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ABSTRACT 
The process of identifying each letter separately is very important to 

understand. With this, sign language recognition has become an important 

technology in artificial intelligence (AI) and machine learning (ML). 

This thesis presents two proposed systems for static hand gesture recognition 

(HGR) based on ML and Deep Learning (DL) algorithms in which several steps are 

used in the form of phases; image acquisition, image preprocessing, feature 

extraction, and classification. In the first proposed system, a histogram of oriented 

gradients (HOG) is utilized for extracting features from each image and then a multi-

class support vector machine (MSVM) is applied using the result of the HOG of 

images to perform the classification process. In the second proposed system, the 

convolution neural network (CNN) is used through which recognition of static hand 

gestures is accomplished according to a special structure of this algorithm that 

consisting of several layers. 

The Previous works and researches in that field had a lot of complexity with 

different accuracy. The obtained results, the second proposed system which adopted 

DL by using the CNN model outperforms the first system in terms of performance 

and accuracy, the accuracy rate obtained from the second proposed system was 

(99.71%) for American Sign Language (ASL) and (99.03%) for Arabic sign 

language (ArSL), While the accuracy rate obtained from the first proposed system 

was (95.58%) and (96.16%) for ArSL. 
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CHAPTER ONE 

GENERAL INTRODUCTION 

 
1.1 Introduction 

 Gesture recognition in today's technologies is an emerging topic. The major 

objective of this is to use mathematical algorithms for human-computer 

interaction (HCI), Typically Gestures may arise from any movement or condition 

of the body, however generally come from the face or the hand ([1], [2]). 

Hand gestures play an important role in communicating human thoughts and 

feelings, and Sign language is a formal type of hand gestures that are used as a 

communication device, including visual movements and signs. For the culture of 

the deaf and speech-impaired. Sign language makes it possible to use several parts 

of the body such as the fingers, hand, arm, head, torso, or face to communicate 

details. In the hearing population, sign language is not common, however, 

although fewer are capable of understanding it. Which creates a real obstacle of 

contact between both the deaf and the rest of humanity, a question that still has 

to be completely addressed ( [3], [4]). 

The deaf and dumb people have been disconnected from the community, and 

it is impossible for average people to learn sign language. Not only for deaf and 

dumb individuals, sign language learning has been adopted, but also as a medium 

for common people to communicate with them ([5], [6]).  

     Many of the general assets of sign languages around the world are held by 

ArSL. Its documentation, though, is in a comparatively early process. ArSL also 

has many nation versions and dialects as most other sign languages [7]. 

     The literature includes several recommended solutions for the recognition of 

the automated sign language. ArSL, however, has garnered little attention from 

academics, unlike American Sign Language (ASL) [7]. 
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1.2 Overview of Hand gesture Recognition  

Gesture recognition is a sufficient way to understand and follow human 

language and to assist in communication and interaction between the user and the 

computer. Gesture recognition is useful for communicating what they cannot 

communicate with speech or writing text. The best way to express something 

meaningful is with gestures [1]. Hand gestures recognition (HGR) is still a large 

research field that is classified according to the meaning of a gesture and the 

technologies for implementing these gestures [8]. The type of HGR system that 

is developed is determined by different taxonomies: environmental factors, a 

system for capturing gestures could be more or less effective, depending on a 

variety of factors, including the skills of the individual performing the gesture, 

the effectiveness of the capture systems, the type of gesture (static or dynamic), 

and the purpose for which the system was designed [9]. Virtual worlds, smart 

surveillance, sign language translation, medical systems, and other domains all 

have HGR applications. However, one of the most important applications have 

developed is sign language based on machine learning (ML) algorithms using 

hand gestures [10].  

Two types of HGR techniques have been described, recognition based on 

vision and sensor which linking one or more types of sensors, the gesture data is 

collected using sensor-based recognition. These sensors are connected to a hand 

that records the hand's positioning and then analyzes the data gathered for gesture 

recognition. The data glove is an example of sensor-based gesture recognition. 

Sensors are shown in Figure (1.1), there are certain limitations to base 

recognition. First, it is necessary to establish the correct hardware, which is really 

costly. Second, it impedes normal hand gestures. Thus, the weaknesses of sensor-
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based techniques necessitated the creation of vision-based recognition techniques 

[11]. 

 

 

 

 

 

 

 

Figure (1.1): Sensor-Based Data Glove [11]. 

     The images of the hands are captured using vision-based methods, which use 

one or more cameras. Different vision types are shown in Figure (1.2). Stereo 

cameras, monocular cameras, fish eye cameras, flight time cameras, infrared 

cameras, and other types of cameras are all available that can be used to capture 

images. Vision-based techniques use different algorithms for image recognition 

to achieve hand posture and hand movement. To get the hand position, some 

vision-based techniques use colored markers. Yet, the limits of vision-based 

recognition is  often influenced by shifts in illumination and cluttered 

backgrounds, see ( [12],  [13]). 

Figure (1.2): Using Computer Vision Techniques [11]. 
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In general, gestures are divided into two categories: static gestures and 

dynamic gestures. Hand forms are typically used to describe static gestures, 

while hand motions are used to describe dynamic gestures[14]. 

HGR systems that rely on geometric features such as fingertips, finger 

directions, and hand contours are only accurate in situations where they are not 

occluded or the lighting is not too dark. Shape, color, and texture are present, but 

they are not sufficiently important for recognition. To define features, images or 

transformed images are used as the input. The recognizer then implicitly and 

automatically selects features from the image or transformed image [14]. 

 

1.3 Related Work 

     Advanced tools and strategies have greatly enhanced ML algorithms that is a 

set of learning methods designed to represent structured data that has 

successfully been applied to the field of image classification to the extent that 

they can overwhelm human performance. This section reviews the previous 

studies that used convolutional neural network (CNN) and Support Vector 

Machine (SVM) to recognize hand gestures for Different Datasets. 

 

S. Nagarajan and T. S. Subashini (2013) [5]: proposed a consistent HGR 

system for ASL based on the features of  Edge Orientation Histogram (EOH) and 

multi-class support vector machine (MSVM). The database of the image contains 

a total of 720 images in 24 categories of the American Sign Language (ASL) 

alphabet, each category contains 30 images. The input sign language alphabets' 

edge graph count is extracted features and applied to the MSVM for 

categorization. The average accuracy of the system was 93.75%, the system failed 

to classify some alphabets. as well as the absence of the letters "J" and "Z" in the 

data set used because these two gestures are dynamic and include movement. 
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O. K. Oyedotun and A. Khashman (2016) [15]: proposed application of deep 

learning (DL) for the complete (24 ASL) hand gestures acquired from Thomas 

Moeslund database to the topic of hand gesture recognition. The complicated role 

of classifies hand signals at reduced error levels has been demonstrated by more 

biologically based and deep neural networks, including convolution neural 

networks (CNN) and stacked denoizing autoencoders.The networks considered 

are based on the data collected and checked. Recognition scores of 91.33% and 

92.83%, the data does not contain the two-letter 'j' and,  'z' and the model can 

obtain higher accuracy if  used in another data  set 

 

V. Bheda and N. D. Radpour (2017) [16]: proposed a model for using deep 

convolutional networks (DCN) to classify images, the data set  ASL was a 

collection of 25 images for each alphabet and the digits. CNN architecture 

consisting of multiple convolutional and dense layers. The accuracy was 67% of 

letters of the alphabet, and 70% for digits. The number of images for each 

character can be increased to further improve the system's accuracy. 

 

S. Masood et al. (2018) [17]: presented the application of CNN for recognizing 

hand gestures. used 36 different categories, 26 classes for ASL and 10 classes for 

Numerals (0-9). Accuracy was 96%. The system failed to classify the zero and 

'W’ alphabet as ‘O’ and six respectively. 

 

Reema Alzohairi et al. (2018) [18]: aimed to recognize ArSL alphabets 

automatically using Methodology focused on images Especially, An accurate 

ArSL alphabet recognizer is being designed through the use of numerous visual 

descriptors. In the extraction process, the extracted visual descriptors are used as 

input for the One Versus Rest analysis (1VR). As a result, the ArSL gesture 

models learned 1VR using histogram of oriented gradients (HOG) descriptors are 
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used. The database contains 30 classes (7 images for each character), image is 

focused and resize to 200x200 pixels in size. The system accuracy 63.5 %. The 

system has an issue with a limited dataset for the training algorithm. The number 

of images for each character can be increased to further improve the system's 

accuracy. 

 

R. Ahuja et al. (2019) [19]: proposed a model that used CNN layers and digital 

image processing techniques. Open CV was used to track down additional 

execution methods such as image preprocessing. The archive, which was used to 

test 24 ASL hand gestures, contains 47,445 photographs, of which 33000 (70%) 

were used in the training collection and 14445 (30%) were used for testing. The 

results showed that was accurate at 99.7%. It is attributed that the system detected 

24 a letter instead of 26 the absence of the two letters "J" and "Z" in the data set 

used in the model. 

 

S. Hayani et.al (2019) [20]: proposed a model using CNN. This system will 

detect numbers and letters when fed with a real dataset. Utilized the dataset of 

images which contained 2,030 images of numbers, and 5,839 images of the 28 

different ArSL classes, and the result was an accuracy of 90.02 percent. More 

accurate results can be obtained by increasing the number of CNN layers and the 

number of images used for each letter. 

 

T. Goswami and S. R. Javaji (2020) [21]: suggested a model that relies on a 

CNN to recognize and classify hand gestures. The dataset uses 24 classes (27,455 

images) to ASL (A-Z), with size (28x28). DL technology based on CNN learns 

and automatically extracts features to classify each gesture. The proposed model 

has a test accuracy of 99%. It is attributed that the system detected 24 a letter 
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instead of 26 the absence of the two letters "J" and "Z" in the data set used in the 

model. 

 

M. M. Kamruzzaman (2020) [22]: proposed a system to detect hand signs with 

CNN automatically to dataset (ArSL), the system was trained for 100 epochs by 

optimizer with a cost function. The system is then connected to its signature stage, 

where a hand sign has been translated with 90% accuracy to Arabic speech. That 

can be improved by increasing the number of images, as only 100 images were 

used for each letter. 

 

 A.Sharma et al. (2020) [23]: proposed a system that used Many various 

techniques for pretreatments such as HOG, local binary patterns (LBP), and 

principal component analysis (PCA). This dataset ASL contains 29 classes (3000 

image). These methods were successfully implemented to obtain effective results 

accuracy of Multilayer Perceptron (MLP) 96.96%, K-Nearest Neighbor (KNN) 

95.81%, Random Forests (RF) 92.69%, Support Vector Machines (SVM) 

85.25%, Logistic Regression (LR) 84.59%, and Naïve Bayes (NB) 72.23%. 
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 Table (1.1): Comparison of Related Works. 

No. Author(s),Year Ref. 

No. 

Algorithm 

for 

Classificat

ion 

Dataset Size 

(Images 

Number) 

Accuracy 

1.  S. Nagarajan and T. S. 

Subashini (2013) 

[5] MSVM 720 images in 

24 categories 

ASL 

93.75%, 

2.  O. K. Oyedotun and 

A. Khashman (2016) 

[15] CNN 1440 for 

training , 600 

for testing 

ASL 

92.83% 

3.  V. Bheda and N. D. 

Radpour (2017) 

[16] CNN 650 Images , 

25 images 

from 5 people 

for each 

alphabet 

ASL 

67% 

4.  S. Masood et al. 

(2018) 

[17] CNN 2524 ASL 

gestures 

 

96% 

5.  Reema Alzohairi et al. 

(2018) 

[18] MSVM 210 

ArSL  

63.5 %. 

6.  R. Ahuja et al. (2019) [19] CNN 47,445 images 

for 24 classes 

ASL 

99.7% 

7.  S. Hayani  et.al (2019) [20] CNN 5839 images 

of 28 class 

ArSL 

90.02% 

8.  T.Goswami and S. R. 

Javaji (2020) 

[21] CNN 27,455 images 

for 24 classes 

ASL 

99% 

9.  M. M. Kamruzzaman 

(2020) 

[22] CNN 100 images 

for each 

alphabet (32 

classes) 

ArSL 

90% 

10. A.Sharma et al. (2020) [[23] MSVM 3000 images 

ASL 

85.25 
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1.4 Problem Statement 

     About 70 million people (deaf and dumb) use sign language as their first or 

mother tongue all over the world and unfortunately they cannot communicate 

with the general public because they do not understand the meaning of sign 

language gestures and on the other hand they are unable to understand natural 

language. 

     Indeed, it is very important to support this category of society in view of the 

great development in the world of technology and software, and as a result, it is 

necessary to prepare systems capable of translating signals into text or speech. 

If these systems are put in place, it will greatly help them to understand what is 

going on around them in an easy and simple way. 

     For the sake of the above, several researchers have proposed the development 

and implementation of automated systems or human-computer interaction (HCI) 

to help deaf people and the general public communicate. 

 

1.5 Aim of the Thesis 

     This thesis aims to build a strong to recognize hand gesture system for ASL 

and ArSL sign language to help the deaf and dumb people more easily with 

computer vision applications using multi-class support vector machine (MSVM) 

classing was designed and applied as the most important algorithm of ML 

algorithms in the first proposed system. Furthermore, the CNN model is utilized 

in the second proposed system which is the most powerful algorithm for DL for 

making a comparison between these techniques to determine the best one in 

achieving a high degree of accuracy. 
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1.6 The Organization of the Thesis 

   This thesis is organized into four chapters, in addition to the one already 

described, and is structured as follows: 

      Chapter Two describes of the theoretical background of the main systemses 

that used for the hand gesture recognition based on ML. 

     Chapter Three presents the details of the proposed recognition and 

classification algorithms that are used to design the proposed system and the 

implementation of each one. 

      Chapter Four gives the experimental results obtained from the 

implementation of the proposed system. 

      Chapter Five discusses results, conclusions and lists a number of suggestions 

for future studies.            



 

 

 

 

 

 

 

 

 

Chapter Two 
 

THEORETICAL BACKGROUND 
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                                 CHAPTER TWO 

                        THEORETICAL BACKGROUND 

2.1. Introduction 

This chapter provides an overview of the theoretical background of the 

main approaches used in this thesis, Recognition of static hand gestures is a 

natural medium used for human-computer interaction (HCI), is a very active area 

of research in computer vision and in Machine Learning (ML) [1]. 

Various techniques are available for hand gesture recognition in ML and 

deep learning (DL) as Support vector machine (SVM) and Convolutional Neural 

Network (CNN) which are the main methods that will be discussed in this thesis 

to perform feature extraction and classification. 

 

2.2 Data Acquisition 

HGR and HCI, in general, have been the subject of extensive research in 

recent decades. Based on the data collection process, the majority of experiments 

have taken one of two methods. 

In the first approach, the signer is used to interacting with instruments 

such as data gloves, location trackers, motion sensors, and accelerometers to 

gather data on hand movements. Furthermore, the second approach was captured 

using cameras and various imaging instruments (there was no need to touch the 

signer's body and limit his/her movement). The first solution has the 

disadvantage of being expensive and inconvenient for the signer. These 

disadvantages were avoided in the second approach's studies [24]. 
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2.3 Image Preprocessing  

The HGR system's initial stage is image preprocessing that removes the 

unwanted noise.  

In the hand gesture preprocessing is the initial step to be performed. 

Preprocessing requires preparing the images using various techniques such as 

scale modification, normalization, and noise reduction for feature extraction 

[25]. 

2.3.1 Scale Modification  

    There are several ways to scale modifications, and one of them is to use 

interpolation to resize images. It's a method of increasing or decreasing the 

number of pixels in a digital image. Interpolation is a technique for the size of 

an image by generating new pixel values and filling in the gaps with other 

algorithms. The average value of nearly all pixels is used to replace this newly 

generated pixel. Interpolation is a technique for estimating the significance of 

unknown data using two or more known data. 

There are many types of interpolation, the most important of which are: nearest-

neighbor interpolation, Bilinear interpolation, and Bicubic interpolation. Nearest 

Neighbor Interpolation is the easiest method for interpolation in that every 

unknown pixel is given an intensity value equivalent to the neighboring pixel. A 

new scaled image can be created. When an image is expanded, an empty space 

is created in the original image. The empty spaces will be replaced with the 

nearest pixels. Bilinear interpolation is another method used for resizing images. 

Bilinear interpolation is a linear interpolation extension that reduces visual blur 

when a fractional zoom is measured. The definition of this approach is to select 

midpoint pixels that are used in the nearest four pixels, the value of which is 

calculated. The intermediate pixel is created by the closest four-pixel 

interpolation. The most efficient method is Bicubic Interpolation. Bicubic 

interpolation operation is chosen when the speed does not important in the 
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process. The pixel B (r', c') is formed with interpolation of the nearest 4 x 4 pixels 

that begin with A (r, c) and ending to A (r+2,c+2). The original image has the 

two-scale factors denoted as 𝑆𝑟 and 𝑆𝑐 of A. 𝑆𝑟 and 𝑆𝑐 are the rows and column 

scale factors correspondingly as shown in Figure (2.1) [32]. 

 

 

 

 

 

 

 

 

Figure (2.1): Method of bicubic interpolation [26]. 

2.3.2 Conversion RGB images to Grayscale 

     This operation is done by dividing all RGB values by 255, Equation (2.1) 

which is used to convert an RGB image to grayscale is as follows[5]. 

