Contents

Introduction

1.1 Errors e
1.2 Computational and Errors
1.3 ERRORS AND STABILITY
1.4 Taylor Series Expansions
1.5 Maclaurin Series L Lo

Solutions of Equations in One Variable

2.1 Bisection Technique
2.2 MaTlab built-In Function fzero.
2.3 EXERCISE e
2.4 Fixed-Point Iteration
2.5 EXERCISE
2.6 Newton-Raphsonmethod
2.7 EXERCISE
2.8 System of Non Linear Equations
2.9 EXERCISE e
2.10Fixed Point for System of Non Linear Equations
2.11EXERCISE e

Linear Algebraic Equations

3.1 Gausselimination
3.2 EXERCISE i e
3.3 GaussdJdordanMethod
3.4 EXERCISE ittt se e
3.5 Matrix Inverse using Gauss-Jordan method
3.6 CramersRule
3.7 EXERCISE e e
3.8 Iterative Methods: Jacobi and Gauss-Seidel
3.9 EXERCISE i e e

ii

4 Interpolation and Curve Fitting
4.1 General Interpolation
4.2 Polynomial Interpolation
4.3 Lagrange Interpolation
4.4 EXERCISE
4.5 Divided Differences Method
4.6 EXERCISE 0.
4.7 Curve Fitting Lo oo
4.8 Linear Regression
4.9 Parabolic Regression

5 Numerical Differentiation and Integration
5.1 Numerical Differentiation: Finite Differences

5.1.2 Finite Difference Formulas for f"(z):
5.2 Numerical Integration
5.2.1 The TrapezoidalRule
5.2.2 Simpson’'sRule 000000,

5.2.4 EXERCISE
5.3 Simpson’s3/8Rule
5.3.1 Boole'sRule
53.2 WeddlesRule
5.3.3 EXERCISE

6 Numerical Solution of Ordinary Differential Equations
6.1 Taylor Series Method
6.2 Euler'sMethod
6.3 Runge Kutta Method
6.3.1 EXERCISE

iii

Chapter 1

Introduction

Numerical analysis is concerned with the development
and analysis of methods for the numerical solution of
practical problems. Traditionally, these methods have been
mainly used to solve problems in the physical sciences and
engineering. However, they are finding increasing relevance
in a much broader range of subjects including economics
and business studies.

The first stage in the solution of a particular problem is the
formulation of a mathematical model. Mathematical sym-
bols are introduced to represent the variables involved and
physical (or economic) principles are applied to derive equa-
tions which describe the behavior of these variables. Un-
fortunately, it is often impossible to find the exact solution
of the resulting mathematical problem using standard tech-
niques. In fact, there are very few problems for which an an-
alytical solution can be determined. For example, there are
formulas for solving quadratic, cubic and quartic polyno-
mial equations, but no such formula exists for polynomial
equations of degree greater than four or even for a simple
equation such as

x = cos(x)

Similarly, we can certainly evaluate the integral

b
A:/ edx

as e” — ¢, but we cannot find the exact value of

b 2
A:/ e’ dx

since no function exists which differentiates to ¢*’. Even
when an analytical solution can be found it may be of more
theoretical than practical use. For example, if the solution
of a differential equation

y' = f(z,y,y)

is expressed as an infinite sum of Bessel functions, then it
is most unsuitable for calculating the numerical value of y
corresponding to some numerical value of z.

1.1 Errors

Computations generally yield approximations as their out-
put. This output may be an approximation to a true solu-
tion of an equation, or an approximation of a true value of
some quantity. Errors are commonly measured in one of
two ways: absolute error and relative error as the following
definition.

Definition 1. If x4 is an approximation to x, the error is de-
fined as
err(ra) = xp — Ta (1.1)

The absolute error is defined as
Aerr(xy) = |err(za)| = |zp — x4 (1.2)

2

And the relative error is given by

Absolute error |xp — x 4|
rel(ra) = =

, zr#0 (1.3)

True value TT

Note that if the true value happens to be zero, © = 0, the

relative error is regarded as undefined. The relative error is
generally of more significance than the absolute error.

Example 1.1. Let vy = 2 ~ 2.714285 and x4 = 2.718281. Then

19
err (xy) =xp — x4 = = 2.718281 ~ —0.003996
Aerr (x4) = |err (x4)| =~ 0.003996
Aerr (z4) 0.003996
zp 2.718281
Example 1.2. Consider the following table

rel (x4) = ~ 0.00147

TT x4 | Absolute Error | Relative Error
1 0.99 0.01 0.01
1 1.1 0.01 0.01
-1.5| -1.2 0.3 0.2
100 | 99.99 0.01 0.0001
100 | 99 1 0.01

Example 1.3. Consider two different computations. In the
first one, an estimate v, = 0.003 is obtained for the true value
xr = 0.004. In the second one, ys = 1238 for yr = 1258. There-
fore, the absolute errors are

AeTT(HJA) = ‘xT - $A| = 0.001, AGTT(yA) - |yT B yA' =20

The corresponding relative errors are

Aerr(zy) 0.001

rel(wa) = = 0.004

= 0.25,
Xr

Aerr(ya) 20
yr 1258

We notice that the absolute errors of 0.001 and 20 can be rather
misleading, judging by their magnitudes. In other words, the
fact that 0.001 is much smaller than 20 does not make the first
error a smaller error relative to its corresponding computation.
In fact, looking at the relative errors, we see that 0.001 is as-
sociated with a 25% error, while 20 corresponds to 1.59% error,
much smaller than the first. Because they convey a more spe-
cific type of information, relative errors are considered more
significant than absolute errors.

rel(ya) = = 0.0159

1.2 Computational and Errors

Numerical methods are procedures that allow for effi-
cient solution of a mathematically formulated problem
in a finite number of steps to within an arbitrary preci-
sion. Computers are needed in most cases. A very impor-
tant issue here is the errors caused in computations.

