftaa, “Evaluation of

maxout activations in deep learning across several big data domains”,

J. Big Data, doi: https://doi.org/10.1186/s40537-019-0233-0.

[62] C. E. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation

functions: Comparison of trends in practice and research for deep

learning”, arXiv:1811.03378v1 [cs.LG] 8 Nov 2018.

110

[63] W. Pedrycz and S. Chen, “Deep Learning: Algorithms and

Applications”, vol. 865, no. 2. Springer Nature Switzerland AG 2020.

 [64] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical Evaluation of Rectified

Activations in Convolutional Network”, 2015, [Online]. Available:

http://arxiv.org/abs/1505.00853.

[65] A. Gupta and R. Duggal, “P-TELU: Parametric Tan Hyperbolic Linear

Unit Activation for Deep Neural Networks” ,Proceedings - 2017 IEEE

International Conference on Computer Vision Workshops, ICCVW 2017,

vol. 2018-Janua. pp. 974–978, 2017, doi: 10.1109/ICCVW.2017.119.

[66] A. A. Alani, G. Cosma, A. Taherkhani, and T.M McGinnity, “Hand

Gesture Recognition Using an Adapted Convolutional Neural Network

withData Augmentation”, 2018 4th International Conference on

Information Management (ICIM), doi:10.1109/infoman.2018.8392660

[67] W. Rawat and Z.Wang, “Deep Convolutional Neural Networks for

Image Classification: A Comprehensive Review”, Article in Neural

Computation June 2017, doi: 10.1162/NECO_a_00990.

[68] M. R. Islam, U. K. Mitu, R. A. Bhuiyan, and J. Shin, “Hand gesture

feature extraction using deep convolutional neural network for

recognizing American sign language”, 2018 4th ICFSP 2018, no.

September, pp. 115–119, 2018, doi: 10.1109/ICFSP.2018.8552044.

[69] M.ZahangirAlom, T.M.Taha, C. Yakopcic,S.Westberg, P.Sidike, S.Nasrin

, B. C Van Esesn, A. A S. Awwal, and V. K. Asari, “The History Began

From Alexnet: A Comprehensive Survey On Deep Learning

Approaches” , https://arxiv.org/abs/1803.01164 , 2018.

https://arxiv.org/search/cs?searchtype=author&query=Alom%2C+M+Z
https://arxiv.org/search/cs?searchtype=author&query=Taha%2C+T+M
https://arxiv.org/search/cs?searchtype=author&query=Yakopcic%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Sidike%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Nasrin%2C+M+S
https://arxiv.org/search/cs?searchtype=author&query=Van+Esesn%2C+B+C
https://arxiv.org/search/cs?searchtype=author&query=Awwal%2C+A+A+S
https://arxiv.org/search/cs?searchtype=author&query=Asari%2C+V+K

111

[70] Han, M., Chen, J., Li, L., & Chang, Y. (2016). "Visual hand gesture

recognition with convolution neural network", 2016 17th IEEE/ACIS

International Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing.

[71] A. El Korchi and Y. Ghanou, “DropWeak: A novel regularization

method of neural networks”, Procedia Comput. Sci., vol. 127, pp. 102–

108, 2018, doi: 10.1016/j.procs.2018.01.103.

[72] A. Gummeson, “Prostate Cancer Classification using Convolutional

Neural Networks” , Master’s Theses in Mathematical Sciences. 2016.

[73] P. Bao, A.I. Maqueda, C. R. del-Blanco, and N. García, “Tiny hand

gesture recognition without localization via a deep convolutional

network”, 2017 IEEE Transactions on Consumer Electronics, 63(3), 251–

257. doi:10.1109/tce.2017.014971.

 [74] S. Vani and Dr. T. V. Madhusudhana, “An Experimental Approach

towards the Performance Assessment of Various Optimizers on

Convolutional Neural Network” , in Proceedings of the Third

International Conference on Trends in Electronics and Informatics (ICOEI

2019), p. IEEE Xplore Part Number: CFP19J32-ART; ISBN: 978-1.

[75] M.Yaqub , J.Feng , M. Sultan Zia, K. Arshid , K. Jia , Z. Ur Rehman and

A. Mehmood, “State-of-the-Art CNN Optimizer for Brain Tumor

Segmentation in Magnetic Resonance Images”, Brain Sciences, 10(7),

427. doi:10.3390/brainsci10070427, 2020.

[76] B. Xiao, Y. Liu, and B. Xiao, “Accurate state-of-charge estimation

approach for lithium-ion batteries by gated recurrent unit with

ensemble optimizer,” IEEE Access, vol. 7, pp. 54192–54202, 2019, doi:

10.1109/ACCESS.2019.2913078.