 

 

Where R: Red, G: Green, and B: Blue. 

 

2.4 Feature Extraction 

       Selecting accurate features is important for gesture recognition because the 

forms, motion, and textures in human gestures are plentiful. Self-occlusion and 

lighting conditions can make geometric features such as fingertips, finger 

directions, and hand contours inaccessible and inaccurate. Another important 

thing to keep in mind is that color, silhouette, and texture cannot perform 

recognition tasks on their own. To name features explicitly is difficult images or 

images that have been transformed or changed in some way are used as input. 

 

  Grayscale= (R+ G + B) / 255          ….... (2.1) [5]. 
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The classifier then uses features that have been implicitly and automatically 

derived [27]. 

     Three different feature extraction methods are used, resulting in three 

different results for each class, which are compared to one another that were a 

histogram of oriented gradients (HOG), features extracted from the Discrete 

Cosine Transform (DCT), and features extracted from a pre-trained CNN. The 

advantages of the feature extraction methods are the reasons why they are used 

in this thesis. HOG with ML algorithms and CNN algorithms are used in this 

thesis[28]. 

     

2.4.1 Histogram of Oriented Gradients (HOG) 

     HOG, created by Dalal and Triggs [29], is one of the most widely used 

methods for identifying human bodies in computer vision and recognition. It 

takes a photo and breaks it up into small square cells. It then computes a 

histogram of gradient directions or image edges based on the differences 

between cells. Normalized local histograms have been used to make the HOG's 

contrast-detection feature more accurate, and this is why the HOG's performance 

doesn't vary as a result of different lighting conditions. Due to simple 

computations, it is a quick descriptor as compared to other descriptors. It has 

also been demonstrated that HOG is a good descriptor for detection [30]. 

Moreover, HOG feature extraction has the advantage of lower complexity in 

terms of computational time and greater accuracy as compared to popular feature 

extraction [31]. HOG feature extraction mainly includes two stages (Histogram 

Extraction of Oriented Gradient and Construction of HOG Descriptor ([28], 

[32]). 

1. Histogram Extraction of Oriented Gradient 

     At this point, based on each pixel in the image, gradients are extracted and 

turned into an angular histogram, which is then used as an image texture feature 
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vector. At pixel, the horizontal and vertical derivatives (i,j) of image I(i,j) are 

computed as follows: 

 

The magnitude of gradient is: 

𝐆(𝐢, 𝐣)  =  √𝐆𝐢(𝐢, 𝐣)𝟐 + 𝐆𝐣(𝐢, 𝐣)𝟐  ………….. (2.4) 

The direction of gradient is: 

𝛂𝟎(𝐢, 𝐣) = 𝐭𝐚𝐧−𝟏 [
𝐆𝐣(𝐢,𝐣)

𝐆𝐢(𝐢,𝐣)
]  

where Gi(i, j), Gj(i, j) are at pixel (i,j), the horizontal and vertical derivatives are 

given, α0 ∋ [
−𝜋

2
, 𝜋

2
] [33]. 

2. Construction of HOG Descriptor 

     The input image is divided into small square cells, and the differences are 

used to compute a histogram of gradient directions or image edges [13]. Based 

on the orientation of the gradient element centered on it, each pixel calculates a 

weighted vote for an edge orientation histogram channel, and the votes are 

accumulated into orientation bins over local spatial regions (cells). The 

orientation bins are evenly spaced from 0 to 180 degrees (“unsigned”) [15]. 

     Block normalization is used to improve invariance to lighting, shadowing, 

and other factors by correcting local contrast differences. It means that an 

intensity measure is computed over a slightly larger spatial area, referred to as a 

block, and the result is then used in every block to normalize the cell histograms. 

The four adjacent block feature vectors are then linked to form a superb block. 

Finally, the HOG feature of the image is built by scanning the image block by 

block by combining the vectors of all superblocks [15]. As a result of the 

overlapping of these blocks, some cells are included in more than one block [16]. 

………….… (2.5) 
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The process of grouping cells into larger spatial(blocks) regions is depicted in 

Figure (2.2). 

 

 

 

 

 

 

 

 

Figure (2.2): Cells are grouped into larger spatial regions (Blocks) [34]. 

For block normalization, there are several different normalization schemes. 

When we defined v as a vector non-normalized containing all histograms in a 

given block, ||v||1, ||v||2 .be its 1-norm and 2- norm, respectively and e be some 

small constant (its value has no influence on the results), then the normalization 

factor can be obtained from equations (2.6) [34]: 

        

 
    

………….… (2.6) 
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The HOG of sample images is subjected to principal component analysis 

(PCA). A linear SVM classifier is trained using selected principal components. 

During the classification process, a feature vector of a testing image is extracted 

using HOG-PCA, and the qualified classifier is then used to predict the sign 

using HOG-PCA features from the testing image [3]. 

 

2.4.2 Features Normalization 

Normalization is a data operation method used to improve a classifier's 

accuracy. Following the feature subtraction process, various normalization 

methods may be used to improve the performance [35]. This procedure entails 

translating attributes into a type that places them within a particular range. The 

normalization method is particularly useful for classification algorithms such as 

the K-Nearest Neighbor (KNN) and Neural Network algorithms (NN), where the 

process of features normalization aids in the acceleration of the training step. 

There are several methods for feature normalization [36] such as z-score 

normalization which was used in the proposed system. 

 Z-Score Normalization 

This method begins by calculating the average values of the features, 

followed by calculating the standard deviation of the features, and then 

normalization is performed using this equation [35]: 

𝒁 =  
𝐟𝐢  – 𝛍 

𝛔𝐟 
        

where fi refers for feature values, 𝛍 for mean of features, and 𝛔𝐟 for standard 

deviation, which can be calculated using the equation below: 

 

where n denoted the number of possible values in each feature [37]. 

 

 

………….… (2.7) 

………….… (2.8) 
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2.4.3 Principal Component Analysis (PCA) 

     PCA means reducing large data sets dimensions by translating a wide range 

of variables into a smaller one first, then reducing the dimensionality of the 

smaller one by leaving a large majority of the information in the original wide 

set[38]. 

     Naturally, reducing the number of variables in a data set decreases accuracy; 

however, the key to dimensionality reduction is to sacrifice some accuracy for 

simplicity. Because ML algorithms can analyze data more easily and quickly 

without having to deal with extraneous variables, smaller data sets are easier to 

explore and imagine[38]. 

     To summarize, PCA's basic concept is to minimize the number of variables 

in a data set while retaining as much information as possible [38]. 

(a) Utilize PCA to reduce the dimensions of the original features and to obtain 

a set of features. 

(b)  Calculate the "covariance matrix" from the data using the formula below: 

𝐶 = (𝑋 − �̅� ) (𝑋 − �̅� )T                 

 

where the hand gesture data matrix is 𝑋,  and the mean vector of the data 

matrix is    �̅�. 

(c)  Use the equation below to compute the matrix of eigenvectors 𝑉 and the 

diagonal matrix of eigenvalues 𝐷: 

   𝑉−1𝐶𝑉 = 𝐷                                       

(d)  By taking the inner product in the data matrix, sorted eigenvectors, and 

sorting the eigenvectors in descending order of eigenvalues in D, the 

data is projected on these eigenvector directions. 

            Projected data = [𝑉𝑇 (𝑋 − 𝑥) 𝑇] 𝑇   

 where 𝑉 is of 𝑛×𝑛 dimension, and each row of it is an eigenvector. The 

features can be obtained [39]. 

 

 

………….… (2.9) 

 ………….… (2.10) 

………….… (2.11) 
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2.5 Gesture classification  

     The HGR system's final stage is gesture recognition, which involves feeding 

an input feature vector extracted from the feature extraction process into a 

suitable classifier. ML based classifiers have grown in popularity in recent years, 

owing to their flexibility and proclivity to learn new behaviors. ANN, hidden 

Markov models (HMM), and help vector machines are all well-studied 

classification algorithms. Since each classification technique has advantages and 

disadvantages, a classifier's output cannot be determined solely by the algorithm 

employed. Some algorithms may work well with one collection of data but not 

with another  ([3], [9]). 

     Gesture recognition presents the most difficult and challenging tasks in the 

fields of image processing, computer vision , and image analysis [40]. 

        A DL technique based on CNN is used to recognize each gesture by 

automatic learning and extracting features [32]. 

 

2.6 Machine Learning Algorithms (ML) 

     ML is a branch of Artificial Intelligence (AI) that deals with the creation of 

systems that rely on data or information. Classification is a set of models or 

functions that distinguishes between classes of data or concepts with the goal of 

being used as a class prediction model for an unknown class of objects [41]. 

     ML is a set of methods that can automatically detect patterns in data, and then 

use the uncovered patterns to predict future data, or to perform other kinds of 

decision making under uncertainty [42]. 

     Figure (2.3) [43] categorizes classification into supervised and unsupervised 

ML techniques. Supervised machine learning is a technique for teaching a 

system to recognize patterns in input data, which can then be used to forecast 

future data. Classified training data is used to find a feature by applying 

supervised machine learning on the training data. Unsupervised machine 
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learning is used to draw inferences from data that is not labeled. Since there is 

no classified answer, there is no incentive or penalty weightage for the data to 

be classified into one of the possible classes [3]. 

     Generally, there are many classifier algorithms, such as SVM, Discriminant 

Analysis (DA), Naïve Bayes (NB), Random Forest (RF), k- NN, and NN 

algorithms, with each having a different method to predict or choose the set to 

which a particular observation belongs [44]. 

 

Figure (2.3): Classification of the most common ML algorithms [43]. 

2.6.1 Support Vector Machine (SVM)  

     SVM is a supervised ML approach. It determines the best hyperplane to use 

to separate the data points. The margin surrounding the separating hyperplane is 

maximized by SVM. In order to determine the best hyperplane, optimization 

techniques are used [22]. SVM is a linear classifier that aims to maximize the 

difference between two sets of data. It classifies by creating an N-dimensional 

hyperplane that divides the input data into two groups, then probing for an 

optimal number of dimensions. Supervised learning, for classification and 

regression tasks, has become more popular in recent years as it avoids overfitting 
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even for new datasets. Many other classification tasks besides 

electroencephalography (EEG) signal classification, such as handwritten 

character recognition, face recognition, and more, have used SVM to be 

successful. SVM was created by Vapnik [5] in 1998 and is a new type of machine 

learning that uses the kernel and support vector for learning. By selecting a 

kernel function, kernel machines provide a flexible framework that may be used 

for various tasks and domains. Binary classification problems were addressed 

using a one-versus-all technique, which improved the original SVM design. 

When it comes to multiclass labels, MSVM considers them to be made up of 

multiple two-class labels and uses classifiers to overcome issues. To deal with 

the multiclass problem, a new multiclass classifier is built using the classifier's 

outputs. The one-versus-all technique entails building one SVM per class that is 

trained to discriminate samples from one class from samples from all other 

classes. In general, the maximum output of all SVMs is used to classify an 

unknown pattern [5]. 

     SVM, a binary typed classifier basis of the supervised learning approach for 

classifying data into two classes by drawing a hyperplane as Figure (2.4) [45]. 

When it's about non-linear and multiclass data set, SVM added with an extension 

and in that case, it's called MSVM as shown in Figure (2.5) [46]. 

 

 

 

 

 

 

 

 

 

Figure (2.4): The SVM hyperplane between two classes[45]. 
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Figure (2.5): MSVM [46]. 

     SVM algorithm is divided into two kinds Linear and non-Linear SVM that 

illustrate in the following section:  

2.6.1.1 Linear SVM  

     If the linear SVM hyperplane, then SVM is defined as linear SVM, e.g. if z 

represents pairs training (xi, yi) when i=1,2...z, with category labels y (1, -1) the 

direct equation is defining the hyperplane: 

     𝑊. 𝑥 + 𝑏 = 0                                                                                    

 where W is a vector of weight, W= {w1, w2, .... wn}, b is a bias, and x represent 

attributes. The data classification is considering as equation. 

      𝑓(𝑤. 𝑥. 𝑦) = 𝑠𝑔𝑛(𝑤. 𝑥. 𝑏)                                                                   

where  𝑠𝑔𝑛 :the signum function is the derivative of the absolute value function 

, f(x) is the function of a hyperplane in m dimensions thus is got as a series of 

every point x. 𝑥 ∋ ℝ𝑚 that fulfils the equation f (x)= 0 such that the function 

hyperplane f(x) functions as a classifier linear predicting class y for each 

presented point x, depended on the subsequent rule decision: 

………….… (2.12) 

………….… (2.13) 
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𝑊𝑇. 𝑥 + 𝑏 ≥ 1 = +1                                                                             

𝑊𝑇. 𝑥 + 𝑏 < 0 𝑓𝑜𝑟 𝑦 = −1                                                                   

     Maximizing the margin is constrained optimization trouble that the Lagrange 

method can solve. A Lagrange multiplier (αi – i) explains every training point xi 

. So, we have   

ai = 0    ⇒     has no influence on the hyperplane.  

ai > 0 ⇒     these points support vectors that are nearest to the hyperplane.  

     Also, can calculate weight and bias when obtaining the αi value, the weight 

calculation using the following formula: 

         𝑊 = ∑ 𝛼𝑖𝑥𝑖                                                                              

     Points with (  = 0) do not consider SVM, therefore the average of the SVM 

that this is ( ) not equal to zero must take. When support vector with ( = 0) 

does not play any role in deciding [47], [48]. 

2.6.1.2 Non-Linear SVM      

     In most cases, the linear classification does not consider the appropriate 

classification approach for the non-linear classification used in such situations, 

where a non-linear kernel function will be used. Linear SVM is fast to train and 

implement, but with many training examples and not too many features they 

appear to underperform on complicated datasets. In many applications, non-

linear SVM can be more consistent in quality across different problems and the 

preferred choice, although they lack critical power. 

A. Kernel Function  

     A function’s kernel is used to transfer testing samples and training to a high-

dimensional feature space. This section describes function’s kernel to replace 

functions of mapping. Since the kernel computation is more efficient than the 

function of mapping, and computation time is normally saved when functions of 

mapping are replaced with the use of kernels. SVM uses the kernel function K 

(xn, xi) to transform the raw data space into a higher-dimensional new space. It 

………….…(2.14) 

………….… (2.15) 

………….… (2.16) 
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employs the dot product transformation function ϕ(x) equation (2.17). The goal 

is the information that can be collected feasibly and has been translated to a 

higher dimension. The hyperplane function can be written in formula form 

(2.18). 

 𝐾(𝑥𝑛. 𝑥𝑖) = ∅ (𝑥𝑛)∅ (𝑥𝑖)                                                                 

𝑓(𝑥𝑖) = ∑ 𝛼𝑛𝑦𝑛
𝑁
𝑛=1 𝐾(𝑥𝑛. 𝑥𝑖)+b                                              

  where   is a Lagrange multiplied,  is support vector information, and 𝑦𝑛  is 

a membership class label (+1, −1) with n = 1, 2, 3, …, N where N is the number 

of class  [47], [49]. 

 B- Examples of kernels  

The most public example of the SVM higher dimensionality kernel that is 

commonly used for the SVMs classification are:   

1. Linear kernel which is describes as equation:            

K(xn ,  xi) = (xn ,  xi)                                                      

2. Polynomial kernel which is describe as equation: 

K (xi , xj) = (( xn ,  xi)  +C) d                                                  

3. Radial Basis Kernel Function (RBF) which is describes as equation: 

K (xi . xj) = e
−‖xi , xj‖

2

2σ2                                                               

4. Sigmoid kernel function which is describe as equation: 

K (xi ,xj) = tanh (K (xi , xj) + 𝜃                                                
 

where  and  are parameters of the specific kernels [47], [49]. 

C- Multi-Class SVM 
 

     SVM algorithm was designed to differentiate between two classes, but 

there are times when more than two classes must be categorized. Multiclass 

classification problems (k > 2) are usually broken down into a series of 

binary problems that can be solved directly using a generic support vector 

machine. The one-versus-rest (1VR) and one-versus-one (1V1) systems are 

………….… (2.17) 

………….… (2.18) 

………….… (2.19) 

………….… (2.20) 

………….… (2.21) 

………….… (2.22) 
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two representative multi-class SVM organization schemes. Both (1VR) and 

(1V1) are examples of Error-Correcting Output Codes (ECOC), which 

break down a multi-class problem into a predefined collection of binary 

issues [50]. 
 

1. One-Versus-Rest (1VR) 
 

Binary classifiers are separated using the (1VR) technique for k-classification 

constructs. The binary classifier m-th is trained to use the mth type information 

as examples, with the remaining forms being k 1 and negative examples. During 

the evaluation, the binary classifier with the highest output value determines the 

class label. The (1VR) strategy's unbalanced learning collection is a major flaw. 

Assuming that total forms have an equal number of examples to train, the rate 

of plus to minus examples in each individual classifier is 1k-1. The initial 

problem's equilibrium is missed in this case [48]. 
 
2. One-Versus-one (1V1) 
 

     Decomposing 1V1 or pairwise classification is another classic technique 

for multi-type classification. It evaluates all possible pairwise classifiers, 

resulting in individual binary classifiers k X (k - 1)/2. When each classifier is 

introduced in an example of a test, the one who has won class receives one 

vote, and the best test is classified with the most votes for class. The classifier 

sizes created by the 1V1strategy are almost all larger than the rest strategy's 

against-one. However, the QP measure is smaller in each classifier, allowing 

for faster training. However, when compared to the one-versus-rest approach, 

the 1V1 strategy is more symmetrical [48]. 