A numerical algorithm consists of a sequence of arith-
metic and logical operations which produces an approx-
imate solution to within any prescribed accuracy. There
are often several different algorithms for the solution of any
one problem. The particular algorithm chosen depends on
the context from which the problem is taken. In economics,
for example, it may be that only the general behavior of a
variable is required, in which case a simple, low accuracy
method which uses only a few calculations is appropriate.
On the other hand, in precision engineering, it may be es-
sential to use a complex, highly accurate method, regard-
less of the total amount of computational effort involved.
Once a numerical algorithm has been selected, a computer

program is usually written for its implementation. The pro-
gram is run to obtain numerical results, although this may
not be the end of the story. The computed solution could
indicate that the original mathematical model needs mod-
ifying with a corresponding change in both the numerical
algorithm and the program.

Although the solution of ‘'real problems’ by numerical tech-
niques involves the use of a digital computer or calculator,
Determination of the eigenvalues of large matrices, for ex-
ample, did not become a realistic proposition until comput-
ers became available because of the amount of computation
involved. Nowadays any numerical technique can at least
be demonstrated on a microcomputer, although there are
some problems that can only be solved using the speed and
storage capacity of much larger machines.

There exist three possible sources of error:

1. Errors in the formulation of the problem to be solved.

(a) Errors in the mathematical model. For example,
when simplifying assumptions are made in the deriva-
tion of the mathematical model of a physical system.
(Simplifications).

(b) Error in input data. (Measurements).
2. Approximation errors

(a) Discretization error.

(b) Convergence error in iterative methods.

(c) Discretization/convergence errors may be estimated
by an analysis of the method used.

3. Roundoff errors: This error is caused by the computer
representation of numbers.

5

(a) Roundoff errors arise everywhere in numerical com-
putation because of the finite precision arithmetic.

(b) Roundoff errors behave quite unorganized.

4. Truncation error: Whenever an expression is approx-
imated by some type of a mathematical method. For
example, suppose we use the Maclaurin series repre-
sentation of the sine function:

o0 (n—1) (m—1)
. _ (=1) n __ L 5 15 (- =
sin v = g Toz = a—goz +5a —---+Toz +FE,,
n=odd

where F,, is the tail end of the expansion, neglected in
the process, and known as the truncation error.

1.3 ERRORS AND STABILITY

The majority of numerical methods involve a large number
of calculations which are best performed on a computer or
calculator. Unfortunately, such machines are incapable of
working to infinite precision and so small errors occur in
nearly every arithmetic operation. Even an apparently sim-
ple number such as 2/3 cannot be represented exactly on
a computer. This number has a non-terminating decimal
expansion
0.66666666666666 - - -

and if, for example, the machine uses ten-digit arithmetic,
then it is stored as
0.666 666 666 7

(In fact, computers use binary arithmetic. However, since
the substance of the argument is the same in either case, we
restrict our attention to decimal arithmetic for simplicity).

The difference between the exact and stored values is
called the rounding error which, for this example, is

—0.000 000 000 033 33...

Suppose that for a given real number « the digits after the
decimal point are
didy - - dydyysq - - -

To round « to n decimal places (abbreviated to nD) we pro-
ceed as follows. If d,,; < 5, then « is rounded down; all
digits after the nth place are removed. If d,,; > 5, then «
is rounded up; d, is increased by one and all digits after
the nth place are removed. It should be clear that in either
case the magnitude of the rounding error does not exceed
0.5 x 107",

In most situations the introduction of rounding errors into
the calculations does not significantly affect the final re-
sults. However, in certain cases it can lead to a serious loss
of accuracy so that computed results are very different from
those obtained using exact arithmetic. The term instability
is used to describe this phenomenon.

There are two fundamental types of instability in numeri-
cal analysis - inherent and induced. The first of these is a
fault of the problem, the second of the method of solution.

Definition 2. A problem is said to be inherently unstable
(or ill - conditioned) if small changes in the data of the prob-
lem cause large changes in its solution.

This concept is important for two reasons. Firstly, the
data may be given as a set of readings from an analogue de-
vice such as a thermometer or voltmeter and as such cannot
be measured exactly. If the problem is ill-conditioned then
any numerical results, irrespective of the method used to

YA

(1,1)

y =(2.01-x)/1.01
y= 2-x

xY

Figure 1.1: sketche of example 1.4

obtain them, will be highly inaccurate and may be worth-
less. The second reason is that even if the data is exact it
will not necessarily be stored exactly on a computer. Con-
sequently, the problem which the computer is attempting to
solve may differ slightly from the one originally posed. This
does not usually matter, but if the problem is ill-conditioned
then the computed results may differ wildly from those ex-
pected.

Example 1.4. Consider the simultaneous linear equations

T+y=2
x+ 1.0ly = 2.01

which have solution x = y = 1. If the number 2.01 is changed
to 2.02, the corresponding solution is x = 0, y = 2. We see
that a 0.5% change in the data produces a 100% change in the
solution. It is instructive to give a geometrical interpretation
of this result. The solution of the system is the point of inter-
section of the two lines y = 2—x and y = (2.01 —z)/1.01. These
lines are sketched in figure 1.1. It is clear that the point of

8

intersection is sensitive to small movements in either of these
lines since they are nearly parallel. In fact, if the coefficient
of y in the second equation is 1.00, the two lines are exactly
parallel and the system has no solution. This is fairly typical
of ill-conditioned problems. They are often close to ’critical’
problems which either possess infinitely many solutions or
no solution whatsoever.

Example 1.5. Consider the initial value problem
y' =10y =11y =0; y(0)=1, y'(0)=-1

defined on x > 0. The corresponding auxiliary equation has
roots —1 and 11, so the general solution of the differential
equation is

y = Ae " + Be'"

Jor arbitrary constants A and B. The particular solution which
satisfies the given initial conditions is

T

y=e
Now suppose that the initial conditions are replaced by
y(0) =1+0, y(0)=—1+e

for some small numbers § and ¢. The particular solution sat-
isfying these conditions is

1+115 AP 5+e 1z
2 ———e —+—e
Y 12 12 12 " 12

and the change in the solution is therefore

110 € . J P DREF
12 12)° 12" 12)°

(6 + €)ell?

The term is large compared with e * for x > 0, indi-

cating that this problem is ill-conditioned.