112

[77] T.Thu-Huong Le, J. Kim, and H. Kim, “An Effective Intrusion Detection

Classifier Using Long Short-Term Memory with Gradient Descent

Optimization” , Int. Conf. Platf. Technol. Serv, no. November, 2017, doi:

10.1109/PlatCon.2017.7883684.

[78] S. Imran, Y. Long, X. Liu, and D. Morris, “Depth Coefficients for Depth

Completion”, IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2029, doi:10.1109/cvpr.2019.01273.

[79] X. Deng, Q. Liu, Y. Deng, and S. Mahadevan, “An improved method to

construct basic probability assignment based on the confusion matrix

for classification problem” , Inf. Sci. (Ny)., vol. 340–341, pp. 250–261,

2016, doi: 10.1016/j.ins.2016.01.033.

 [80] K. Kurnianingsih, K. Hamed, L. Edi Nugroho, Widyawan, L. Lazuardi, A.

Satria Prabuwono, and T. Mantoro, “Segmentation and Classification of

Cervical Cells Using Deep Learning”, IEEE Access, Digital Object

Identifier 10.1109/ACCESS.2019.2936017, vol. 7, 2019.

[81] P. B. Shull, S. Jiang, S. Member, and Y. Zhu, “Hand Gesture Recognition

and Finger Angle Estimation via Wrist-Worn Modified Barometric

Pressure Sensing”, IEEE Trans. Neural Syst. Rehabil. Eng., vol. PP, no.

c, p. 1, 2019, doi: 10.1109/TNSRE.2019.2905658.

[82] https://www.kaggle.com/grassknoted/asl-alphabet.

[83] https://data.mendeley.com/datasets/y7pckrw6z2/1.

https://arxiv.org/search/cs?searchtype=author&query=Imran%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Long%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Liu%2C+X
https://arxiv.org/search/cs?searchtype=author&query=Morris%2C+D

113

 الخلاصة
ة مهمة وبهذا ، أصبح التعرف على لغة الإشارة تقنيان عملية تحديد كل حرف على حدة مهمة جدا

 .والتعلم الآلي في الذكاء الاصطناعي

 رزمياتبناءً على خوا الثابتة تقدم هذه الأطروحة نظامين مقترحين للتعرف على إيماءات اليد

صور حيث يتم استخدام عدة خطوات في شكل مراحل ؛ الحصول على الالتعلم الالي والتعلم العميق ،

خدام الرسم والمعالجة المسبقة للصور واستخراج الميزات والتصنيف. في النظام الأول المقترح ، يتم است

اعمة يزات من كل صورة ثم يتم تطبيق آلة متجهية دلاستخراج الم (HOG) البياني للتدرجات الموجهة

المقترح للصور لأداء عملية التصنيف. في النظام الثاني HOG باستخدام نتيجة (MSVM) متعددة الفئات

اليد الثابتة والتي يتم من خلالها التعرف على إيماءات (CNN) ، يتم استخدام الشبكة العصبية الالتفافية

 .ه الخوارزمية التي تتكون من عدة طبقاتوفقاً لهيكل خاص لهذ

كانت الأعمال والأبحاث السابقة في هذا المجال معقدة للغاية وبدقة مختلفة. النتائج التي تم الحصول

يتفوق على النظام الأول CNN باستخدام نموذج ت التعليم العميق عليها ، النظام الثاني المقترح الذي اعتمد

٪(للغة 99.71كان معدل الدقة الذي تم الحصول عليه من النظام الثاني المقترح)من حيث الأداء والدقة ، و

، بينما كانت نسبة الدقة التي تم (ArSL) ٪ للغة الإشارة العربية99.03و) (ASL) الإشارة الأمريكية

 ArSL ٪(بالنسبة لـ96.16، و)ASL لـ ٪(95.58الحصول عليها من النظام المقترح الأول)

 العراق جمهورية

 العلمي والبحث العالي التعليم وزارة

 ديالى جامعة

 العلوم كلية

 قسم علوم الحاسوب

في التعرف CNNو MSVMمقارنة بين خوارزميات

 على إيماءات اليد في وضع عدم الاتصال

 مقدمة رسالة

 وهي جزء من متطلبات نيل ديالىكلية العلوم في جامعة الى

 حاسوبفي علوم ال ماجستيرشهادة ال
 تقدمت بها الطالبة

 سبع مدهند ابراهيم مح

 بإشراف

 جمانة وليد صالح .د. .مأ

 م 2021 هـ 1443

View publication stats

https://www.researchgate.net/publication/354378596