 

2.7 Deep Learning Algorithms (DL) 

     DL is a research field ML [32] in AI as Figure (2.6) [51]  that has Deep neural 

networks (DNN) are networks capable of unsupervised learning from 

unstructured or unlabeled input,  and it is a form of ML that enables computers 
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to learn from experience and understand the world in terms of a hierarchy of 

concepts [22] [52]. 

 

 

 

 

 

 

 

 

Figure (2.6): The Relationship Between AI, DL and ML[51]. 

     DL was a class of learning methods developed to represent data with complex 

structures by combining numerous non-linear changes. The NN that is linked to 

form DNN is the fundamental building blocks of DL [5]. 

     DL algorithms are one promising avenue of research into the automated 

extraction of complex data representations (features) at high levels of abstraction 

[5]. 

     DL is often carried out using NN architecture. The term "deep" refers to the 

total number of layers in the network, the deeper the network. In terms of 

precision, DL is unrivaled. Advanced tools and methods have dramatically 

improved DL algorithms to the point where they can outperform human 

performance,  in the near future, because there is very little engineering work 

required, it will have many more successes [53]. 

2.7.1 Convolutional Neural Network (CNN)  

     CNN is an excellent tool for mapping image data into higher-level 

representations. CNN uses the pixel data it has been given as input to extract 

features and computes the inference about the pixels [54]. It take this name from 

the mathematical linear operation between matrixes which is called convolution 

[55]. The general structure of the CNN system is viewed in Figure (2.7) [56]. 
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Figure (2.7): The General Structure of the CNN System [56]. 

 

     In recent years, CNN had already been used successfully for automatic 

feature learning. It performed admirably in image categorization, object 

recognition, and even recognition of human behavior. This outstanding 

performance can be due to the availability of huge datasets containing millions 

of samples [3], [11]. 

2.7.2 Basic Structure of CNN 

     CNN has shown success in picture categorization tasks. Convolutional layer, 

subsampling or pooling layer, and fully connected layer are the three types of 

layers in a CNN. Normally, multiple of the above-mentioned layers are stacked 

to create the whole CNN architecture. The hierarchical characteristics are 

extracted from a CNN employing the three types of layers. In a CNN, the bottom 

layers collect low-level features, while the top layers collect and learn higher-

level features; this is important for classification tasks, the following explain 

these layers: [22]. 

1. Input Layer: the input layer contains the pixel values of the image that enter 

CNN. 

2. Convolution Layers: The convolution layer as shown in Figure (2.8)[57] is 

the key element of a convolution network; whose parameters consist of a set of 

learnable kernels [32]. To get the feature map of this layer, the previous layer's 

feature map is convoluted with a learned convolution kernel, and the result is 
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output through an activation function (AF). Each output's graph may be linked 

to the result of convolution of numerous input feature graphs, allowing the 

weights to be shared[58]. 

     The number of input images equals the number of output photos, and the 

resulting image's dimension is reduced. Convolution is applied to each image, 

and the image's width and length are compressed to acquire more detailed image 

information[58]. 

 

 

 

 

 

                      

 

Figure (2.8): Convolutional Layer [57]. 

     All convolution the layers use filters with different size to extract features 

and pass the feature map to the next layer. The final layer uses filter to extract 

the prior feature and pass it to the Softmax AF to output [59].  

     To change the behavior of a convolutional layer, three main parameters must 

be modified in a CNN. Filter size, stride, and padding are the three parameters. 

The output size for each convolution layer can be calculated as equations 

expressed follows: 

No. parameters=output channels* (input channels* window size + 1)                 

   Where output channels denoted to features maps that result from convolution 

layer, input channels denoted to previous layer, window size it means filter size, 

and 1 refer to stride size 

𝑶𝒖𝒕𝒑𝒖𝒕𝒔𝒊𝒛𝒆 =  
𝒊𝒏𝒑𝒖𝒕𝒔𝒊𝒛𝒆 − 𝒇𝒊𝒍𝒕𝒆𝒓𝒔𝒊𝒛𝒆 + 𝟐 ∗  𝒑𝒂𝒅𝒅𝒊𝒏𝒈𝒔𝒊𝒛𝒆 

𝑺𝒕𝒓𝒊𝒅𝒆 𝒔𝒊𝒛𝒆 
+ 𝟏      

 

 

 …… (2.23) 

 …… (2.24) 
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where output size= the size of the output Convolution layer, input size= the size of 

input image, padding refers to the extra rows and columns of pixels on an image 

matrix, Stride denotes how many steps we are moving in each step in 

convolution. By default, it is one,  and filter size= the size of filter [22], [60].  

     The convolution layer's output is created by combining the multiple feature 

maps. After that, the output is sent through the AF, which generates nonlinear 

output [22]. 

 3. Non-linear Layer (Activation Function) 

     Weighted sums of input and biases are used to calculate the total input for a 

neuro and whether or not it is capable of being fired. It manipulates the presented 

data using gradient processing, most commonly gradient descent, and then 

outputs the parameters of the presented data to the neural network. In some 

journals, these AFs are referred to as a transfer function ([40], [44]). 

     AFs are used to control the outputs of out NNs in a variety of domains, 

including object recognition and classification [43]. They are either linear or 

nonlinear in nature, depending on the function they represent. To convert linear 

equations into nonlinear equations, the process must join the AF. Below is a list 

of some of the most popular AF ([40], [44]). 

A- Sigmoid Function 

     The Sigmoid AF is also referred to as the logistic function or squashing 

function in some studies. Its research resulted in three sigmoid AF variants for 

use in DL applications. The Sigmoid is a nonlinear adaptive function that is 

frequently used in feedforward neural networks. It is a bounded differentiable 

real function with positive derivatives in all directions and a certain amount of 

smoothness, defined for real input values. The equation for the Sigmoid function 

is[61]: 

𝐬𝐢𝐠𝐦𝐨𝐢𝐝(𝒙) =   𝒇 (𝒙) = (
𝟏

𝟏+𝒆−𝒙   )          

where x is the input. With a range between 0 and 1 as shown in Figure (2.9), the 

sigmoid function can be used to predict posterior probabilities [62]. 

 ……….… (2.25) 
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The sigmoid function is typically used as the output prediction in DL 

architectures and is found in the output layers. The concept has proved to be 

useful in a variety of classification tasks, including binary classification, 

modeling logistic regression tasks, and other neural network problems [46]. 

The main advantages of sigmoid functions are that they are simple to 

understand and that they are commonly used in shallow networks. Neural 

networks with random starting weights should avoid the Sigmoid AF [62]. 

 

 

 

 

 

 

 

 

Figure (2.9): Sigmoid Function [62]. 

B-  Hyperbolic Tangent Function (Tanh) 

     Another type of AF used in DL is the hyperbolic tangent function, DL 

application variations of which are used Tanh is a zero-centered hyperbolic 

tangent function, whose range is from -1 to 1.as shown in Figure (2.10). The 

tanh function's output is given by the equation: 

                  𝒇(𝒙) = (  
𝒆𝒙− 𝒆−𝒙 

 𝒆𝒙+𝒆−𝒙
)                    

In comparison to the sigmoid function, the tanh function became the preferred 

function because it provides better training performance for multi-layer NN. The 

tanh function, on the other hand, was unable to solve the sigmoid functions' 

vanishing gradient problem. The function's main benefit is that it produces zero-

centered output, which aids the back-propagation process[62]. 

 ……….… (2.26) 
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     The tanh function has the property of only being able to achieve when x is set 

to 0, the gradient is set to 1. During computation, as a result of this, the tanh 

function produces some dead neurons. The activation weight, which is rarely 

used as a result of zero gradient, is called a dead neuron. The tanh function's 

limitation prompted more AF research to find a solution, resulting in the rectified 

linear unit (ReLU) AF[62]. 

     The tanh functions have primarily applied to natural language processing and 

speech recognition tasks using recurrent neural networks (RNN) [62]. 

 

 

 

 

 

 

 
 

Figure (2.10): Hyperbolic Tangent Function [62]. 

C- Rectified Linear Units (ReLU):  

     Nair and Hinton proposed the ReLU activation function in 2010, and It has 

the most widely used AF for DL applications, with cutting-edge results. The 

ReLU is the most popular and successful fast learning AF. In DL, it outperforms 

the Sigmoid and Tanh AF in terms of performance and generalization. Figure 

(2.11) shows the two AF ReLU and Parametric ReLU(PReLU), which preserves 

the features of linear models, making them easy to optimize by means of 

gradient-descent methods [64]. 
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Figure (2.11): types of ReLU Transformation [64]. 

Each input element is subjected to a threshold operation, and values less than 

zero are set to zero, giving the following equation for the ReLU:     

𝑹𝒆𝑳𝑼(𝑿) = 𝒇(𝒙) = 𝐦𝐚𝐱(𝟎. 𝒙) = 𝒇(𝒙) = {
𝒙𝒊  𝒙𝒊 ≥ 𝟎
𝟎   𝒙𝒊 < 𝟎

 

   This function corrects inputs that are less than zero by forcing them to zero 

and thus eliminating the vanishing gradient problem that plagued previous 

types of AFs. With typical applications in object classification and speech 

recognition, the ReLU function has been combined with another AF in the 

network's output layers to form the hidden units of DNN[65]. 

     The primary advantage of using rectified linear units in computation is that 

they ensure faster computation by omitting exponentials and divisions, resulting 

in an overall increase in computation speed. Another feature of the ReLU is that 

it squishes the values between zero and maximum, resulting in sparsity in the 

hidden units. However, when compared to the sigmoid function, the ReLU has 

the disadvantage of easily overfitting, despite the fact that the dropout technique 

has been used to reduce the effect of overfitting in ReLUs and rectified networks 

have improved DNN performance[62]. 

…….… (2.27) 
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     However, Nair and Hinton (2010) asserted that the ReLU has proven itself in 

multiple DL architectures due to its simplicity and reliability, including restricted 

Boltzmann machines and CNN architectures[62]. 

     When compared to sigmoid and tanh, ReLU is significantly more reliable and 

significantly speeds up convergence by six times, but it is far more delicate in 

real-world applications. While this disadvantage cannot be completely 

eliminated, it can be countered by adjusting the learning rate to the desired level. 

[62]. 

D - Softmax Function 

      In neural computing, there are several AFs including the Softmax function. 

A big part of computer programming involves dealing with probability 

distributions. Softmax, a function that can be applied to multiple classes to 

generate an output of a range of probabilities between zero and one, with the 

total probability sum equal to 1. A variant of the Softmax function is 

implemented by way of the equation below: 

𝒇(𝒙𝒊  ) =  
𝒆𝒙𝒊

∑  𝒆𝒙𝒊𝒌
𝒋=𝟏

 

where Xi  is the input layer value, this normalization of the total amount of 

outputs to one can be defined as the likelihood of the input belonging to class i, 

j =1,2,3,…k , k is the number of classes in the multi-class classifier. and therefore 

the softmax output 𝑓(𝑥𝑖  )[62]. 

     Multi-class models calculate class probabilities using the Softmax function, 

with the target class holding the highest likelihood. In nearly all of the output 

layers of DL architectures, the Softmax function is used. The primary difference 

between the Sigmoid and Softmax classifiers is that the Sigmoid classifier is a 

binary classifier, whereas the Softmax classifier is a multivariate classifier [62]. 

4. Pooling layers The max function or average function is the pooling layer, 

as shown in Figure (2.12), and the max pooling function is the most common 

function utilized in this layer. In a local window, the max function computes the 

……...… (2.28) 
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high-level feature. The polling layer was employed to lower the size of the 

features and the amount of time it took to compute them [66]. 

 

 

 

 

 

 

 

Figure (2.12): Two Classic Pooling Methods [67]. 

     Max pooling is a common pooling approach that takes sub regions of the 

feature map, preserves their highest value, and discards all other values [21]. 

5. Fully Connected Layer (FC)  

     As with a standard multilayer neural network, CNNs are composed of one or 

more fully connected convolutional layers [68]. 

     Dense or fully connected layers classify the features recovered by the 

convolutional layers, which are then down sampled by the pooling layers. Every 

node in a dense layer is connected to every other node in the previous layer [21]. 

     The feature map matrix is represented as a vector. All of the levels are 

completely interconnected. These feature maps are then integrated to form the 

final CNN model [69].  

2.7.3 The Network Training  

     Training is a weight-contact process. Most training systems start with 

random numbers for the matrix of weight. Then it is adjusted on a weight basis. 

The weight adjustment process is repeated in an acceptable way until the error 

limit is acceptable. The training aims, when applied to the network inputs, to 

produce the desired outcomes (or at least consistent) [70]. 

     Dropout regularizes neural network training by preventing co-adaptation of 

model parameters. Thus reducing overfitting with limited training data [70].   
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     Dropout can also be used as an ensemble averaging method. Instead then 

training multiple independent networks and weighing the results together to 

reduce variance in the estimation as shown in Figure (2.13), dropouts have the 

same tendency but with a single, larger network [71]. 

     In addition, the fully linked layers have been subjected to a dropout learning 

technique with the same goal of reducing overfitting ([72], [73]). 

.                    

 

                            

 

 

         A-  standard Neural Network                  B-After applying dropout 

                               Figure (2.13): Dropout Neural Network [71]. 

2.7.4 Back Propagation Algorithm (BP)  

     Backpropagation is used to simulate how internal machine parameters change 

over time and are applied to demonstrate each layer in turn. The deep 

convolutional network (DCN) has made significant advancements in the 

processing of video, images, audio, voice, and text [9], BP methodologies help 

for the easy working of models [44]. 

     The optimization algorithms are used to perform back-propagation in deep 

neural network learning. Taking one training sample at a time and passing it to 

the neural network. Furthermore, each iteration records the fault[74]. 

     DL architectures have benefited greatly from the innovation and perfection 

of new optimization algorithms. In large part, NN is an optimization problem in 

which we use a stable training trajectory and rapid convergence to find the global 

optimum[74]. 

 Optimization algorithms reduce the error function, and they employ a 

numeric scanning function of the model's constitutional responsibility 

parameters to compute objective values from the set of predictors accessed 
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within it. The bias values and neural network weights used in computing the 

output values are internal learnable parameters. Optimizers are crucial in 

lowering the loss incurred throughout the network training process, as well as in 

the neural network model during training. There are a variety of enhancers, and 

one of them was used in this thesis[74]: 

2.7.4.1 Adaptive Momentum (Adam)  

     Adam Optimizer is a stochastic enhancement method that requires first-order 

gradients and a small memory specification. From the examination of the first 

and second moments of the gradients, the Optimizer derives discrete flexible 

learning rates for various parameters [74]. 

The mathematically notation for Adam are as equation follows: 

 

 

 

 

 

where η:’ Initial learning rate’, gt : ‘Gradient at time t along ωj’, xt : Exponential 

average of gradient along ωj, yt : Exponential average of squares of gradient 

along ωj, and δ1, δ2: Hyper parameters[75]. 

2.7.4.2 Nesterov-accelerated Adaptive Moment (Nadam) 

     Nesterov and Adam's optimizer are abbreviated as Nadam. In contrast to the 

implementation that the company initially implemented, the Nesterov 

component is a more efficient modification. The model training process is 

accelerated using an exponential decay that depends on the moving average of 

the gradients. The Nadam optimizer converges more rapidly and is preferable 

for the pre-training phase when the Adam optimizer is not yet fully trained. 

Nadam adds Nesterov steps ahead to the gradient to bring the equations up to 

date by using the equations in the following: 

 

𝒙𝒕 = 𝜹𝟏 + 𝒙𝒕−𝟏   − (𝟏 − 𝜹𝟏) ∗  𝒈𝒕            (1) 

𝒚𝒕 = 𝜹𝟐 + 𝒚𝒕−𝟏   − (𝟏 − 𝜹𝟐) ∗  𝒈𝒕
𝟐           (2) 

∆𝒘𝒕  = 𝛈
𝒙𝒕

√𝒚𝒕+𝜺
∗  𝒈𝒕

𝟐                                 (3) 

𝒘𝒕+𝟏 = 𝒘𝒕 + ∆𝒘𝒕                                     (4)  

 

 

……….(2.29)  
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�̂�𝒕    ←  
𝒈𝒕

𝟏 −  ∏ 𝜷𝟏𝒊
𝒕
𝒊=𝟏

 

𝒎𝒕 = 𝜷𝟏𝒎𝒕−𝟏 + (𝟏 + 𝜷𝟏)𝒈𝒕
 

�̂�𝒕   =  
𝒎𝒕

𝟏 −  ∏ 𝜷𝟏𝒊
𝒕+𝟏
𝒊=𝟏

 

𝒗𝒕 = 𝜷𝟐𝒗𝒕−𝟏 + (𝟏 − 𝜷𝟐)𝒈𝒕
𝟐 

�̂�𝒕   =  
𝒗𝒕

𝟏− 𝜷𝟐
𝒕  

where (m) and (v) initialized to zero and default values (taken from Keras) is α = 

(0.002), β₁ = 0.9, β₂ = 0.999, ε = 10⁻8 [76], [77]. 