9

To inherent stability depends on the size of the solution to
the original problem as well as on the size of any changes in
the data. Under these circumstances, one would say that the
problem is ill-conditioned.

We now consider a different type of instability which is
a consequence of the method of solution rather than the
problem itself.

Definition 3. A method is said to suffer from induced in-
stability if small errors present at one stage of the method
lead to bad effect in subsequent stages to such final results
are totally inaccurate.

Nearly all numerical methods involve a repetitive sequence
of calculations and so it is inevitable that small individual
rounding errors accumulate as they proceed. However, the
actual growth of these errors can occur in different ways. If,
after n steps of the method, the total rounding error is ap-
proximately C'ne, where C' is a positive constant and ¢ is the
size of a typical rounding error, then the growth in round-
ing errors is usually acceptable. For example, if C' = 1 and
e = 1071, it takes about 50000 steps before the sixth decimal
place is affected. On the other hand, if the total rounding
error is approximately C'a"e or Cn! ¢, for some number a > 1,
then the growth in rounding errors is usually unacceptable.
For example, in the first case, if C =1, ¢ = 107! and « = 10,
it only takes about five steps before the sixth decimal place
is affected. The second case is illustrated by the following
example.

Example 1.6. Many successful algorithms are available for
calculating individual real roots of polynomial equations of
the form

pn(x) = a/nl'n —I— an_lxn—l + . e —l— ao — 0

10

Some of these are described later. An attractive idea would
be to use these methods to estimate one of the real roots, o
say, and then to divide P,(r) by © — «a to produce a polyno-
mial of degree n — 1 which contains the remaining roots. This
process can then be repeated until all of the roots have been
located. This is usually referred to as the method of defla-
tion. If « were an exact root of P,(x) = 0, then the remaining
n — 1 roots would, of course, be the zeros of the deflated poly-
nomial of degree n — 1. Howeuver, in practice o might only be
an approximate root and in this case the zeros of the deflated
polynomial can be very different from those of P,(z). For ex-
ample, consider the cubic

p3(x) = 2% — 1322 + 322 — 20 = (z — 1)(x — 2)(x — 10)

and suppose that an estimate of its largest zero is taken as
10.1. If we divide p3(z) by x—10.1, the quotient is x> —2.92+2.71
which has zeros 1.45 + 0.78i. Clearly an error of 0.1 in the
largest zero of ps3(x) has induced a large error into the calcu-
lation of the remaining zeros.

It is interesting to note that if we divide p3(x) by = — 1.1, the
corresponding quadratic has zeros 1.9 and 10.0 which are per-
fectly acceptable. The deflation process can be applied suc-
cessfully provided that certain precautions are taken. In par-
ticular, the roots should be eliminated in increasing order of
magnitude.

Of the two types of instability discussed, that of inherent
instability is the most serious. Induced instability is a fault
of the method and can be avoided either by modifying the
existing method, as we did for some examples given in this
section, or by using a completely different solution proce-
dure. Inherent instability, however, is a fault of the problem
so there is relatively little that we can do about it. The ex-
tent to which this property is potentially disastrous depends

11

not only on the degree of ill-conditioning involved but also
on the context from which the problem is taken.

1.4 Taylor Series Expansions

Ever wondered

e How a pocket calculator can give you the value of sine
(or cos, or cot) of any angle ?.

e How it can give you the square root (or cube root, or 4th
root) of any positive number ?.

e How it can find the logarithm of any (positive) number
you give it ?.

Does a calculator store every answer that every human may
ever ask it ?. Actually, no. The pocket calculator just re-
members special polynomials and substitutes whatever you
give it into that polynomial. It keeps substituting into terms
of that polynomial until it reaches the required number of
decimal places. It then displays the answer on the screen.

A polynomial function of degree n is of the form:
f(@) = anx™ + ap12" '+ a, 02" P+ + ag (1.4)

where a, # 0 and n is a positive integer, called the degree of
the polynomial.

Example 1.7.
flx)=a"—2® — 1922 +5 (1.5)

is a polynomial function of degree 4.

12

Given a infinitely differentiable function f : ® — R, de-
fined in a region near the value = = a, then its Taylor series
expanded around « is

r—a)? r—a)?
0 e

4. (1.6)

f(@) = f(a) + f'(a)(x — a) + ["(a)
(z —a)"

n!

+ .-+ f(n)(a)

We can write this more conveniently using summation no-
tation as:

X r£(n) AN
flz) ~ Z; / (“)é”f 2 (1.7)
By Taylor series we can find a polynomial that gives us a
good approximation to some function in the region near
xr = a, we need to find the first, second, third (and so on)
derivatives of the function and substitute the value of a.
Then we need to multiply those values by corresponding
powers of (z — a), giving us the Taylor Series expansion of
the function f(z) about x = a.

Conditions

In order to find such a series, some conditions have to be in
place:

e The function f(x) has to be infinitely differentiable (that
is, we can find each of the first derivative, second deriva-
tive, third derivative, and so on forever).

e The function f(z) has to be defined in a region near the
value (z = a).

Let’'s see what a Taylor Series is all about with an example.

Example 1.8. Find the Taylor Expansion of f(x) = Inx near
x = 10.

13

S

[| I
=

[o]

4

b
=i
rd
T
[a]
T

Figure 1.2: Graph of f(z) = In(x)

Our aim is to find a good polynomial approximation to the
curve in the region near r = 10. We need to use the Taylor
Series with a = 10. The first term in the Taylor Series is f(a).
In this example,

fla) = f(10) = In(10) = 2.302585093.
Now for the derivatives; Recall the derivative of In x_for x = 10.
So
fl(z) =I'(z) =1 f/(10) =In'(z) = 3; = 0.1,

o) =Wn"(@) = f7(10) = ' (2) = 5 = —0.01.

() =" (z) =% f"(10) = In"(10) = 35 = 0.002.

f(z) =In"(z) = =2 f(10) = In"(10) = 73 = —0.0006.