2.7.4.3 Root Mean Square Propagation (RMSProp) 

     Geoff Hinton proposed RMSprop, which is an adaptive learning rate 

approach. To address Adagrad's declining learning rates, RMSprop and Adadelta 

were created. RMSprop is used to update Adadelta's vector using the following 

equation: 

 

 

 

The learning rate is also divided by an exponentially decaying average of 

squared gradients by RMSProp. Hinton suggests 𝜺 to be 0.9. Furthermore, 0.001 

is a decent default number for the learning rate n [77]. 

     The error for the present state of the model must be estimated repeatedly as 

part of the optimization method. This necessitates the selection of an error 

function, sometimes referred to as a loss function, that may be used to estimate 

the model's loss and update the weights to lower the loss on the next assessment. 

There are a lot of loss functions to pick from, and it can be difficult to know 

which one to use, or even what a loss function is and what role it plays in neural 

network training [78]. 

 

 ……….… (2.30) 

 ……….… (2.31)   
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 ……….… (2.35) 
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     The cost error or loss function is a metric for measuring CNN model error in 

Deep neural networks. When training neural network models, the two primary 

types of loss functions to use are cross-entropy and mean squared error [78]. 

 The Cross-Entropy Error:  

The cross-entropy error is often utilized in classification problems since miss-

classification penalties are significant, The input pattern to be examined is n, 

while the output node's index is J The training algorithm's goal is to minimize 

the function represented in the equation below: 

      𝑱 =  ∑ {−𝐝𝐢 𝐌𝐢 = 𝟏𝐥𝐧(𝐲𝐢) − (𝟏 − 𝐝𝐢)𝐥𝐧 (𝟏 − 𝐲𝐢)}𝑴
𝒊=𝟏      

 

where yi is the softmax layer's output value, di is the training data's right output 

value, and M is the output node number [78]. 

 The Mean Squared Error (MSE): 

MSE is the most commonly used loss function for regression. The loss is 

the mean overseen data of the squared differences between true and predicted 

values, the squaring is necessary to remove any negative signs. It also gives 

more weight to larger differences. It’s called the mean squared error as you’re 

finding the average of a set of errors calculated as equation[78]:   

𝑴𝑺𝑬 =  
𝟏 

𝒏
 ∑  (𝒚𝒊 − 𝒚𝒊  ̂ )

𝟐 
𝒏

𝒊=𝟏
  

In other words, the MSE is the mean 
𝟏 

𝒏
 ∑  𝒏

𝒊=𝟏  of the squares of the 

errors (𝒚𝒊 − 𝒚𝒊  ̂ )
𝟐. 

  Cross-entropy loss is useful because it has two major advantages. The first 

is that depth ambiguities no longer cause mixed depth pixels to be preferred. 

Second, optimizing cross-entropy leads to much faster convergence than 

optimizing MSE, which is hampered by gradients that go to zero near the 

solution [78]. 

 

 
 

 ……….… (2.37) 

 ……….… (2.38) 
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2.8 Evaluation Measures  

     The performance of the baseline of the ML algorithms was assessed using a 

variety of measurements. A confusion matrix (CM) is an ML construct that 

stores information about a classification system's actual and expected 

classifications. A CM has two dimensions: one is indexed by the object's actual 

class, and the other is indexed by the classifier's predicted class [61]. The basic 

shape of a CM for a multi-class classification problem is shown in Figure (2.14) 

[79], with the classes A1, A2, and An. The number of samples categorized as 

class Aj but really belonging to class Ai is represented by Nij in the confusion 

matrix[79]. 

 

 

 

 

 

 

 

 

                 

 

Figure (2.14): A confusion matrix [79]. 

A number of measures of classification performance can be defined based on 

the confusion matrix. Some common measures of performance are calculated  as 

follows: [79] 

A. Accuracy or Classification Rate:   

     Accuracy refers to the relationship between the actual true classification 

numbers and the total number of test samples applied during training and 

testing, and the calculation equation as[80]: 

    𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑭𝑷+𝑻𝑵+𝑭𝑵
             

 

 

 

 ……….… (2.39) 
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B. Recall: 

   The recall indicates (also called Sensitivity) the measure of the 

completeness of the classifiers, which is the relationship between the correct 

positive prediction numbers and the total positive prediction number, and the 

calculation equation as[81]: 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
    

C. Specificity:   

  Specificity is denoted The ratio of true negatives to total negatives in the 

data, and the calculation equation as: 

             𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =
𝑻𝑵

𝑻𝑵+𝑭𝑷
                                                                 

D. Precision:   

  Precision denotes a classifiers’ exactness measure, and it is the ratio of 

true positives to the total predicted positives, and the calculation equation 

(2.26) is [81]: 

              𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷+𝑭𝑷
                                            

E. F1-score:  

F1 score (F-measure) is used to evaluate the detection results, the balance 

between precision and recall is also transmitted. 

 Only when the Precision and Recall numbers are both high does the F1-

score become high, the calculation equation (2.27) as following [81]: 

           𝐅𝟏 − 𝐒𝐂𝐎𝐑𝐄 =
𝟐  𝐗 (𝐏𝐫𝐞𝐜𝐞𝐢𝐬𝐢𝐨𝐧 𝐗 𝐑𝐞𝐜𝐚𝐥𝐥)

𝐏𝐫𝐞𝐜𝐞𝐢𝐬𝐢𝐨𝐧+ 𝐑𝐞𝐜𝐚𝐥𝐥
       

 where truth positive is the TP, false positive is FP, the true negative is TN, and 

false negative is FN, each one has a specific meaning in the confusion matrix 

as it is shown below:  

 True Positive (TP): is the number of class examples correctly recognized. 

 True Negative (TN): is the number of examples correctly identified as not 

belonging to the class. 

 ……….… (2.40) 
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 False Positive (FP): is the examples that were either incorrectly assigned 

to the class or were not assigned to the class at all. 

 False Negative (FN): those that were not identified as class examples, see 

([80], [81]). 
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                             CHAPTER THREE 

                           PROPOSED SYSTEM DESIGN 

3.1 Introduction 

       This work tries to contribute to providing the two proposed hand gesture 

recognition (HGR) systems using Machine Learning (ML) and Deep Learning 

(DL)algorithms will be discussed in this chapter, using the Convolution Neural 

Network (CNN) and Support Vector Machine (SVM). It will begin by 

presenting and discussing the system's general block diagram. In addition, this 

chapter will go through the system's architecture in detail, as well as the 

proposed algorithms for the various stages of the system. 

 Data acquisition, image preprocessing, feature extraction, and gesture 

recognition are the stages that the techniques used in this thesis are divided into 

as viewed in Figure (3.1), the progress of the algorithm, they are critically 

examined and their merits are evaluated at each step overall, the purpose of this 

thesis is to introduce readers to the field of automatic gesture and sign language 

recognition and to serve as a springboard for future research in this field. 

 

 

 

 

 

 

 

 

Figure (3.1): Stages of Hand gesture recognition (HGR). 
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3.2 The Proposed System Design 

     The two proposed systems aim to Static HGR for American sign language 

(ASL) and Arabic sign language (ArSL), Two different datasets are used to 

evaluate each proposed system. 

      In human-computer interaction, the two offered systems play a major role 

due to the increasing numbers of deaf and hard-of-hearing people in the 

community.    

     According to Figure (3.2), the system will be divided into two parts 

depending on the classification method. Each proposed system used a different 

dataset. Through this system and at the end, hand gestures for ASL and ArSL 

will be recognized and classified by applying the stages of the proposed 

methodology of the system, the general block diagram of the system for Static 

HGR and it will be explained later.  

 

             Figure (3.2): Block Diagram of General Proposed Systems 
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     Figure (3.2) illustrates the major stages of a general diagram that will be 

applied to the two used proposed systems. In this general diagram, the stage 

(image acquisition) and (image pre-processing) are common stages between 

the two proposed systems and will be discussed in detail later. In the first 

proposed system, there are several stages that will have been carried out after 

image acquisition and image pre-processing, these include feature extraction 

and the recognition stage. 

In the second proposed system, after the image acquisition and image 

pre-processing stage, the CNN structure has been built, and after that training 

and testing operations will use the dataset to complete the recognition process. 

Before explaining the two proposed, the joint stage between these two proposed 

systems stages will be explained. 

3.3 Image Acquisition Stage 

     The difficulty of this work is to create a dataset that requires the availability 

of high-quality cameras at very high prices and also the difference in the 

representation of the gesture from one person to the other because of the 

difference in skin color and lighting, these are the main reasons that make it 

very difficult to create a data set consisting of thousands of the different images 

of hand gestures. For these reasons, we resort to the famous and approved 

website safe, which is freely available to all researchers, and which contains 

thousands of images such as kaggle and mendeley. 

     In order to classify hand gesture images by using the proposed systems, the 

dataset was collected from different sources, the first data set is a collection of 

images of 26 alphabets from ASL and the second dataset images for the 32 

ArSL. 

     The image for a computer is a three-dimensional matrix (width x Height 

channel), and values range between (0-255), The input images that used in the 
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proposal system for hand gesture recognition whose size has been 200 x 200 x 

3 for ASL, and 64 x64 x3 for ArSL. 

     The input layer consists of three layers because the dataset is RGB color 

images are red, green, and blue in JPG file format, so each color has a specific 

layer. 

3.4 Image Preprocessing Stage 

     The image size is resized before it enters the ML algorithms for 

classification, the images are resized from 200x 200 to 224 x 224 image size 

for ASL and from 64x 64 to 224 x 224 image size for ArSL, the process of 

optimizing both input and variables aids in the acceleration of the training 

process. While preserving the integrity of the data without compromising the 

original image data, image conversion must be performed as the Algorithm 

(3.1), convert all of the image values in our system to grayscale by dividing all 

of the RGB values by 255. 

Algorithm (3.1): Conversion RGB image to gray-scale 

 

Input: Color Image (RGB image) 

Output: Gray-Scale Image 

Steps: 

 Begin 

Step (2): Read hand gesture. image 

Step (3): Rows = image. Height 

Step (4): Columns = image. Width 

Step (5): Loop for i=0 to Rows 

Step (6): Loop for j=0 to Columns 

Step (7): Find pixel =Image (i , j) 

Step (8): Compute the GP by using the equation (2.1) 

Step (9): End for j 

Step (10): End for i 

Step (11): Return Gray Scale image (GI) 

End Algorithm 



Chapter Three                             Proposed system Design 

 

46 
 

3.5 The First Proposed system: (Multi-Class Support Vector 

Machine Algorithm (MSVM)) 

MSVM is a ML algorithm that is considered to be one of the most 

popular. depending on chapter two, the definition, details, and equations are 

presented (2.6.1.2). This section employs MSVM for classification after all 

stages of the system have been completed; these stages are depicted in Figure 

(3.3) as a block diagram. 

 

Figure (3.3): The block diagram for the first proposed system. 
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3.5.1 Feature Extraction  

     The hand gesture images use to have a uniform background and are lighter 

in color than the hand gesture image, which made it easier to work with the 

hand and separate it from the background. 

     After converting RGB images to grayscale, work begins to determine the 

region of interest (ROI) in the hand gesture image using Histogram of Oriented 

Gradients (HOG) analysis is detected, the proposed system applies HOG 

algorithm on Dark gradient areas to extract HOG features as illustrated in 

Algorithm (3.2). The input of HOG algorithm is hand gesture image after 

applied to it a preprocessing operation. 

     The actual process of determines ROI involves separating the hand gesture 

from its background image. The complexity of this step would depend on the 

type of background that we are dealing with.  

     ROI is defined as the border region of the fingers, which is highlighted in 

white while the rest of the image is highlighted in black as shown in the next 

chapter. 

     The set of features extracted from the ROI of the hand gesture image using 

HOG algorithm are normalized using the Z-Score technique and then saved in 

the dataset. In addition, the proposed system calculated sigma for each feature’s 

columns, and then saving in the dataset as shown in Figure (3.4), which 

representing Standard Deviation, that is a measure of the extent to which data 

varies from the mean, which has an important role to increase the accuracy of 

classification. 
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Algorithm (3.2) Feature Extraction using HOG Algorithm. 

 

Inputs: Data Set Image   

Outputs: Features 

Begin 

Step1: For each image in data set do  

Step2: Resize Image to 224X224.  

Step3: Calculating Gradients Magnitude and direction (x and y) 

        A-Calculating Magnitude 

For each Pixel in image do 

Get neighbor pixel call [left, right, top, bottom] 

dx =right - left     //according to equation (2.2) 

dy =bottom - top //according to equation (2.3) 

Magnitude=√𝑑𝑥2+𝑑𝑦2 //according to equation (2.4) 

Endfor 

         B-Calculating Orientation 

    For each Pixel in image do 

Get dx , dy from pixel   

Ori =tan−1(𝑑𝑦/𝑑𝑥) //according to equation (2.5) 

     Endfor 

Step4: Create Histograms using Orientation 

A- split image to blooks, each block size 8*8 pixel 

B- Use (“unsigned” gradient) when the orientation bins(bin) are evenly 

spaced over 0◦– 180◦, size of each bin is (4), therefore, number of 

bin is (45). 

C-  PI= 3.14 

For each block from image do 

For each pixel in block do 

bin = N * (Qri + PI) / (PI*2) //bin represent (x-axis) 

if (bin < N) then bin = bin 

else bin = 0; 

hist[bin] += 1; //hist[bin] represent (y-axis) 

Endfor 

Endfor 

   Step5: Normalize gradients using L2-norm Block normalization, by finding 

the summation of all hist[bin] then divided each value of hist[bin] 

on the summation according to equation (2.6) call result. 

  Step6: Save result to data set features   

  End for  

End 
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Figure (3.4): Block Diagram of Extraction Features using HOG Algorithm. 

3.5.2 Z- Score Normalization 

The goal of Z-Score Normalization is to normalize features HOG to 

bring their values closer together; the results of this stage are saved in the 

dataset and are displayed in chapter four. 

 

 



Chapter Three                             Proposed system Design 

 

50 
 

3.5.3 Principal Component Analysis (PCA) 

     The main purpose of PCA is to reduce the dimensionality of large datasets 

reducing a large set of variables into a smaller set that still includes most of the 

information from the large set. 

      The accuracy of a data set is reduced as the number of variables is reduced; 

nonetheless, the answer to dimensionality reduction is to exchange some 

accuracy for simplicity. Because ML algorithms can evaluate data more readily 

and rapidly without having to deal with superfluous factors, smaller data sets 

are easier to examine and display. 

     After stage HOG. The extracted features were then subjected to 

dimensionality reduction using PCA was used to extract the principal variable 

among the random variables illustrated in Algorithm (3.3), and as displayed in 

the next chapter. 

 Algorithm (3.3): PCA to Extract Feature. 

Inputs: number of features, Y =number  class , k =dimension reduction 

space 

Outputs: Features that have the highest contrast 

Begin 

Step 1: Compute the  mean vectors for the different classes from the dataset 

Step 2:  Computing the scatter matrices: 

A- Computing the Covariance Matrix call A as equation (2.9) 

B- Between-class scatter matrix  SB 

           𝑆𝐵 = ∑ 𝑁𝑖(𝑚𝑖 −𝑛
𝑥𝜖𝐷 𝑚)(𝑚𝑖 − 𝑚)𝑇 

          where m  is the overall mean, mi  is sample mean, and  Ni sizes of the     

respective classes. 

Step 3: Compute the eigenvectors (e1, e2  ,... , ed ) and corresponding 

eigenvalues (λ1,λ2,...λd) for the scatter matrices. Av=λv 
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and  A= 𝑆𝑤
−1𝑆𝐵 ,V=Eigenvector   , λ=Eigenvalue as equation 

(2.10) and (2.11) 

Step 4: Sort the eigenvectors by decreasing eigenvalues and choose k 

eigenvectors with the largest eigenvalues to form a  d × k 

dimensional matrix W (where every column represents an 

eigenvector) 

Step 5: Calculate the eigenvalues for ∁= [𝛌1 > 𝛌2 … . > 𝛌N ] 

Step 6: Use this d × k eigenvector matrix to transform the samples onto the 

new subspace. This can be summarized by the matrix 

multiplication Y=X × W where X is an n × d dimensional matrix 

representing the n samples, and Y is the transformed n × 

k−dimensional. 

END 

 

3.6 Recognition Stage Using MSVM Algorithm 

     This stage is the last stage in the first proposed system. The Recognition 

process is the summary of the work through which the decision is made. The 

MSVM algorithm is chosen, as it is one of the well-known traditional 

algorithms of supervised learning of machine learning algorithms. This 

algorithm is explained in detail with its equations in chapter two, section (2.6). 

The extracted features from the previous stages will be adopted at this stage. In 

the previous stage, 1296 important features were extracted from each image in 

the dataset. They were saved in a database. 

 In this database, the 1296 features that were extracted before the HOG method 

are also stored and after that used PCA to reduce these features and MSVM to 

classify for 26 classes ASL and 32 classes for ArSL. 
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Algorithm (3.4): Multi-Class Support Vector Machine Classifier 

3.6.1 MSVM Training 

     At this stage, the proposed system has 26 classes of different types of hand 

gesture images for ASL, and 32 classes of different types of hand gesture 

images for ArSL to be recognized In general, the SVM algorithm classifies 

only two classes, but here it has more than two classes. For this reason, the 

multiclass MSVM method type One Versus Rest (1VR) system is used, which 

is explained in section (2.6.1.B.1). The main idea is to express the problem 

oppositely: rather than writing "class A vs. class B vs. class c " the issue can be 

written "class A against the rest, class B against the rest," ...., n, ultimately n 

differential learning issues are the inverse to "class n against the rest. In the 

training phase, the images obtained on the MSVM algorithm are entered, in 

order to be classified in any class for any hand gesture. Each SVM binary 

classifier is trained to utilize a vector of training data, every row associates with 

features extracted as an investigation from a class. Following the training stage, 

Input: Training set Features for Hand gesture images. 

Output: Class name. 

Begin 

 Step 1: Establish the training label for all training sets and identify 26 

classes for ASL and 32 ArSL. 

Step 2: Specify the kernel function ((Linear kernel), as calculated in 

the second chapter in the equation (2.19). 

Step 3: Segregated data to 1 against all classes 

Step 4: Passes testing set on MSVM depended on the hyperplane to 

identify the class name. 

Step5: Return the class name 

 End 
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the multi-class MSVM model is able to decide the right class for the input 

features vector. 

3.6.2 MSVM Testing 

     The classifier was a trained MSVM model that produced an independent 

test dataset that was categorized according to the classifier's test accuracy. A 

specific group is used randomly for this stage, which is the testing stage, in 

order to estimate and evaluate the quality of the model training that has been 

proposed. Each row of the previously extracted feature vector was categorized 

and unlabeled in this stage, whereas the labeled rows are in the training stage. 

The classified system was developed using data from the training stage as well 

as the feature vector. Each feature is associated with a specific column in this 

sample, resulting in a matrix of samples. Because the number of columns 

represent the number of features, the sample size must be divided by the same 

batch size as the training data. 

3.6.3 Recognition for ASL and ArSL hand gesture image in the First 

Proposed system (Performance Measurement) 

To perform the classification process, there are several forms available online 

or offline. Based on the previous steps and the training dataset, the Offline form 

was used to perform the recognition of static hand gesture images for ASL and 

ArSL to find the accuracy as shown in chapter four. 

 

3.7 The Second Proposed System using CNN Algorithm  

     CNN is one of the most effective methods for a higher-level representation 

of image data. CNN learns how to extract features from image pixel data and 

attempts to return inference about pixels. CNN processes the input image and 

classifies it into different classes. 

     After passing the image through a sequence of convolutional, nonlinear, 

pooling, and fully connected layers, the output is generated. The first layer's 
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output is used as the second layer's input. This happens with each new 

convolutional layer. 

     The diagram for the second proposed system to classify and recognize the 

hand gesture image will be displayed in Figure (3.5). Then the Algorithm (3.5) 

for CNN training will be shown. In this algorithm, the processes that occurred 

to classify and recognize the hand gesture image with preprocessing were 

presented starting from the first stage. 

Figure (3.5):  Block Diagram of Second Proposed System 
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Algorithm (3.5): CNN Training Algorithm to Classify Hand Gesture Images  

 

Input: Hand Gesture Images After Preprocessing  

Output: Classification For Hand Gesture Images  

Begin 

Step (1): Splitting the data into two parts, 80% for training and 20% for 

               the testing. 

Step (3): Implement CNN algorithm. 

Step (4): CNN design which consisting 4 CNN with several layers, each 

CNN consists as: 

a. Input layer: RGB image after preprocessing. 

b.     Convolution layer: Multiple filters were used with size 3*3.  

c. Nonlinear layer (Activation layer): Using Rectified linear units 

(ReLU) ………as Equation (2.2). 

d. Pooling layer: Using Max-pooling layer with size (2*2). 

e. Dropout layer to exclude 25%,50%, 25%, and 25% Respectively of 

neurons to reduce overfitting. 

f. Flatten layer: converts the two-dimensional matrix data to a vector, 

thereby allowing the final output to be processed by standard fully 

connected layers. 

g. two Dense or fully connected layers perform classification on the 

features extracted, 

h. Dropout layer.            

i. Softmax layer ….by using Equation (2.28). 

Step (5): For each pattern in the training dataset:  

a. Input current pattern (input Image with Label). 

b. Calculate the real output of the CNN through Softmax layer  

c. Calculate the error rate by comparing the real output with the desired 

output.  

d. Compare the performance goal with the error rate:  

                  1. If the performance goal was not meet, change the connection 

                weights by using the back-propagation learning algorithm.  

                   2. Else, go to next image pattern.  

  e.  Stop condition:  

               1. If the performance goal was meeting with validation data or 

                the maximum iteration was achieved, go to step (7).  

               2. Else, repeat step (5).  

Step (6): Return the CNN with the optimum weight.  

END. 
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     We also practically increased the data by training the model on more 

images. 

    After completing from image preprocessing stage, split the data set 80%, 

70% and 60% for training and 20%, 30%, 40% for validation data For 

comparison and selection of the best results as we will see the variance of the 

results in Chapter (4).  

3.7.1 Feature Extraction Stage  

     The CNN had already been used successfully for automatic feature learning. 

It performed admirably in image categorization, object recognition, and even 

recognition of human behavior, and used for extracting features in an 

automated way as its outcome is very satisfiable because it has several dynamic 

parameters to train up the machine easily. 

     The Convolution layer used Multiple filters with size 3X3 to repeatedly 

gather information about the image, however, the information obtained is only 

a small portion of the image area each time. 

     CNN's apply a variety of filters to an image's raw pixel data to extract and 

acquire higher-level features, which the system can ultimately employ for 

classification. 

3.7.2 Design Convolution Neural network (CNN) Structure 

     The structure is designing in Figure (3.6) to suit the proposed system and 

after changing many of the parameters and testing it, by choosing this design 

for the network for obtaining the best result. 
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Figure (3.6): Structure of the CNN algorithm 

     As shown in Figure (3.6) above, the structure of the CNN algorithm consists 

of several layers for each layer a specific task and a different structure, the 

structure is designed as follows: 

1. Input Layer: RGB image in JPG file format after preprocessing stage. 

2. Convolution Layer: The convolution layer is often called the extractor layer 

because the image features are extracted from it. First and foremost, part of the 

image is connected by sliding the filter to the next receiving field of the same 

input image via a stride and performs the same operation again with the 

Convolution Layer. We repeat the same process over and over until the whole 
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image is passed through. The output is the next layer's input; stride shows how 

many steps we take every step of the process. It's one by default. 

     The values are calculated according to the equation that was calculated 

according to equation (2.23), that clarifies the work of the convolution layer.  

     In the second proposed system, four convolution layers are used. In the first 

convolution layer, 32 filters were used with dimension 3*3, the second  64 

filters were used to dimension 3*3, the third convolution layer, 128 filters were 

used dimension 3*3, and in the fourth convolution layer, 256 filters were used 

to 3*3 dimension, as shown in Figure (3.6). Choosing the number of filters in 

each of the convolution layers, based on several experiments that prove the best 

result that obtained of these numbers that were used in each level. 

3. Non-linear Layer (Activation Function) 

     A non-linear transformation is implemented to the input by the CNN, it is 

also called Activation function (AF), and the node AF describes the node 

output provided by the input or input set. Rectified Linear Unit (ReLU), which 

was explained previously in section (2.7.2.3). In this function, negative values 

in the matrix resulting from the previous step are converted to 0 and positive 

values remain the same. It also showed with its calculation in the previous 

chapter in the equation (2.27). We are used in the proposed system after each 

level of the convolution layers, and with fully connected layers after flatten 

layer were shown in Figure (3.6). 

4. Pooling Layer 

      Another building block to the CNN is a pooling layer; the purpose of this 

layer used to decrease feature size and calculation time required, and the 

number of parameters and the calculation of the network. 

     In the interpretation, pooling layers are invariant as being convolution 

layers, since their calculations have been explained in detail in section (2.7.2.4). 

Average pooling and max-pooling layers are the most frequently used systems. 

The max pooling layer is used in the proposed system with the size (2*2). 
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     Max pooling was chosen because it gives better results. It takes the highest 

value in the matrix specified for pooling and passes the process to all the values 

of the matrix and therefore has another matrix with fewer dimensions. 

     The two-dimensional matrix data is then converted to a vector by a layer 

called Flatten, allowing the final output to be processed by standard fully 

connected layers to obtain the next layers. 

5. Fully Connected Layer 

     The final layers of a CNN are frequently fully connected layers, the major 

difference is that the inputs would be in the form that CNN earlier stages would 

build. In the two neighboring layers, the neurons in a fully connected network 

were connected directly to each other. 

     The first fully connected layer with the ReLU AF contains 512 neurons. The 

second fully connected layer with the ReLU AF contains 250 neurons, followed 

by a dropout layer that excludes 25% of neurons to reduce overfitting. 

6. Softmax Layer 

     The output layer, which has a Softmax activation function and has 26 

neurons for ASL and 32 neurons for ArSL, one for each hand gesture 

recognition class, is the final stage of the CNN structure. The mapping of the 

data to the final classes for hand gesture recognition is the output. The Softmax 

AF is according to equation (2.28). 

      So, what this implies is that every neuron in the fully connected layers can 

collect input data components over time that would help it to predict the right 

class value in the softmax layer afterward are shown in Figure (3.6). The 

objective of this layer is to summarize the weights of the features from the prior 

layers and show the value of per class, as was explained in section (2.7.2.). In 

the proposed system, 26 classes for ASL dataset and 32 classes for the ArSL 

dataset, will be produced from this process because according to the data used 

for training and determining the number per classes that have been extracted 

from this stage. These classes will be in the form of value for each class linked 
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to the fully connected layer image and Softmax will be made for them in the 

last step as seen in Figure (3.6). 

Algorithm (3.6): Softmax layer function 

3.7.3 CNN Training  

     Training a network is the process of obtaining kernels in convolution layers 

and weights in fully connected layers that reduce differences on a training 

dataset between output predictions and specified area truth labels. The training 

process begins with reading the model name, epoch number, and batch size 

from the user. The system then reads the dataset and generates the dataset 

augmentation. The system begins training the network using the number of 

epochs specified by the user earlier. The training will generate a probability 

value for each of the 26 ASL classification classes and 32 ArSL classification 

Input: Fully Connected Layer Values  Zi . 

Output: Softmax probabilities value for 32 classes for ArSL, and for 26 

classes for ASL. 

Begin      

Step (1): Calculate the exponential for every input in fully connected layer

 𝒆𝒛𝒊 ← 𝒆  

Step (2): Calculate the exponential summation for two class of input fully 

                 connected layer         ∑ 𝒆𝒛𝒊2
𝑗=1     

Step (3): Calculate the soft max function (𝑦𝑖) by using equation ( 2.28) 

                for classes after calculating the exponential for each class in 

                step (2), and divide each of them by the sum of the classes after 

                 calculating the exponential for them in step (3), to predicate a true 

                 class that has the highest probability.    

Step (5): Return softmax probabilities value for the classes of hand gesture 

recognition (yi )    

End algorithm 
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classes, with the class with the highest probability value being the classification 

class predicted by the algorithm. The training results are then saved as a model 

file for further use. After completing the training, the system will store the 

model and plot the training results. 

      There are three parameters in this training that run continuously during the 

procedure: learning rate, batch size, and optimizer. The learning rate is 0.0001, 

and this option specifies the network layer constants for learning speed. While 

the batch size option determines the overall quantity of data used in a single 

training batch, the size of the batch that was applied in the proposed system of 

various sizes. 

     The memory capacity of the device that is used to conduct the training 

process is used to determine batch size. Also the optimizer is (Nadam) as 

explained in section (2.7.4.2).      

     The training stage needs three things for training, which are the training set 

that is obtained from the dataset, the layers in which the network was built, and 

the different training options that were made for training. Also, this structure 

has a very important function for evaluating the training process, which is the 

Loss function, which will also be used. 

a. Training Set  

     The data are in two categories: training data and validation data. The data 

are divided using the Python function " validation split=0.20)", which splits the 

data randomly according to the percentages calculated by the user. To achieve 

a better method, it was randomly divided and not chained, and data were 

randomly taken from the dataset to make identification and classification later 

better and stronger. After checking all ratios, the data were divided in the 

proposed method so that the training data would be 80% and the validation data 

would be 20%. As will be seen in the chapter (4). 
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b. Layers (designing)  

     The layers are supposed to be developed during the training stage of the 

CNN structure, and Images will be passed over all these layers to extract 

features and learn from them so that the classification is done using the 

extracted features. 

c. Loss Function   

     A loss function, also known as a cost function, can be used to determine the 

accuracy between the network's performance estimations and given region 

truth labels., which aids in the optimization of CNN parameters. The main goal 

here is to reduce the failure of a CNN by optimizing its parameters (weights). 

A CNN combines the target (actual) result and the expected value with errors 

to calculate the loss using the loss function. In this thesis, we use the cross-

entropy error as explained in section (2.7.4.3). 

d. Training Option (training algorithm)  

    In order for the training process to be completed, that need multiple options 

that were used in this process using a Python program by parameters that are 

created in the training process these options are:  

1. Nesterov-accelerated Adaptive Moment (Nadam)  

   The method is utilized in the data training process, due to its good properties 

that fulfill the purpose of training. It is an optimization method utilized to train 

CNN and ML systems. Nadam is an optimization algorithm that can be used to 

iteratively change network weights depending on training data, and its tool 

helps move vectors of gradients in the true directions and thus contributes to 

faster convergence. It is one of the most famous optimization algorithms and it 

is used to train several states of the art systems. They were explained in the 

previous chapter in section (2.7.3.2).  

2. Max Epoch  

      The “Epoch” is a metric of how many times all training vectors are once 

utilized to update the weights. Concurrently in one epoch in the learning 
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algorithm, before the weights are upgraded. The maximum number of epochs 

used for training is 150 epochs. In addition, tried with a different number of 

epochs with the different batch sizes, as shown in the next chapter. 

3. Validation Data  

      It is the details that will be used to validate the training throughout. This 

may be an image data store with categorical labels. AMini-Batch data store 

with defined responses, or a table with a cell array X, Y. Where X is a numerical 

array with the input data and Y is a return array, unless image paths or images 

are in the first column. This option was used for validation data in the proposed 

system. The testing set refers to the community that was used in the subsequent 

testing process, while the dataset refers to a collection of datasets that have 

been labeled. 

3.7.4 CNN Testing  

     The testing dataset is utilized to offer an unbiased final design fit assessment 

based on the training data set. The system now employs the groups that were 

trained in the previous phase of CNN, and the features were extracted from  

learning the network when the dataset was transmitted through the hand gesture 

image on this network. The dataset that was assigned to the research phase was 

also used. 

     The classification of hand gesture images has been completed. The training 

stage comes before the testing stage, which means that the network is trained 

when some image of a hand gesture is inserted. Since the network was 

previously learned and practiced, the types of hand gestures can be determined. 

So, the key distinction between training and testing is that test data is unlabeled, 

while training data is classified. This feature in Python is used in the proposed 

framework, scores = model. Evaluate (X _test, y _test) assigns each row of the 

dataset to one of the training classes. Both the sample and training arrays must 

have the same column size. Training the Group is a group element, and the 

individual values decide groups, and each factor specifies the group the related 
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training row belongs to. We have arrived at the final stage, which is the 

classification and recognition of static hand gesture images. 
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CHAPTER FOUR 

EXPERIMENTAL RESULTS AND DISCUSSION 

4.1 Introduction 

     In this chapter, the implementation and experimental results of the 

proposed system were presented and described. This proposed system "hand 

gesture recognition based on machine learning techniques" is divided into two 

different subsystems according to the used algorithms. The first proposed 

system that was previously explained consists of several stages; the outcomes 

of these stages will be presented with the final results of classification using 

the multi-class support vector machine (MSVM) algorithm, the second 

proposed system is based on the convolution neural network (CNN) 

algorithm. In addition to the results of these two systems will be presented 

and a comparison will be made between the results of the two systems. 

Moreover, a comparison with related works will be presented. The same 

dataset was used in the two subsystems. 

4.2. Implementation Environment 

     Hand gesture image classification system using CNN and MSVM is 

implemented under a specific system requirement such as the Windows-10 

operating system, Hardware processor: Core i7- CPU 8550U, 200 GHz, and 

(8GB) RAM. Python (3.7.10 64-bit) programming language with Tensor 

Flow backend, CNN programs implemented on Kaggle server. 
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4.3 Dataset Acquisition  
 

     The proposed system used two data set images, the first data set is a 

collection of images of 26 classes from the American Sign Language (ASL) 

as shown in  Figure (4.1) from “Kaggle is a Google subsidiary that operates 

as a community of data scientists and developers and is one of the best data 

collection sites. It also has a large community where you can discuss data, 

find available code, and create your own projects. It was founded in 2010 with 

the goal of becoming the first platform to host predictive analytics and data 

mining challenges and competitions”, Every downloaded image is recorded 

to RGB color space at 200 * 200 sizes and saved in JPG format in file named 

(ASL data) and stored on the computer. 

 

 

 

 

 

 

 

 

 

Figure (4.1): The Alphabets of the American Sign Language[82]. 
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The second dataset images of the 32 Arabic sign language (ArSL) and 

alphabets as shown in  Figure (4.2) from “Mendeley Data is a safe cloud-

based repository where you can keep your data and share, view, and cite it 

from anywhere". Every downloaded image is recorded to RGB color space at 

64* 64 sizes and saved in JPG format in an uncompressed file named (ArSL 

data) and stored in the computer. 