You can see that we could continue forever. This function is

14

infinitely differentiable. Now to substitute these values into
the Taylor Series:

(x —a)?

f(@) = f(a) + f(a)(w = a) + f"(a) =7 + ()

4+ 4+ f(n)(a) (x __'a) 4+ ..
n.
We have
—10)2 —10)3
In(z) ~ In(10) + In'(10)(xz — 10) + 1n”(10)% + 1n”’(10)%
—10)™ '
o ™) e 10" , "
n!
—0.01 2 x 0.001
In(z) ~ 2302585008 + 0.1(x — 10) + — =z = 10)* + 2x (@ 10)
—6 x 0.0001 ' '
- X4' (z—10)* + - -

Expanding this all out and collecting like terms, we obtain the
polynomial which approximates In(z):

In(z) ~ 0.21925 + 0.4z — 0.03z* + 0.00133z° — 0.0000252* + - - -

This is the approximating polynomial that we were looking
Jor. We see from the graph that our polynomial (Dashed) is
a good approximation for the graph of the natural logarithm
function (Thick) in the region near x = 10. Notice that the
graph is not so good as we get further away from x = 10. The
regions near r = 0 and r = 20 are showing some divergence
(see figure 1.3).
Let’s zoom out some more and observe what happens with
the approximation (see figure ??).

Clearly, it is no longer a good approximation for values of
x less than 3 or greater than 20. How do we get a better
approximation ?. We would need to take more terms of the
polynomial.

15

Figure 1.3: Graph of the approximating polynomial, and f(z) = In(x)

Home Work:
by the same procedure we can find the Taylor series of logx
near z = 1

P o | O etV Y it eV Y

n 2 + 3 4

n=1

1.5 Maclaurin Series

Maclaurin Series is a particular case of Taylor Series, in the
region near r = 0. Such a polynomial is called the Maclaurin
Series.

The infinite series expansion for f(z) about x = 0 becomes:
3

2 n
F&) = F0)+ F(O)a + £(0) 55 + " (O) 55 -+ FPH0) =+

We can write this using summation notation as:
o
_ o SM(0) 2"
flz) = ZO — (1.8)

16

X X- x3!3!

2 2
] 0
=2 -2
-5 1]] -5 o 5
x - X131 + x°/5! x - X131 + X°/50 - x 7!
0O 0
-2 -2
-5 {0 5 -5 0 5
X - %331+ x%/50 - x 771 +x%91 x - %3131+ x50 - x 77 P19t - 1111
2 2
o 0
-2 -2
-5 i b 5 0 b

Figure 1.4: Graph of f(z) = sin(zx) and different orders of Maclaurin
series

Example 1.9. Find the Maclaurin Series expansion for f(z) =
sin .

We need to find the first, second, third, etc derivatives and
evaluate them at x = 0. Starting with:

flz) =sin(z) f(0) =sin(0) =0

Now for the derivatives:
f'(x) = cos(x) 1(0) = cos(0) = 1.
f"(x) = —sin(x) f"(0) = —sin(0) = 0.

17

10

f"(x) = — cos(z) f"(0) = —cos(0) = —1.

f(x) = sin(z) f(0) = sin(0) = 0.
We observe that this pattern will continue forever. Now to
substitute the values of these derivatives into the Maclaurin
Series:

fx) = £(0) + f(0)z + f(0)

we have

2 3
AL

o 3!_|_..._|_f(”)(0)__|_...

2 3

sin(z) = sin(0) + sin (0)2 + sin(0) 2 + sin” (0) 5+« +sin ()2 + -+

This gives us:

3 xd . x)
81nx:x—§+a—ﬁ+a_...
:i (_1)n x2n+1
(2n +1)!

n=0
Matlab Code 1.10. Taylor and Maclaurin series

clc

clear

close

xl = —3xpi:pi/100:3xpi;

yl = sin(x1);

y2=Q@(x) x;

y3=@(x) x — x.”3 /factorial (3);

y4=@(x) x — x.”3 /factorial(3)+ x.”5 /factorial
(5);

ys=@(x) x — x.”3 /factorial(3)+ x.”5 /factorial
(5)— x.”7 /[factorial(7) ;

y6=@(x) x — x.”3 /factorial(3)+ x.”5 /factorial
(5)— x.”7 /factorial (7)+x.”9 /factorial (9)

18

y7=@(x) x — x.”3 /factorial(3)+ x.”5 /factorial
(5)— x.”7 /[factorial(7)+x."9 /factorial (9)—x

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

."11 /factorial(11)

subplot(3,2,1)

plot(x1,yl, x1, y2(xl1), LineWidth ,hb2)

axis([-8 8 -3 3])
title('x)

subplot(3,2,2)

plot(x1,yl, x1, y3(xl), LineWidth ,b2)

axis([-8 8 -3 3])
title(’'x — x~3/3!")

subplot(3,2,3)

plot(xl,yl, x1, y4(xl), LineWidth',2)

axis([-8 8 -3 3])

title('x — x°3/3! + x°5/5!")

subplot(3,2,4)

plot(x1l,yl, x1, ys5(xl1), LineWidth ,b2)

axis([-8 8 -3 3])

title('x — x°3/3! + x°5/5! — x°7/7!

subplot(3,2,5)

plot(x1,yl, x1, y6(xl1), LineWidth ,b2)

axis([-8 8 -3 3])

title(’'x — x°3/3! + x°5/5! — x°7/7! +x~9/9!

subplot(3,2,6)

plot(x1l,yl, x1, y7(xl), LineWidth ,b2)

axis([-8 8 -3 3])

’

19

")

")

» title(’'x — x°3/3! + x°5/5! — x°7/7! +x"9/9! —+x
{11} /11!)

Home Work:
Use the same procedure as in previous example 1.9 to check
the following Maclaurin series:

1 0.

=Y a"=1+z+a2*+2°+-- (when -1<z<1)
1—x —

= " r?

_w(_l)n 2n ? z?
cosx—nz_%@n)!x _1—54_1_...

20

Chapter 2

Solutions of Equations in One
Variable

One of the fundamental problems of mathematics is that of
solving equations of the form

f(z)=0 (2.1)

where f is a real valued function of a real variable x. Any
number o satisfying equation (2.1) is called a root of the
equation or a zero of f.

Most equations arising in practice are non-linear and are
rarely of a form which allows the roots to be determined ex-
actly. Consequently, numerical techniques must be used to
find them.

Graphically, a solution, or a root, of Equation (2.1) refers
to the point of intersection of f(z) and the r—axis. There-
fore, depending on the nature of the curve of f(z) in relation
to the r—axis, Equation (2.1) may have a unique solution,
multiple solutions, or no solution. A root of an equation can
sometimes be determined analytically resulting in an exact
solution. For instance, the equation ¢** — 3 = 0 can be solved
analytically to obtain a unique solution z = {In3. In most
situations, however, this is not possible and the root(s) must
be found using a numerical procedure.

21

2.1 Bisection Technique

This technique based on the Intermediate Value Theorem.
Suppose f is a continuous function defined on the interval
la,b], with f(a) and f(b) of opposite sign. The Intermediate
Value Theorem implies that a number p exists in (a,b) with
f(p) = 0. The method calls for a repeated halving of subin-
tervals of [a, b] and, at each step, locating the half containing
p. To begin, set a; = a and b; = b, and let p; be the midpoint
of [a, b]; that is,
bl —ar + bl

2 2
1. If f(p1) =0, then p = p;, and we are done.

p1r=a; +

2. If f(p1) # 0, then f(p;) has the same sign as either f(a;)
or f(b1).
o If f(p1) and f(a1) have the same sign, p € (p1,b;). Set
a9 = D1 and bz = bl.
e If f(p1) and f(a;) have opposite signs, p € (a1, p;). Set
as = a7 and bg = P1-

Then reapply the process to the interval [ay, by]. See Figure
2.1.

We can select a tolerance ¢ > 0 and generate pi,ps, - ,pN
until one of the following conditions is met:

* [py —pn-1]| <k,

lpN —pN_1]
. IRl
oyl <6 PN #(0, or

o f(pn) <e,

When using a computer to generate approximations, it is
good practice to set an upper bound on the number of iter-
ations. This eliminates the possibility of entering an infinite

22

f(b) -

1

J(p)) -

=

) +
fla) +
iy P b,
d- P> b
as Py 0y
i

Figure 2.1: Produces of Bisection Technique

loop, a situation that can arise when the sequence diverges
(and also when the program is incorrectly coded).

Example 2.1. The function f(z) = 2 + 42? — 10 has a root in
[1,2], because f(1) = =5 and and f(2) = 14 the Intermediate
Value Theorem ensures that this continuous function has a
root in [1,2].

Using Bisection method with the Matlab code to determine an
approximation to the root.

Matlab Code 2.2. Bisection method

1 00 sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk 3k sk 3 sk 3k sk 3k sk sk sk sk sk ok sk sk sk sk sk sk 3k ok sk o k- sk ok sk ok
2 % skxkxkxxkxkkxkkk DiSection method ks ks ks %k %k %
s % *xxxx to find a root of the function f(x) xxx

23

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

% ko3k o3k skosk o3k skosk sk sk sk sk sk sk sk ok

clc

clear

close all

[=@(x) x. 3+4xx."2—10 ;

% f=@(x) (x+1) 2xexp(x~2—-2)—1;

a=1;

b=2;

c=(atb)/2;

e=0.00001;

k=1;

Sfprintf(’ I a b f(c)

\n');

Sfprintf(’

— \n’);

while abs(f(c)) > e
c=(a+b) /2;
if f(c)*f(a)<O
b=c;
else
a=c;
end
Sprintf(%6.f %10.8f 10.8f %10.8f \n’, k,a,b
Jlc));
k=k+1;
end
fprintf(’ The approximated root is c= %10.10f

\n', cj;

The result as the following table:
k a b f(c)

24

10

11

12

13

14

15

16

17

18

19

20

22

1 1.00000000 1.50000000 2.37500000
2 1.25000000 1.50000000 —1.79687500
3 1.25000000 1.37500000 0.16210938
4 1.31250000 1.37500000 —0.84838867
5 1.34375000 1.37500000 —0.35098267
6 1.35937500 1.37500000 —0.09640884
7 1.35937500 1.36718750 0.03235579
8 1.36328125 1.36718750 —0.03214997
9 1.36328125 1.36523438 0.00007202
10 1.36425781 1.36523438 —0.01604669
11 1.36474609 1.36523438 —0.00798926
12 1.36499023 1.36523438 —0.00395910
13 1.36511230 1.36523438 —0.00194366
14 1.36517334 1.36523438 —0.00093585
15 1.36520386 1.36523438 —0.00043192
16 1.36521912 1.36523438 —0.00017995
17 1.36522675 1.36523438 —0.00005396
18 1.36522675 1.36523056 0.00000903

The approximated

>>

root is c= 1.3652305603

Example 2.3. The function f(z) = (x4 1)2e*" 2 — 1 has a root
in [0, 1] because f(0) < 0 and f(1) > 0. Use Bisection method
to find the approximate root with ¢ = 0.00001.

2.2 MaTlab built-In Function fzero

The fzero function in MATLAB finds the roots of f(z) = 0 for
a real function f(z). FZERO Scalar nonlinear zero finding.
X = FZERO(FUN, X,) tries to find a zero of the function
FUN near X, if X, is a scalar.