Figure (4.2): The Alphabets of the Arabic Sign Language[83] 

     The two datasets that are used in the two proposed system have distributed 

as Table (4.1) shows the distribution of hand gesture images. 
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Table (4.1): The Distribution of Hand Gesture Images. 

Date 

Set  

Type  

Number 

Of 

Class 

Number 

Images For 

Each class 

For 

Training  

Number 

Images For 

Each class  

For Testing   

Number 

Images For 

Training  

Number 

Images For 

Testing 

ASL 26 750 150 19500 3900 

ArSL 32 750 150 24000 4800 

 

4.4 Evaluation of First Proposed System  

  The first proposed system that was explained in the third chapter, which 

consists of several stages, each stage, and its results, up to the final results will 

be shown, it the classification stage with the MSVM algorithm. 

4.4.1 Result of Image Pre-Processing 

  At this stage, the images will be converted from RGB to grayscale and 

resize all images in ASL and ArSL to 224x224 size. 

4.4.2 Results of Implementation the Feature Extraction using Histogram 

of Oriented Gradients (HOG) Algorithm 

    After convert the RGB image to grayscale, then at this stage using the HOG 

to determine the border region of the fingers, which is highlighted in white 

while the rest of the image is highlighted in black as the Figure (4.3) that 

shown randomly samples from the data set  , after that using  HOG algorithm 

as illustrated in the algorithm (3.2) extract 1296 feature, compute sigma for 

10 feature for one image in each class of 26 for ASL are shown in Table (4.2) 

and Figure (4.4). Also, compute sigma for 10 features for one image in each 

class of 32 for ArSL are shown in Table (4.3) and Figure (4.5), using equation 

(2.8). 
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A: Orginal images B: Gray scale C:Afer using HOG 

Figure (4.3): Randomly Samples After Preprocessing 
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Table (4.2) Example of HOG Features for ASL Images 

  Fe1 Fe2 Fe3 Fe4 Fe5 Fe6 Fe7 Fe8 Fe9 Fe10 

A 0.2356 0.0367 0.014 0.0859 0.3033 0.1831 0.0101 0.0006 0.0019 0.0063 

B 0.1958 0.03 0.0117 0.0603 0.2746 0.1081 0.0132 0 0.0007 0.0172 

C 0.2194 0.0472 0.014 0.0744 0.303 0.2436 0.005 0.0037 0.0029 0.0063 

D 0.3055 0.0362 0.0195 0.0818 0.3366 0.2014 0.0072 0.0012 0.0011 0.0098 

E 0.2197 0.035 0.0105 0.071 0.297 0.2041 0.0063 0.0013 0 0.0048 

F 0.1163 0.022 0.0056 0.0448 0.2238 0.0902 0.0047 0.0006 0 0.0027 

G 0.2417 0.014 0.0205 0.0074 0.2802 0.0527 0.007 0.0019 0 0.0425 

H 0.144 0.0711 0.0823 0.054 0.2657 0.2092 0.0082 0.0003 0.0663 0.0023 

I 0.357 0.062 0.037 0.0157 0.357 0.0607 0.0111 0.0029 0.0438 0.0056 

J 0.3251 0.0541 0.0274 0.0084 0.328 0.0763 0.02 0.0093 0.1123 0.0053 

K 0.1404 0.0218 0.0202 0.0177 0.2282 0.057 0.0121 0.1441 0.1635 0.0378 

L 0.294 0.0691 0.0417 0.0092 0.366 0.123 0.0115 0.0026 0.2059 0.0073 

M 0.2394 0.022 0.0262 0.0088 0.2785 0.07 0.0089 0.0025 0.1078 0.0066 

N 0.2064 0.0196 0.0257 0.0106 0.297 0.0597 0.0066 0.0025 0.1267 0.0097 

O 0.3358 0.0335 0.043 0.0103 0.3571 0.0856 0.0153 0.0027 0.2081 0.0099 

P 0.2504 0.0677 0.0377 0.0101 0.3654 0.0754 0.0107 0.0028 0.24 0.0035 

Q 0.2687 0.0507 0.0255 0.0689 0.3475 0.1082 0.0091 0.0031 0.14 0.0068 

R 0.3456 0.058 0.0388 0.0908 0.3456 0.0548 0.0098 0.0062 0.0737 0.0082 

S 0.1817 0.0558 0.0305 0.0249 0.3358 0.0954 0.0333 0.01 0.2428 0.0062 

T 0.1922 0.0411 0.0234 0.0106 0.2908 0.0756 0.0157 0.0132 0.1344 0.0041 

U 0.2606 0.0455 0.0293 0.0546 0.2662 0.0582 0.0105 0.007 0.0852 0.1706 

V 0.3244 0.0487 0.0308 0.0589 0.3299 0.0329 0.0096 0.0021 0.0639 0.0057 

W 0.2203 0.0353 0.0215 0.0306 0.3248 0.0538 0.0063 0.002 0.0452 0.005 

X 0.2647 0.0387 0.0224 0.0609 0.2904 0.05 0.0099 0.0026 0.0246 0.0057 

Y 0.3497 0.0583 0.035 0.1127 0.3506 0.0848 0.0077 0.0032 0.0703 0.005 

Z 0.3571 0.0505 0.0306 0.0679 0.3571 0.0585 0.0107 0.0023 0.0014 0.0075 

 

 

 

 

 

 

Figure (4.4): HOG Features for ASL Images. 
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Table (4.3) Example of HOG Features for ArSL Images 

  Fe1 Fe2 Fe3 Fe4 Fe5 Fe6 Fe7 Fe8 Fe9 Fe10 

ain 0.0386 0 0.0007 0 0.0201 0.0046 0.0058 0 0 0.0391 

al 0.0207 0 0.0006 0 0.0098 0 0.021 0.0009 0 0.0216 

aleff 0.007 0 0.0018 0.0007 0.0168 0 0.0004 0 0 0.0102 

bb 0.068 0 0.0146 0.0033 0.0414 0 0 0 0 0.0059 

dal 0.0171 0 0.0203 0.0009 0.0167 0 0.0066 0 0 0.0093 

dha 0.0973 0.0558 0.0598 0.0211 0.0104 0 0.0016 0.006 0.0073 0.093 

dhad 0.0805 0 0 0 0.0245 0 0.0049 0 0 0.0805 

fa 0.036 0.0217 0.036 0.006 0.0065 0 0.0003 0 0 0.0076 

gaaf 0.0242 0.0029 0.0184 0.0273 0.1042 0.0185 0.0212 0.0067 0.0027 0.0169 

ghain 0.0045 0 0 0 0.0545 0.0017 0.0184 0 0 0.0078 

ha 0.009 0 0.0042 0.0027 0.0932 0 0.0051 0 0 0.009 

haa 0.021 0 0.0674 0.0054 0.0969 0 0.0011 0 0 0.0105 

jeem 0.0277 0 0.0013 0 0 0 0.0013 0 0 0.0333 

kaa 0.0445 0 0.0043 0 0.0046 0 0.0027 0 0 0.012 

khaa 0.1866 0.0282 0.0179 0 0.0046 0.0013 0.0081 0.0167 0.0042 0.2431 

la 0.0108 0 0 0 0.0843 0.0025 0.0089 0.0038 0 0.0142 

laam 0.1204 0 0.0053 0 0.0103 0 0.0106 0.0021 0 0.0508 

meem 0.0113 0 0.0051 0 0.0234 0.0022 0.0006 0 0 0.0218 

nun 0.0719 0.0013 0.0008 0 0.0258 0.0054 0.0212 0.0013 0 0.0473 

ra  0.0276 0.0043 0.0233 0.0057 0.0518 0.0041 0.011 0.0011 0 0.0145 

saad 0.0215 0 0.0034 0 0.0287 0 0.0017 0 0 0.0593 

seen 0.0227 0.0045 0.0094 0.0025 0.0193 0.01 0.0203 0.0007 0.0017 0.0226 

sheen 0.0234 0 0.0008 0 0.0026 0 0.0045 0 0 0.0003 

ta 0.0181 0.027 0.056 0.0238 0.0082 0 0.0003 0 0 0.0823 

taa 0.0185 0.002 0.0908 0.0777 0.1179 0 0 0 0 0.0194 

thaa 0.0051 0 0.0195 0.001 0.0265 0.001 0.0026 0 0 0.0202 

thal 0.0261 0.0052 0.0318 0.0322 0.0686 0 0.009 0 0 0.0807 

toot 0.028 0 0.0251 0 0.0186 0 0.0057 0.001 0 0.0289 

waw 0.014 0 0.0015 0 0.0069 0 0.0015 0 0 0.0063 

ya 0.0033 0 0 0 0.0167 0 0.0009 0 0 0.0013 

yaa 0.1015 0.0023 0.0043 0 0.0041 0 0 0 0 0.0656 

zay 0.0049 0 0 0 0.0448 0.0006 0.0077 0.0019 0.0009 0.0046 



Chapter Four                      Experimental and Results Discussion 

 

72 

 

Figure (4.5): HOG Features for ArSL Images. 

4.4.3 Results of Implementation of Z- Score Normalization 

     As discussed in section (3.5.2), Z-score normalization aims to make the 

features and their sigma that are belonging to one class to be more closely 

related, but at the same time separate them from the other class, to avoid the 

overlapping of features classes and increase the accuracy(AC) of the proposed 

system in the classification stage. Table (4.4) and Figure (4.6) clarify the 

histogram for original features that extract after using Z-score normalization 

for ASL images of 26 classes and Table (4.5) and Figure (4.7) clarifies the 

histogram for original features that extract after using Z-score normalization 

for ArSL of 32 classes. 

Table (4.4): Example of Histogram for Original Features to ASL. 

  F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

A 0.73 0.01 -0.5 2.36 -0 -0.3 -0.8 -0.9 -1 -0.2 

B 0.31 -0.3 -0.6 1.3 -0.9 -1.1 -0.7 -0.9 -1.1 0.23 

C 0.56 0.57 -0.5 1.88 -0 0.37 -1 -0.7 -1 -0.2 

D 1.47 -0 -0.2 2.19 0.98 -0.1 -0.9 -0.9 -1.1 -0 

E 0.56 -0.1 -0.7 1.74 -0.2 -0 -1 -0.9 -1.1 -0.2 

F -0.5 -0.8 -1 0.65 -2.4 -1.3 -1 -0.9 -1.1 -0.3 

G 0.8 -1.2 -0.2 -0.9 -0.7 -1.7 -0.9 -0.8 -1.1 1.17 

H -0.2 1.83 3.2 1.04 -1.1 0.01 -0.9 -0.9 0.4 -0.3 
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I 2.01 1.35 0.74 -0.6 1.59 -1.6 -0.8 -0.7 -0.1 -0.2 

J 1.67 0.93 0.21 -0.9 0.73 -1.4 -0.5 -0.3 1.42 -0.2 

K -0.3 -0.8 -0.2 -0.5 -2.2 -1.6 -0.8 8.86 2.55 1 

L 1.35 1.73 0.99 -0.8 1.86 -0.9 -0.8 -0.8 3.49 -0.1 

M 0.77 -0.8 0.14 -0.8 -0.7 -1.5 -0.9 -0.8 1.32 -0.2 

N 0.43 -0.9 0.12 -0.8 -0.2 -1.6 -0.9 -0.8 1.74 -0.1 

O 1.78 -0.2 1.06 -0.8 1.6 -1.3 -0.6 -0.8 3.54 -0 

P 0.89 1.65 0.77 -0.8 1.84 -1.4 -0.8 -0.8 4.25 -0.3 

Q 1.08 0.75 0.11 1.65 1.31 -1.1 -0.9 -0.7 2.03 -0.2 

R 1.89 1.14 0.83 2.56 1.25 -1.6 -0.8 -0.5 0.56 -0.1 

S 0.17 1.02 0.38 -0.2 0.96 -1.2 -0 -0.3 4.31 -0.2 

T 0.28 0.24 -0 -0.8 -0.4 -1.4 -0.6 -0 1.91 -0.3 

U 0.99 0.48 0.31 1.06 -1.1 -1.6 -0.8 -0.5 0.82 5.96 

V 1.67 0.65 0.39 1.24 0.79 -1.9 -0.8 -0.8 0.34 -0.2 

W 0.57 -0.1 -0.1 0.07 0.63 -1.6 -1 -0.8 -0.1 -0.2 

X 1.04 0.12 -0.1 1.32 -0.4 -1.7 -0.8 -0.8 -0.5 -0.2 

Y 1.93 1.16 0.62 3.47 1.4 -1.3 -0.9 -0.7 0.49 -0.2 

Z 2.01 0.74 0.38 1.61 1.59 -1.6 -0.8 -0.8 -1 -0.1 

 

 

Figure (4.6) Histogram for Original Features to ASL. 
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Table (4.5) :Example of Histogram for Original Features to ArSL. 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

ain 0 -0.2 -0.5 -0.3 -0.8 -0.1 -0.4 -0.3 -0.2 0.02 

al -0.3 -0.2 -0.5 -0.3 -0.9 -0.3 -0 -0.2 -0.2 -0.3 

aleff -0.5 -0.2 -0.5 -0.3 -0.8 -0.3 -0.5 -0.3 -0.2 -0.5 

bb 0.5 -0.2 -0.2 -0.1 -0.5 -0.3 -0.5 -0.3 -0.2 -0.6 

dal -0.4 -0.2 -0 -0.2 -0.8 -0.3 -0.4 -0.3 -0.2 -0.5 

dha 1 3.44 0.98 1 -0.9 -0.3 -0.5 0.19 0.11 1.04 

dhad 0.71 -0.2 -0.6 -0.3 -0.7 -0.3 -0.4 -0.3 -0.2 0.8 

fa -0 1.19 0.37 0.07 -0.9 -0.3 -0.5 -0.3 -0.2 -0.6 

gaaf -0.2 -0 -0.1 1.39 0.34 0.81 -0 0.25 -0.1 -0.4 

ghain -0.6 -0.2 -0.6 -0.3 -0.3 -0.2 -0.1 -0.3 -0.2 -0.6 

ha -0.5 -0.2 -0.4 -0.1 0.2 -0.3 -0.4 -0.3 -0.2 -0.5 

haa -0.3 -0.2 1.17 0.04 0.25 -0.3 -0.5 -0.3 -0.2 -0.5 

jeem -0.2 -0.2 -0.5 -0.3 -1 -0.3 -0.5 -0.3 -0.2 -0.1 

kaa 0.1 -0.2 -0.4 -0.3 -1 -0.3 -0.5 -0.3 -0.2 -0.5 

khaa 2.52 1.62 -0.1 -0.3 -1 -0.3 -0.3 1.07 -0 3.86 

la -0.5 -0.2 -0.6 -0.3 0.08 -0.2 -0.3 0.01 -0.2 -0.4 

laam 1.39 -0.2 -0.4 -0.3 -0.9 -0.3 -0.3 -0.1 -0.2 0.24 

meem -0.5 -0.2 -0.4 -0.3 -0.7 -0.2 -0.5 -0.3 -0.2 -0.3 

nun 0.57 -0.1 -0.5 -0.3 -0.7 -0 -0 -0.2 -0.2 0.18 

ra  -0.2 0.05 0.04 0.05 -0.3 -0.1 -0.3 -0.2 -0.2 -0.4 

saad -0.3 -0.2 -0.5 -0.3 -0.7 -0.3 -0.5 -0.3 -0.2 0.4 

seen -0.3 0.06 -0.3 -0.1 -0.8 0.28 -0 -0.2 -0.1 -0.3 

sheen -0.3 -0.2 -0.5 -0.3 -1 -0.3 -0.4 -0.3 -0.2 -0.7 

ta -0.3 1.54 0.88 1.17 -0.9 -0.3 -0.5 -0.3 -0.2 0.84 

taa -0.3 -0.1 1.78 4.48 0.52 -0.3 -0.5 -0.3 -0.2 -0.3 

thaa -0.6 -0.2 -0.1 -0.2 -0.7 -0.3 -0.5 -0.3 -0.2 -0.3 

thal -0.2 0.1 0.26 1.69 -0.1 -0.3 -0.3 -0.3 -0.2 0.81 

toot -0.2 -0.2 0.09 -0.3 -0.8 -0.3 -0.4 -0.2 -0.2 -0.2 

waw -0.4 -0.2 -0.5 -0.3 -0.9 -0.3 -0.5 -0.3 -0.2 -0.6 

ya -0.6 -0.2 -0.6 -0.3 -0.8 -0.3 -0.5 -0.3 -0.2 -0.7 

yaa 1.07 -0.1 -0.4 -0.3 -1 -0.3 -0.5 -0.3 -0.2 0.52 

zay -0.5 -0.2 -0.3 -0.2 -1 -0.3 -0.5 -0.3 -0.2 -0.6 
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Figure (4.7): Histogram for Original Features for ArSL 

4.4.4 Results of Principal Component Analysis (PCA) 

     As discussed in section (3.5.3), Dimensionality reduction using PCA is a 

well-established and effective technique, but it has the limitation of requiring 

knowledge of the data statistics as illustrated in Algorithm (3.3). The features 

can be obtained in the data matrix sorted eigenvectors matrix as Table (4.6) 

and Figure (4.8), also Example of PCA Features for ASL Images, and Table 

(4.7) Example of PCA Features for ArSL Images, and Figure (4.9): 