For example 2.1 use the following Matlab code:

25

1

2

w

clc

clear

fun = @(x) x."3+4xx."2—-10; % function
x0 = 1; % initial point

x = fzero (fun,x0)

the resulte is:

x = 1.365230013414097

Theorem 2.4. Suppose that f € Cla,b] and f(a)f(b) < 0. The
Bisection method generates a sequence {pn}g‘;l approximat-
ing a zero p of f with
h—

2na’ n>1
Proof. For each n > 1, we have

‘pn_pl <
1
by —a; = 5(5— a), and py € (a,br)

11 1
by — ay = 3 [§(b — a)] = ?(b— a), and py € (az, by)

1 1
by — a3 = 5(52 — as) = g(b —a), and p;3 € (as, b3)
and so for the n step we can get
1
b, —a, = Q—n(b —a), and p, € (ap,by)
Since p, € (a,,b,) and |(a,,b,)| = b, —a, for all n > 1, it follows

that
b—a

2n
the sequence {p,}:°, converges to p with rate of conver-
gence of order -; that is

2
1
Pn—p+0<%)

26

|pn_p|<bn_an:

It is important to realize that Theorem 2.4 gives only a
bound for approximation error and that this bound might
be quite conservative. For example, this bound applied to
the problem in Example 2.1 ensures only that

21
[p = pol < —5— =0.001953125 ~ 2 x 10°°

but the actual error is much smaller:

lp — po| < [1.365230013414097 — 1.365234375|
~ —0.000004361585903
~4.4x 107

Example 2.5. Determine the number of iterations necessary
to solve f(x) = x3+42? — 10 = 0 with accuracy 1072 using a; = 1
and b; = 2.

Solution: We we will use logarithms to _find an integer N that
satisfies

p—pa| <27 N(by —ay)
=27M2-1)
=2 N <1073

One can use logarithms to any base, but we will use base—10
logarithms because the tolerance is given as a power of 10.
Since 27V < 1073 implies that log;, 27" < log;; 1073 = —3, we
have

—Nlog,y2< -3 and N > ~ 9.96

logy 2

Hence, 10 iterations will ensure an approximation accurate
to within 1073,

27

2.3 EXERCISE

1. Use the Bisection method to find p; for f(z) = \/z — cosz
on [0, 1].

2. Let f(z) =3(z+1)(z — 3)(z — 1) Use the Bisection method
on the intervals [-2,1.5] and [—1.25,2.5] to find ps.

3. Use the Bisection method on the solutions accurate to
within 1072 for f(z) = 2° — 72*> + 142 — 6 = 0 on each
intervals: [0, 1], [1,3.2] and [3.2,4].

4. Find an approximation to /3 correct to within 10~* us-
ing the Bisection Algorithm. Hint: Consider f(z) = 2 — 3.

28

2.4 Fixed-Point Iteration

A fixed point for a function is a number at which the value of
the function does not change when the function is applied.

Definition 4. The number p is a fixed point for a given func-
tion g if g(p) = p.

Suppose that the equation f(x) = 0 can be rearranged as
x = g(z) (2.2)

Any solution of this equation is called a fixed point of g. An
obvious iteration to try for the calculation of fixed points is

o1 = g(xy) n=0,1,2,-- (2.3)

The value of z(is chosen arbitrarily and the hope is that the
sequence xg,r1,Ts, - converges to a number a which will
automatically satisfy equation (2.2).

Moreover, since equation (2.2) is a rearrangement of (2.1), «
is guaranteed to be a zero of f.

In general, there are many different ways of rearranging
f(xz) = 0 in the form (2.2). However, only some of these are
likely to give rise to successful iterations, as the following
example demonstrates.

Example 2.6. Consider the quadratic equation
2 — 2 —8=0

with roots —2 and 4. Three possible rearrangements of this
equation are

(a) Tp+1 = 23311 + 8

2
(b) z,,y = 2t

29

10

11

12

13

14

15

16

17

2
-8
(C} Tp+1 = an

Numerical results for the corresponding iterations, starting
with xy = 5, are given in Matlab code 2.7 with the Table.

Matlab Code 2.7. Fixed Point Iteration

clc
clear
close all

xa =5; % Initial value of root
xb =5;

Xc

xc =5;
Sfprintf(’ k Xa
\n');
Sfprintf(’
————— \n’);
for k=1:1:6

xa=sqrt(2xxa+8);
xb =(2+xxb +8)/xb;
xc =(xc~2-8)/2;

Sfprintf(%6.f %10.8f %10.8f %10.8f \n’, k, xa

, xXb , xc):
end

The result as the following table:
k Xa Xb

Xc

—

4.24264069 3.60000000 8.50000000

2 4.06020706 4.22222222 32.12500000
3 4.01502355 3.89473684 512.0078125

30

>>

4 4.00375413 4.05405405 131072.0000
5 4.00093842 3.97333333 8589934592.0
6 4.00023460 4.01342282 3.6893e+19

Consider that the sequence converges for (a«) and (b), but
diverges for (c).
This example highlights the need for a mathematical analy-
sis of the method. Sufficient conditions for the convergence
of the fixed point iteration are given in the following (without
proof) theorem.

Theorem 2.8. If ¢ exists on an interval I = [a — A, a + A
containing the starting value x, and fixed point o, then x,
converges to « provided

J ()| <1 on [

We can now explain the results of Example 2.6

(a)

(c)

If g(z) = (2z + 8)z then ¢/(z) = (2z + 8)~'/2 Theorem 2.8
guarantees convergence to the positive root o = 4, be-
cause |¢'(z)| < 1 on the interval [= [3,5] = [a — 1,a + 1]
containing the starting value z, = 5. which is in agree-
ment with the results of column Xa in the Table.

If g(x) = 2248) then ¢ (z) = =% Theorem 2.8 guarantees

T

convergence to the positive root o« = 4, because |¢'(z)| < 1
as (a), which is in agreement with the results of column
X0 in the Table.

If g(x) = @ then ¢'(z) = = Theorem 2.8 cannot be

used to guarantee convergence, which is in agreement
with the results of column Xc¢ in the Table.

Example 2.9. Find the approximate solution for the equation

flz)=2"—2—-10=0

31

by fixed point iteration method starting with z, = 1.5 with
|z, — x,-1| < 0.009

Solution

The function f(z) has a root in the interval (1,2), Why 2,
rearrange the equation as

Tnt1 = g(Tn) = vV, + 10
then B
;o (x410)7
Achieving the condition

g'(z)] <0.04139 on (1,2)

then we get the solution sequence {1.5,1.8415,1.85503, 1.8556, - - - }.
consider that |1.85503 — 1.8556| = 0.00057 < 0.009.