Table (4.6): Example of PCA Features for ASL Images 

 Fe1 Fe2 Fe3 Fe4 Fe5 Fe6 Fe7 Fe8 Fe9 Fe10 

A 0.731 0.0138 -0.52 2.36 -0.0075 -0.269 -0.821 -0.903 -1.03 -0.177 

B 0.314 -0.339 -0.648 1.3 -0.862 -1.06 -0.71 -0.943 -1.06 0.228 

C 0.561 0.566 -0.518 1.88 -0.0148 0.373 -1 -0.688 -1.01 -0.18 

D 1.47 -0.0119 -0.218 2.19 0.984 -0.0749 -0.922 -0.86 -1.05 -0.0465 

E 0.564 -0.077 -0.713 1.74 -0.194 -0.0467 -0.954 -0.854 -1.07 -0.236 

F -0.522 -0.765 -0.979 0.654 -2.37 -1.25 -1.01 -0.902 -1.07 -0.313 

G 0.796 -1.19 -0.165 -0.896 -0.695 -1.65 -0.931 -0.814 -1.07 1.17 

H -0.231 1.83 3.2 1.04 -1.13 0.0077 -0.886 -0.922 0.399 -0.327 

I 2.01 1.35 0.735 -0.554 1.59 -1.57 -0.787 -0.745 -0.0991 -0.203 

J 1.67 0.934 0.21 -0.854 0.728 -1.4 -0.472 -0.31 1.42 -0.215 

K -0.269 -0.776 -0.184 -0.469 -2.24 -1.6 -0.751 8.86 2.55 0.998 

L 1.35 1.73 0.992 -0.821 1.86 -0.906 -0.772 -0.765 3.49 -0.142 
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M 0.772 -0.766 0.144 -0.839 -0.746 -1.47 -0.863 -0.775 1.32 -0.168 

N 0.425 -0.888 0.118 -0.761 -0.193 -1.58 -0.944 -0.772 1.74 -0.0517 

O 1.78 -0.159 1.06 -0.778 1.6 -1.3 -0.638 -0.757 3.54 -0.0444 

P 0.887 1.65 0.771 -0.786 1.84 -1.41 -0.799 -0.755 4.25 -0.284 

Q 1.08 0.754 0.107 1.65 1.31 -1.06 -0.854 -0.729 2.03 -0.158 

R 1.89 1.14 0.831 2.56 1.25 -1.63 -0.832 -0.523 0.563 -0.108 

S 0.165 1.02 0.38 -0.172 0.962 -1.2 -0.002 -0.261 4.31 -0.183 

T 0.276 0.243 -0.0081 -0.762 -0.38 -1.41 -0.625 -0.0422 1.91 -0.259 

U 0.994 0.479 0.313 1.06 -1.11 -1.59 -0.807 -0.463 0.818 5.96 

V 1.67 0.648 0.394 1.24 0.785 -1.86 -0.838 -0.803 0.344 -0.201 

W 0.571 -0.0597 -0.113 0.0673 0.634 -1.64 -0.956 -0.806 -0.0697 -0.228 

X 1.04 0.12 -0.0604 1.32 -0.39 -1.68 -0.826 -0.763 -0.525 -0.199 

Y 1.93 1.16 0.622 3.47 1.4 -1.31 -0.904 -0.727 0.487 -0.228 

Z 2.01 0.741 0.384 1.61 1.59 -1.59 -0.8 -0.783 -1.04 -0.133 

 

 

Figure (4.8): PCA Features for ASL 

Table (4.7): Example of PCA Features for ArSL 

  Fe1 Fe2 Fe3 Fe4 Fe5 Fe6 Fe7 Fe8 Fe9 Fe10 

ain 0.002 -0.238 -0.535 -0.296 -0.768 -0.058 -0.4 -0.304 -0.166 0.0241 

al -0.303 -0.238 -0.539 -0.296 -0.904 -0.346 -0.018 -0.232 -0.166 -0.306 

aleff -0.537 -0.238 -0.507 -0.252 -0.811 -0.346 -0.535 -0.304 -0.166 -0.519 

bb 0.5025 -0.238 -0.178 -0.092 -0.486 -0.346 -0.546 -0.304 -0.166 -0.6 

dal -0.365 -0.238 -0.032 -0.242 -0.813 -0.346 -0.381 -0.304 -0.166 -0.537 
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dha 1.001 3.4367 0.9798 1.0005 -0.896 -0.346 -0.505 0.1904 0.1095 1.0372 

dhad 0.7141 -0.238 -0.553 -0.296 -0.71 -0.346 -0.422 -0.304 -0.166 0.8007 

fa -0.043 1.1925 0.3688 0.0745 -0.948 -0.346 -0.538 -0.304 -0.166 -0.568 

gaaf -0.244 -0.046 -0.081 1.3865 0.343 0.806 -0.014 0.2471 -0.064 -0.393 

ghain -0.58 -0.238 -0.553 -0.296 -0.313 -0.242 -0.085 -0.304 -0.166 -0.565 

ha -0.503 -0.238 -0.445 -0.131 0.1981 -0.346 -0.419 -0.304 -0.166 -0.543 

haa -0.298 -0.238 1.1745 0.0374 0.2468 -0.346 -0.518 -0.304 -0.166 -0.514 

jeem -0.184 -0.238 -0.52 -0.296 -1.033 -0.346 -0.514 -0.304 -0.166 -0.086 

kaa 0.1016 -0.238 -0.443 -0.296 -0.973 -0.346 -0.479 -0.304 -0.166 -0.487 

khaa 2.5212 1.6221 -0.095 -0.296 -0.973 -0.266 -0.342 1.0653 -0.008 3.8582 

la -0.471 -0.238 -0.553 -0.296 0.0802 -0.187 -0.324 0.0096 -0.166 -0.444 

laam 1.3934 -0.238 -0.417 -0.296 -0.897 -0.346 -0.279 -0.131 -0.166 0.2428 

meem -0.464 -0.238 -0.422 -0.296 -0.724 -0.21 -0.532 -0.304 -0.166 -0.302 

nun 0.5683 -0.15 -0.532 -0.296 -0.693 -0.011 -0.014 -0.194 -0.166 0.178 

ra  -0.186 0.0472 0.0434 0.0542 -0.349 -0.087 -0.271 -0.215 -0.166 -0.439 

saad -0.289 -0.238 -0.467 -0.296 -0.654 -0.346 -0.504 -0.304 -0.166 0.4022 

seen -0.27 0.0559 -0.312 -0.14 -0.779 0.2798 -0.037 -0.243 -0.102 -0.288 

sheen -0.257 -0.238 -0.532 -0.296 -0.999 -0.346 -0.433 -0.304 -0.166 -0.706 

ta -0.347 1.5428 0.8827 1.1703 -0.926 -0.346 -0.538 -0.304 -0.166 0.8353 

taa -0.341 -0.108 1.776 4.4832 0.5242 -0.346 -0.546 -0.304 -0.166 -0.348 

thaa -0.569 -0.238 -0.052 -0.232 -0.684 -0.282 -0.481 -0.304 -0.166 -0.332 

thal -0.211 0.1018 0.2623 1.6873 -0.127 -0.346 -0.321 -0.304 -0.166 0.8058 

toot -0.18 -0.238 0.0907 -0.296 -0.787 -0.346 -0.404 -0.222 -0.166 -0.169 

waw -0.418 -0.238 -0.514 -0.296 -0.942 -0.346 -0.508 -0.304 -0.166 -0.593 

ya -0.599 -0.238 -0.553 -0.296 -0.813 -0.346 -0.523 -0.304 -0.166 -0.687 

yaa 1.072 -0.087 -0.442 -0.296 -0.979 -0.346 -0.546 -0.304 -0.166 0.5214 

zay -0.573 -0.238 -0.553 -0.296 -0.442 -0.306 -0.353 -0.146 -0.131 -0.625 
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Figure (4.9): PCA Features for ArSL. 

4.4.5 Result of Training and Testing Using MSVM Algorithm 

     After the process of extracting features, the system reached the 

classification stage. In this stage, the static hand gesture images are classified 

according to the features that were extracted, and the MSVM algorithm was 

previously explained in the Algorithm (3.4). In order to complete the 

classification process, the system needs two stages that have been explained 

previously, which are the training stage and the testing stage. The results of 

these two stages will be displayed in order to them recognition and classify 

the hand gesture images. The training results will be displayed first and then 

the test results. 

4.4.5.1 Result of MSVM Training 

This operation was explained previously in section (3.6.1). Training 

process for images is done in MSVM method after performing the operations 

and to recognize static hand gesture images for ASL and ArSL. The average 
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AC of all classes in the training stage for ASL is equal to (95.58%), and for 

ArSL is equal to (96.16%). 

It is important to note that the percentage used in our thesis was not 

chosen at random; instead, different data ratios were tested, with the best result 

being 80% to training and 20% of the test data set, which is especially 

important for the testing process that relies on it in the classification process. 

Comparing accuracy with data ratios for ASL is shown in Table (4.8), and 

comparing accuracy with data ratios for ArSL is shown in Table (4.9). 

The AC and AC of each class in training were calculated according to 

equation (2.38). 

Table (4.8): Comparing accuracy with data ratios for ASL 

 

Dataset (%) 

(training: testing)  

 

The  AC for 

training  

The  AC for 

testing  

 

The Total 

time 

 

80:20 95.58% 96% 2H 

70:30  95.23% 95% 2:30H 

60:40 94.47% 94% 3H 

 

Table (4.9): Comparing accuracy with data ratios for ArSL 

 

Dataset (%) 

(training: testing)  

 

The  AC for 

training  

The  AC for 

testing  

 

The Total 

time 

 

80:20 96.16% 96%   3:30H 

70:30  96.125% 96% 4H 

60:40 96% 96% 4:30H 
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4.4.5.2 Result of MSVM Testing 

     This stage is an examination of the system by testing it with the remainder 

of the data that is not labeled in order to classify the static hand gesture images 

as explained in the previous chapter. At this stage also the results display as 

shown in Table (4.10) each class's results accuracy for ASL, and Table (4.11) 

each class's results accuracy for ArSL. the AC for ASL of testing is equal to 

(96%) and the AC for ArSL of testing also is equal to (96%). 

Table (4.10): The AC of test data for all classes for ASL. 

class No. Precision Recall F1- Score Support  

A 0.94 0.96 0.95 140 

B 0.92 0.95 0.94 142 

C 0.99 1.00 1.00 139 

D 0.96 0.97 0.97 162 

E 0.94 0.94 0.94 136 

F 0.99 1.00 0.99 148 

G 0.96 0.99 0.97 157 

H 0.98 0.099 0.98 149 

I 0.97 0.97 0.97 144 

J 0.99 0.96 0.98 142 

K 0.96 0.96 0.96 157 

L 0.99 1.00 1.00 164 

M 0.94 0.91 0.93 150 

N 0.93 0.93 0.93 144 

O 0.98 0.96 0.97 165 

P 1.00 1.00 1.00 158 

Q 1.00 0.99 1.00 156 

R 0.89 0.96 0.92 158 

S 0.94 0.95 0.94 157 

T 0.98 0.98 0.98 154 
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U 0.85 0.85 0.85 150 

V 0.89 0.85 0.87 149 

W 0.96 0.93 0.94 147 

X 0.97 0.93 0.95 146 

Y 0.96 0.97 0.97 136 

Z 1.00 0.99 1.00 150 

Accuracy 0.96 3900 

 

Table (4.11): The AC of test data for all classes for ArSL. 

class No. Precision Recall F1- Score Support  

ain 0.94 0.99 0.96 140 

al 0.99 0.98 0.98 143 

aleff 0.98 0.98 0.98 143 

bb 0.98 0.99 0.98 161 

dal 0.94 0.98 0.96 146 

dha 0.91 0.95 0.93 156 

dhad 0.98 0.99 0.98 160 

fa 0.9 0.95 0.92 136 

gaaf 0.95 0.99 0.94 150 

ghain 0.99 0.95 0.97 157 

ha 0.94 0.93 0.94 153 

haa 0.97 0.96 0.96 160 

jeem 0.97 0.94 0.95 155 

kaa 0.95 0.9 0.93 145 

khaa 0.97 0,94 0.95 149 

la 0.94 0,98 0.96 154 

laam 0.99 0.96 0.97 149 

meem 0.97 0.99 0.98 157 

nun 1.00 0.97 0.99 155 

ra  0.96 0.94 0.95 164 

saad 0.97 0.94 0.95 153 
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seen 0.93 0.98 0.95 134 

sheen 0.99 0.98 0.98 145 

ta 0.94 0.95 0.95 167 

taa 0.94 0.96 0.95 140 

thaa 0.92 0.92 0.92 154 

thal 0.99 0.99 0.99 154 

toot 0.98 0.97 0.97 140 

waw 0.98 0.98 0.98 139 

ya 0.99 0.99 0.99 141 

yaa 0.99 0.99 0.99 156 

zay 0.98 0.92 0.95 144 

Accuracy 0.96 4800 
 

     A confusion matrix (CM) is a summary of prediction results on a 

classification problem, the number of correct and incorrect predictions are 

summarized with count values and broken down by each class. This is the key 

to the confusion matrix as shown in Figure (4.10) CM for ASL and Figure 

(4.11) CM for ArSL. 

 

Figure (4.10): CM for ASL Using MSVM 
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Figure (4.11): CM for ArSL Using MSVM 

 

4.4.6 Hand Gesture Recognition in the First Proposed System 

     Following conducting the training and testing processes of the system, the 

process of static HGR is carried out. The recognition mechanism in the first 

proposed system using MSVM algorithm for classification. Then conducting 

all the previous operations that were mentioned, hand gesture is recognized 

and classified. However, the AC in detection is not high due to the lack of AC 

of the test and training well. The reasons have been explained, and for this 

reason, a second proposed system has been built that is better than the first 

system. 
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4.5 Evaluation of the Second Proposed System 

     The second proposed system that was explained in the third chapter, which 

consists of several stages, each stage and its results, up to the final results will 

be shown by CNN as shown in Figure (3.1) and the procedure shown in 

Algorithm (3.5). This section explores the performance results of CNN. Table 

(4.12) shows the main CNN structure that has been used in the proposed 

system for ASL and Table (4.13) show the main CNN structure that has been 

used in the proposed system for ArSL. 

Table (4.12): Proposed System Design CNN Layers for ASL. 

 

 The first layer is the convolution layer, it has 32 filters, each with three 

channels, which has a filter size of 3x3 and a stride of 1. It is meaning 

every 3x3 square of an input image is treated as a separate filter. There 

is no zero-padding in this layer, so the number of outputs equals the 
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number of inputs; note that the number of parameters in this layer can 

be calculated using equation (2.23). 

 Conv1: number of input channels is 3, the number of output channels 

equal 32. No. of parameters= 32*(3*(3*3) +1) =896. 

 Conv2:  number of input channels is 32, the number of output channels 

is 64. 

No. of parameters=64*(32*(3*3) +1) =18496. The rest of Convolution 

layers applied the same formula.  

 We used the image from the first layer first and divided it into 3 x 3 

squares in step 1. There are still 32 filters as before, even though the 224 

x 224 matrix is now 111 x 111. Notice that there is no parameter in this 

layer, as mentioned in chapter three. So, these processes repeated for layer 

(3 to 12).   

 Finally, in layer 13 we flatten the network takes inputs from the previous 

pooling layer 12*12*256= 36864, and that need 512 nodes for the first 

denes layer, while in second denes need 250 nodes and after that dropout 

(0.5) for calculated classification by softmax function to 26 classes 
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Table (4.13): Proposed System Design CNN Layers for ArSL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     The explanation of Proposed System Design CNN Layers for ArSL is the 

same as the explanation of Proposed System Design CNN Layers for ASL 

above except calculated classification by soft max function to 32 classes. 

4.5.1 Result of the Second Proposed System (Using CNN) 

     The experiment was conducted by setting a different number of training 

epoch to get the most accurate result.  As in Table (4.14) for ASL and Table 

(4.15) for ArSL, it can be seen that from epoch 1 to 10 for example it shows 

that the AC of selection and verification increased while the loss and 

verification loss decreased.   
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Table (4.14): The AC and loss for each training in 10-Epoch for ASL 

Epoch Time Loss Training 

AC 

Validation 

Loss 

Validation 

AC 

1 20s 655ms/step 3.2609 0.0436 3.2580 0.0282 

2 14s 467ms/step 3.2301 0.0589 3.2243 0.0641 

3 12s 410ms/step 3.0899 0.0977 3.1264 0.0908 

4 15s 488ms/step 2.8174 0.1647 2.8856 0.1733 

5 17s 567ms/step 2.3330 0.2848 2.4617 0.2618 

6 11s 379ms/step 1.9682 0.3730 2.1750 0.3285 

7 18s 592ms/step 1.5320 0.4965 1.9823 0.3708 

8 11s 374ms/step 1.2730 0.5718 1.5165 0.4905 

9 12s 396ms/step 1.0436 0.6478 1.4587 0.4954 

10 11s 376ms/step 0.8797 0.6960 1.4192 0.5203 

 

Table (4.15): The AC and loss for each training in 10-Epoch for ArSL 

Epoch 

ARSL 

Time Loss Training 

AC 

Validation 

Loss 

Validation 

AC 

1 80s 2s/step 3.4716 0.0336 3.4659 0.0312 

2 41s 1s/step 3.4593 0.0392 3.4234 0.0640 

3 14s 356ms/step 3.1734 0.0985 2.8529 0.1513 

4 12s 300ms/step 2.5103 0.2410 2.0817 0.4046 

5 15s 374ms/step 1.7688 0.4475 1.7890 0.5535 

6 13s 315ms/step 1.1995 0.6177 1.1967 0.6392 

7 12s 310ms/step 0.8231 0.7349 0.9526 0.6969 

8 12s 312ms/step 0.6314 0.8062 0.7692 0.7435 

9 13s 319ms/step 0.4871 0.8468 0.6839 0.7735 

10 13s 324ms/step 0.4076 0.8732 0.6833 0.7771 

 

     The main problem that occurred during training is that it takes a long time, and 

also the speed and characteristics of the computer play a big role in the time spent 
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on network training. In Table (4.14) and Table (4.15), the (Time) column 

represents for  training the size the data set in each epoch. 