2.5 EXERCISE

1. Use an appropriate fixed point iteration to find the root
of

(@) £ —cosz =0
b) 22+ 1Inx =0

starting in each case with z;, = 1. Stop when |z, —x,| <
0.5 x 1072

2. Find the first nine terms of the sequence generated by
T, = e ' starting with xy = 1.

32

2.6 Newton-Raphson method

Newton-Raphson method is one of the most popular tech-
niques for finding roots of non-linear equations.

: y=rx)

/. Tangent at x,

/ Tangent at x;
> Al
Sl
e a X
et YAy o
rd
" d

Figure 2.2: sketch of the Newton Raphson method

Derivative Newton-Raphson method:

Now Suppose that z(is a known approximation to a root of
the function y = f(z), as shown in Fig. 2.2.

The next approximation, z, is taken to be the point where
tangent graph of y = f(x) at x = 2, intersects the r—axis.
From Taylor series we have

3

1) = flan) + 7o) — an) + o) 2 o (g 0L

|..._|_f(”)(a)(xlq_l—‘xo)n_}_...

33

consider z; as a root and take only the first two terms as an
approximation:

0= f(xo) + f'(zo) (w1 — 20)

o) = — f (o)

(@ 0) f'(xo)
T1 = T — (o)
N (o)

So, we can find the new approximation ;. Now we can re-
peat the whole process to find an even better approximation.

NP AC2))
f'(z1)
we will arrive at the following formula.
[010, (2.4)

n

Note that when f'(z,) = 0 the calculation of z,.; fails. This
is because the tangent at x, is horizontal.

Example 2.10. Newton’s method for calculating the zeros of
flx)=e"—ax—2

is given by

etn — 1
etz — 1)+ 2
B etn — 1

The graph of f, sketched in Fig. 2.3, shows that it has two
zeros. It is clear from this graph that x, converges to the
negative root if ry < 0 and to the positive root if x, > 0, and
that it breaks down if zy = 0. The results obtained with zy =
—10 and zy = 10 are listed in next table.

34

13

Figure 2.3: sketch of the Newton Raphson method for example 2.10

Matlab Code 2.11. Newton Raphson method

% *x+xxxxxx Newton Raphson method:. k%% % % % x

% xxxx to find a root of the.function f(x) xxx

clc

clear

close all

[=@(x) exp(x)—x—2 ; % the function f(x)

fp=@(x) exp(x)—1 ; % the derivative [(x) of [(x
)

xa=—10; % Initial value of first root

xb=10; % Initial value of second root

r = ’failure’;

Sfprintf(’ I Xa Xb \n’);
Sfprintf(’ \n’
)

fprintf(%6.[f %10.8f %10.8f \n", 0, xa ,
xb);
for k=1:1:14
if fp(xa)==0; r
return
elseif fp(xb)==0; r

35

18

19

20

21

22

23

return
end

xa=xa—f (xa) /fp (xa) ;

xb=xb—f(xb) /fp (xb) ;

fprintf(%6.f %10.8f %10.8f \n’, k, xa |,
xb);

end

The result as the following table:

k Xa Xb

1 —1.99959138 9.00049942

2 —1.84347236 8.00173312

3 —1.84140606 7.00474864
13 —1.84140566 1.14619325
14 —1.84140566 1.14619322

>>

Sufficient conditions for the convergence of Newton’s method
are given in the following theorem.

Theorem 2.12. If f"is continuous on an interval [a — A, a+ A],
then x,, converges to a provided f'(a) # 0 and x, is sufficiently
close to .

Proof. Comparison of equation
xn—Fl:g(xn) n:071a27"'

and the equation

IO (€
f'(xn)
shows that Newton’s method is a fixed point iteration with
f(x)
r)=x—
W=)

36

By the quotient rule,

f'@) f () = fl) f(x) _ fla)f"(x)

A () CA—— T

let z = o then Fa) (@)
/
) =)y
This implies that ¢'(a) = 0, because f(a) = 0 and f'(a) # 0.
Hence by the continuity of f”, there exists an interval [=
[a—d,a+4], for some § > 0, on which |¢'(z)| < 1. Theorem 2.8
then guarantees convergence provided x, € I, i.e. provided
x, is sufficiently close to a. O]

2.7 EXERCISE

1. Use Newton’s method to find the roots of

(@ £ —cosz =0
b) 224+ 1Inx =0
(b) 2% + 422 +42+3 =0

starting in each case with z(, = 1. Stop when |z, ;1 —x,| <
10°°.

2. Find the roots of 2% — 3z — 7 using Newton’s method with
¢ = 10~* or maximum 20 iterations.

37

2.8 System of Non Linear Equations

Consider a system of m nonlinear equations with m un-
knowns

fl(xlwr%"' 7xm):0
f2($17x27"' 7xm):0
fm(xlax% T 7$m) =0

where each fi(i = 1,2,...,m) is a real valued function of m
real variables. we shall only consider the generalization of
Newton’s method. In order to motivate the general case,
consider a system of two non linear simultaneous equations
in two unknowns given by

flz,y) =0
g(x,y) =0 (2.5)
Geometrically, the roots of this system are the points in the

(x, y) plane where the curves defined by f and g intersect.
For example, the curves represented by

flz,y)=2*+y* —4=0
g(z,y) =20 —y* =0
are shown in Fig. 2.4. The roots of this system are then
(v, 51) and (a9, B2). Suppose that («,, 5,) is an approxima-
tion to a root («, 8). Writing a = (o — x,,) and 8 =y, + (8 — y)
we can use Taylor’s theorem for functions of two variables
to deduce that

0= flo, g]
- f[ib"n + (CY T xn)ayn + (ﬁ - yn)]

38

(ay, By)

f(x,y)=0
(a,, B,)

g(x,y)=0

Figure 2.4: sketche of example 2.13

and

glo, B]

g[+<O‘_xn)ayn+(ﬁ_yn)]

(@, yn) + (@ — 20) G (T n) + (B = Yn) gy (X0, Yn) + -+ -
af of

oz’ oy’
etc. If (z,,y,) is sufficiently close to («, 5) then higher order

terms may be neglected to obtain

0= f(me yn) + (04 - xn)f:v('rna yn) + (5 - yn)fy(xna yn)
0= g(Zns yn) + (@ =) Ge (@0, Yn) + (B = Yn)gy(Tnyn) (2.6)