     The structure that was explained in chapter three, section (3.7.2), shows the use 

(4CNN) layers, which leads to reduce the number of transactions and increasing 

the AC of the training, testing, and validation gradually to get the best results, as 

shown in Table (4.16) for ASL, and Table (4.17) for ArSL. 

Table (4.16): Comparison of the layers of the CNN and the AC rate for 

ASL 

 

Table (4.17): Comparison of the layers of the CNN and the AC rate for 

ArSL 

 CNN 

layers 

number   

 

Number of 

Parameters  

 

The  AC 

training  

The  AC for 

testing  

The  AC for 

validation   

CNN1 15,882,714 99.89% 81,54% 71,35% 

CNN2 6,578,714 99.64% 86.5% 79,60% 

CNN3 2,589,338 99.68% 89.27% 84.21% 

CNN4 1,049,498 99.03% 89.38% 86.69% 

 

CNN 

numbers  

 

Number of 

Parameters  

 

The  AC rate 

for all classes 

in training  

The  AC rate 

for all classes 

in testing  

The  AC rate 

for all classes 

in validation   

 

CNN1 15,881,208 99.10% 96.20% 64.41% 

CNN2 6,577,208 99.28% 97.43% 68.33% 

CNN3 2,587,832 99.02% 97.07% 69.51% 

CNN4 1,047,992 98.76% 98% 77.21% 
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4.5.2 Result of the CNN Training 

     At this stage, the network training process was conducted to learn about the 

features of each static hand gesture image and recognize it at the recognition 

stage. When the network is trained and all images pass on the CNN of all layers 

in order to teach this network, this is the main purpose of the training process.  

     In the training process also, there is the process to calculate the consistency 

between the network's output estimates by forwarding propagation and 

assigned area truth labels by using the loss function that has been explained in 

the previous two chapters. In Figure (4.12) a chart will be displayed the loss 

function and the AC for ASL, and in Figure (4.13) for ArSL. The loss function 

which is descending to the bottom, in contrast to the AC  that goes from the 

bottom to the up. In addition, the number of epochs was used in the training 

process is 75 epochs, as for the number of iterations is 30 for each epoch 

iterations for ASL, to extract the total number of iterations by multiplying 75 * 

30 and the result was 2250 iterations. 

     After that, it was noted that one of the related work s had obtained a higher 

AC of the proposed system, so we increased the number of epochs to reach the 

closest result, and according to the Table (4.18), where 150 epochs were used 

epochs, as for the number of iterations is 75 for each epoch iterations for ASL, 

to extract the total number of iterations by multiplying 150 * 75 and the result 

was 11,250 iterations while the related work used 33,000 iterations.

 

Figure (4.12): AC and Loss Validation Change Against Training Epochs 

(75) for ASL. 
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Figure (4.13): AC and Loss Validation Change Against Training Epochs for  

ArSL. 

     In Figure (4.14) a chart will be displayed the loss function and the AC for 

ASL when used epoch (150). 

Table (4.18): Comparing the AC with number of epoch for ASL. 

 

 

 

 

 

 

 

 

 

Epoch 

 

Iteration 

for 

Epoch 

The  AC 

training  

The  AC 

for testing  

The  AC for 

validation   

Total 

Rum 

Time  

75 30 98.76% 98% 78.33% 21m 

90 40 99.08% 96.85% 80.03 40m 

100 50 99.43% 98.179% 81.03 54m 

120 60 99.52% 97.615% 81.21% 1H 

150 75 99.71% 98.717% 83.95% 2H 
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Figure (4.14): AC and Loss Validation Change Against Training Epochs 

(150) for ASL. 

     In addition, the number of epochs was used in the training process is 90 

epochs, as for the number of iterations is 40 for each epoch iterations for ArSL, 

to extract the total number of iterations by multiply 90 * 40 and the result was 

3600 iterations. 

 4.5.3 Result of the CNN Testing 

     In this stage, the results of the testing were displayed. This process was 

explained in the previous chapter and how the convolutional neural network is 

tested in order to be used for the process of Recognition of static hand gesture 

images. In the testing stage, excellent results were obtained and presented as a 

confusion matrix (CM) as well as shown in Figure (4.15), which shows the 

results of the AC of each class of the 26 classes in the testing stage for ASL, 

and in the Figure (4.16), which shows the results of the AC of each class of the 

32 classes in the testing stage for ArSL. 
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Figure (4.15): CM for ASL Using CNN. 
 

 

 

Figure (4.16): CM for ArSL Using CNN. 
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     It is important to note that the percentage used in our thesis was not chosen 

at random; instead, different data ratios were tested, with the best result being 

80% for training and 20% for the test data set, which is especially important 

for the testing process that relies on it in the classification process. Comparing 

accuracy with data ratios for ASL is shown in Table (4.19), and Comparing 

accuracy with data ratios for ArSL is shown in Table (4.20). 

 

Table (4.19): Comparing accuracy with data ratios for ASL 

Dataset (%) 

(training: testing)  

 

The  AC for 

training  

The  AC for 

testing  

 

The AC for 

validation  
 

Total 

Run 

Time  

80:20 98.76% 98% 77.21% 21m 

70:30  98.35% 95.89% 68.56 26m 

60:40 98.96% 90.28% 38.63% 31m 

Table (4.20): Comparing accuracy with data ratios for ArSL 

Dataset (%) 

(training: testing)  

 

The  AC for 

training  

The  AC for 

testing  

 

The AC for 

validation  

 

Total 

Run 

Time  

80:20 99.03% 89.38% 86.69% 22m 

70:30  99.17% 89.02% 82.61% 28m 

60:40 99.24% 89.20% 82.63% 32m 

 

 

4.5.4 Hand Gesture Recognition in the Second Proposed System  

     The last stage in the second proposed system is the Recognition stage of 

static hand gesture images, which is the most important stage of the system. 

When the network has been trained and tested so that any image that is chosen 

will be classified according to the 26 classes for ASL and 32 classes for ArSL, 
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furthermore after obtaining high and excellent results in the training and 

testing, thus Recognition AC will be very high and the errors are almost non-

existent or very rare. 

 

4.6 Comparison, Between the First Proposed System with the 

Second Proposed System 

The comparison between the two proposed systems is very important in 

order to show the strengths and weaknesses of each of them. Initially, when 

choosing this topic which is the recognition of static hand gesture for ASL and 

ArSL, at first, the MSVM algorithm was used in the first proposed system, but 

after getting the results of AC, notes may be can obtain of the best result with 

another algorithm, then begin to searching for an alternative system is better 

than the first proposed system in order to obtain a high recognition AC and 

very few errors, unlike the first proposed system. After experiments and 

research, the CNN algorithm was chosen in the second proposed system for 

classification the hand gesture images. It is worth noting that the same dataset 

was used, as well as the same data division for training and testing, which is 

80% for training and 20% for testing for both algorithms.  

1- The high AC acquired from the second proposed system in the training and 

testing stages for each of the 26 ASL and 32 ArSL classes, as well as the AC 

rate in these two stages, as shown in the Table (4.21) and Figure (4.17) that 

shows the AC comparison between MSVM and CNN algorithms. 

 2- Because the first proposed system requires a long additional time to extract 

the features from the images, the time taken for the training process in the first 

proposed system using the MSVM method is longer than the time taken in the 

second proposed system using the CNN algorithm. This is also a benefit of the 

CNN algorithm, which extracts its features inside, reducing the need for 

additional time. 
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Table (4.21): The AC comparison between MSVM and CNN algorithms 

DATA SET 

 

Algorithm  

 The  AC for 

training  

The  AC for 

testing  

Total Run time 

 

ASL 

MSVM 

95.58% 96% 2H 

ArSL 96.16% 96%   3:30H 

ASL 

CNN 

99.71% 98.717% 2H 

ArSL 99.03% 89.38% 22m 

 

 

Figure (4.17): The chart shows the AC comparison between MSVM and 

CNN algorithms 

4.7 Proposed system vs. Previous Studies  

     Following the achievement of high AC results on a large dataset of hand 

gesture images and the classification of many classes, a comparison was made 

between: 

1- The first proposed system with our previous studies for ASL, Table (4.22) 

show comparing the first proposed system with previous studies. 
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2- The first proposed system with our previous studies for ArSL, Table (4.23) 

show comparing the first proposed system with previous studies. 

3- The second proposed system with our previous studies for ASL, Table (4.24) 

show comparing the second proposed system with previous studies. 

4- The second proposed system with our previous studies for ArSL, as the table 

(4.25) show comparing the second proposed system with previous studies.  

 

Table (4.22): Comparing the first proposed system with previous studies for 

ASL 

 

 

Table (4.23): Comparing the first proposed system with previous studies for 

ArSL 

 

 

 

Researcher(s), 

year 

Ref.No. Classification 

algorithm 

The size of 

dataset 

 

AC 

S. Nagarajan 

and T. S. 

Subashini 

(2013) 

[5] MSVM 720 images in 24 

categories 

93.75%, 

A.Sharma et al. 

(2020) 

[23] MSVM 3000 images 85.25 

Our Proposal 

(2021) 

 MSVM 19,500 images  

26 classes 

 

95.58% 

Researcher(s), 

year 

Ref.No. Classification 

algorithm 

The size of 

dataset 

 

AC 

Reema Alzohairi 

et al. (2018) 

[18] MSVM 210 63.5 %. 

Our Proposal 

(2021) 

 MSVM 24,000 images  

32 classes 

 

96.16% 
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Table (4.24): Comparing the second proposed system with previous studies 

for ASL 

Researcher(s), 

year 

Ref.No. Classification 

algorithm 

The size of 

dataset 

 

AC 

O. K. Oyedotun 

and A. 

Khashman 

(2016) 

[17] CNN 1440 for training , 

600 for testing 

92.83% 

V. Bheda and N. 

D. Radpour 

(2017) 

[16] CNN 650 Images , 25 

images from 5 

people for each 

alphabet 

67% 

S. Masood et al. 

(2018) 

[19] CNN 2524 ASL gestures 96% 

R. Ahuja et al. 

(2019) 

[19] CNN 47,445 images for 

24 classes 

99.7% 

T.Goswami and 

S. R. Javaji 

(2020) 

[21] CNN 27,455 images for 

24 classes 

99% 

Our Proposal 

(2021) 

 CNN 19,500 images  

26 classes   

99.71% 

 

Table (4.25): Comparing the second proposed system with previous studies 

for ArSL 

Researcher(s), 

year 

Ref.No. Classification 

algorithm 

The size of 

dataset 

 

AC 

S. Hayani  et.al 

(2019) 

[20] CNN 5839 images of 28 

class 

90.02% 

M. M. 

Kamruzzaman 

(2020) 

[22] CNN 100 images for 

each alphabet (32 

classes) 

90% 

Our Proposal 

(2021) 
 CNN 24,000 images  

32 classes 

 

99.03% 

 

Despite using more images for the two proposed systems, all of these tables 

show high AC. 
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CHAPTER FIVE 

CONCLUSIONS AND SUGGESTIONS FOR 

FUTURE WORK                  

5.1 Conclusion 

     In this chapter, the proposed system is summarized; the following conclusions 

were taken from a collection of test results. Some of those conclusions are listed 

in the following: 

1-The testing results from experimentation on the American Sign Language 

(ASL) and Arab Sign language (ArSL) Datasets indicate that this method is very 

effective with high accuracy with significantly less time compared to other 

methods. 

 

2- The proposed system is a reliable methodology to identify and classify static 

hand gestures with accurate and faster resultsو also the system succeeded in 

recognizing the dynamic hand gestures of the two letters j and z in which all 

previous studies failed to identify and by using CNN and MSVM. 

 

3- The increase in the number of epochs was not random, but rather with the goal 

of increasing accuracy, which negatively affected the increase in the total run 

time. 

 

4- In preprocessing stage in the second proposed system, to remove the 

imperfections in the structure of the image, the best value is chosen for the filter 

size that fits the image which is [3*3] for two reasons, firstly is to speed up the 

operation, secondly is producing image more smoothing. 

5- In the feature extraction stage by using the HOG algorithm and PCA, the 

accuracy of the system increased, when increasing the number of features extracts 

from each sample until access to 1296 features from each image. 
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6 - The proposed system has been improved classification accuracy by using the 

Z-score normalization method, which makes the features and their sigma that are 

belonging to one class to be more closely related, but at the same time separate 

them from the other class, to avoid overlapping all features classes that which 

effect on the accuracy rate of the proposed system negatively. 

     In addition, the comparison revealed the main reason for the low accuracy of 

the first proposed system, which is related to the number of classifiers that were 

classified as well as the large size of the data set. In conclusion of the comparison, 

it was proved that the second proposed system is the best, fastest, accurate, and 

most powerful way to recognize and classifies static hand gestures. 

 

5.2 Suggestions for Future Work 

     The proposed system of static hand gestures recognition of ASL and ArSL is 

a flexible system and there are many suggestions that can be performed for future 

work as follows: 

1. Design an expert system that can recognize static hand gestures for ASL and 

ArSL in an automated way depending on multiple techniques and presents 

ways to use computer vision technologies to assist the deaf and hard-of-

hearing communicate more effectively. 

 

2. Applying the system to other various types of sign language as Spanish, 

Italian, German, and French ... etc., or another dataset as the dataset of digit 

number for Arabic and English to make the system more comprehensive. 

 

3. Using various machine learning techniques such as (KNN, Native Bayes, 

etc...) with a comparison between them, also other optimizers for the proposed 

system to obtain a better accuracy rate. 

 

4. Applying the system to recognize static hand gestures using one hand in Real-

time. 
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5. Applying the system to recognize static hand gestures using two hands. 

6.  Applying the system to recognize dynamic gestures such as waving or 

wagging a finger can make HCI much more intuitive 
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 الخلاصة
ة مهمة وبهذا ، أصبح التعرف على لغة الإشارة تقنيان عملية تحديد كل حرف على حدة مهمة جدا 

 .والتعلم الآلي  في الذكاء الاصطناعي

 رزمياتبناءً على خوا  الثابتة تقدم هذه الأطروحة نظامين مقترحين للتعرف على إيماءات اليد

صور حيث يتم استخدام عدة خطوات في شكل مراحل ؛ الحصول على الالتعلم الالي والتعلم العميق ، 

خدام الرسم والمعالجة المسبقة للصور واستخراج الميزات والتصنيف. في النظام الأول المقترح ، يتم است

اعمة يزات من كل صورة ثم يتم تطبيق آلة متجهية دلاستخراج الم (HOG) البياني للتدرجات الموجهة

المقترح  للصور لأداء عملية التصنيف. في النظام الثاني HOG باستخدام نتيجة  (MSVM) متعددة الفئات

اليد الثابتة  والتي يتم من خلالها التعرف على إيماءات (CNN) ، يتم استخدام الشبكة العصبية الالتفافية

 .ه الخوارزمية التي تتكون من عدة طبقاتوفقاً لهيكل خاص لهذ

كانت الأعمال والأبحاث السابقة في هذا المجال معقدة للغاية وبدقة مختلفة. النتائج التي تم الحصول 

يتفوق على النظام الأول  CNN باستخدام نموذج ت التعليم العميق عليها ، النظام الثاني المقترح الذي اعتمد

٪( للغة 99.71كان معدل الدقة الذي تم الحصول عليه من النظام الثاني المقترح )من حيث الأداء والدقة ، و

، بينما كانت نسبة الدقة التي تم  (ArSL) ٪ للغة الإشارة العربية99.03و )  (ASL) الإشارة الأمريكية

 ArSL ٪( بالنسبة لـ96.16، و )ASL لـ ٪( 95.58الحصول عليها من النظام المقترح الأول )



 

 

 

 

 العراق جمهورية

 العلمي    والبحث العالي التعليم وزارة

 ديالى جامعة               

 العلوم كلية

 قسم علوم الحاسوب
 

 

 

 

 

 

 

في التعرف  CNNو  MSVMمقارنة بين خوارزميات 

 على إيماءات اليد في وضع عدم الاتصال 
 

 
 مقدمة رسالة

 وهي جزء من متطلبات نيل  ديالىكلية العلوم في جامعة الى 

 حاسوبفي علوم ال ماجستيرشهادة ال
 تقدمت بها الطالبة
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