The notation f,, f, is used as an abbreviation for

This represents a system of two linear algebraic equations
for a.and 3. Of course, since higher order terms are omitted
in the derivation of these equations, their solution («, 3) is
no longer an exact root of equation (2.5). However, it will
usually be a better approximation than (z,,y,), so replac-
ing (o,) by (x,+1,yn,+1) In equation (2.6) gives the iterative

39

scheme

0= f(LUn, yn) + ($n+1 - xn)f:c(xnayn) + (yn—H - yn)fy(xnyyn)
0=g(zn,Yn) + (Tpns1 — Tn)Ge(Tny Yn) + (Yng1 — yn)gy(gjmyn)

Or rewritten as:

(xn—i—l - xn)fx(xm yn) + <yn—|—1 - yn)fy(xm yn) - _f(xna yN)

(xn+1 - xn)gx(xna yn) + (yn+1 - yn)gy(xmyn) = _g(xnayn) (2.7)
At a starting approximation (zy,y,), the functions f, f., f,,
g, 9. and g, are evaluated. The linear equations are then
solved for (z1,7;) and the whole process is repeated until

convergence is obtained.
In matrix notation, equation (2.7) may be written as

(fm fy)(xn—f—l_gjn):_(f)
Jz Gy Yn+1 — Yn g

where f, g and their partial derivatives are evaluated at
(zn,yn). Hence

<xn+1_xn>:_(f:17 fy)_1<f>
Yn+1 = Yn gz Gy g

Or rewritten as
-G48 () e
Yn+1 Yn 9r Gy g '
The matrix
L (fx fy)
gz Gy

is called the Jacobian matrix. If the inverse of Jacobian
matrix does not exist, then the method fails. Comparison
of equations (2.4) and (2.8) shows that the above procedure
is indeed an extension of Newton’s method in one variable,

40

where division by f’ generalizes to pre-multiplication by J ..
For a larger system of equations it is convenient to use vec-
tor notation.

Note: for a 2 x 2 matrix the inverse is

—1
a b 1 d —b
[c d] _ad—dc[—c a} (2.9)
Example 2.13. As an illustration of the above, consider the
solution of

floy) =2’ +y" —4=0
glx,y) =22 —y* =0
starting withx, = y, = 1. In this case
f:$2+y2_47 f$:2x7 fyzzy
g=2z—y, =2, g,=-2
At the point (1, 1), equations (2.7) are given by
2y — 1)+ 2(y1 — 1) =2
20wy —1) =2(y — 1) = —-1

which have solution =1 = 1.25 and y; = 1.75. This and further
steps of the method are listed in the following Table.

The following Matlab code is for example 2.13:

Matlab Code 2.14.

1 % K3k 3K 3k 3K 3k 3k 3k Sk K Sk R Sk 3R Sk 3k Sk 3k Sk sk skoSk R k3R Sk 3K Sk 3k kR 3k Sk R Sk 3k kK Sk ok kR ok ok
% wxxxxxx find a root of a SYSTerm sk sk sk k% x
% xx of Two nonlinear equations [and g * ok
% K3k sk skosk sk sk sk sk sk skok sk sk skosk skosk sk sk sk skosk sk skosk sk skosk skosk 3k skosk sk sk oskok kR skok kosk
clc

clear

41

; close all

8

9

10

11

12

13

14

15

16

—
<

19

20

21

22

23

24

25

26

27

g=@(x,y) 2xx—y-2 ;

fx=@(x,y) 2xx;

to x

Jy=@(x,y) 2xy;

to y

gx=@(x,y) 2 ;

to x

gy=@(x,y) —2xy;

a=1; b=1;

to y

fprintf(’ n

for k=1:1:5
X=[a;b];
xn(k)=a;yn(k)=b;

F=[f(a,b):gl(a,b)];

% Define the functions f and g
% and their partial derivative
f=@(x,y) x"2+y2—4 ; % the function f(x,y)

% the function g(x,y)
% partial derivative of f

% partial derivative of f

% partial derivative of f

% partial derivative of f

Xn

% Initial root value

Yyn \n’)

J=[fx(a,b) ,fyl(a,b):;gx(a,b) ,gyl(a,b)]; % the

Jacobian matrix

X=X—inv (J)«F;
a=X(1);
b=X(2) ;

fprintf(%2.0f
end

The result as the following table:

B W~ B

Xn
1.250000
1.236111
1.236068
1.236068

%2.6f

Yn
1.750000
1.581349
1.572329
1.572303

42

%2.6f \n', k ,a,b)

) 1.236068 1.572303
7 >>

2.9 EXERCISE

1. The system

322 + P4+ 92—y —12=0
22 +36y> —36=0
has exactly four roots. Find these roots starting with

(1,1), (1,-1), (—4,1) and (—4, —1). Stop when successive
iterates differ by less than 107,

2. The system
4 +y—6=0
22y —1=0
has exactly three roots. Find these roots starting with

(1,1), (0.5,5) and (—1,5). Stop when successive iterates
differ by less than 107",

3. Determine the series expansion about zero (at least first
. 2
three nonzero terms) for the functions e %, ﬁ eeos T,
sin(cos x), (cos z)?(sin x).

43

2.10 Fixed Point for System of Non Linear Equa-
tions

We now generalize fixed-point iteration to the problem of
solving a system of m nonlinear equations in m unknowns

fl(xlwr%"' 7xm):0
f2(x17x27"' 7xm):0
fm(z1, 02, 20) =0

We can define fixed-point iteration for solving a system of
nonlinear equations. First, we transform this system of
equations into an equivalent system of the form

X1 :gl(xlax%'” 7’rm)
Ty = ga(T1, Ty -+, 1)
L = gm(xlam% T 7$m)

Then, we compute subsequent iterates by

n+1 n o _.n n
L1 _gl(xlax%"' ,.Im)
n+1l n o _.n n
Lo _92($1ax27"' ,.Im)
n+1 n .n n
L3 gm(xlvxm ,Qjm)

For simplicity, consider a system of two non linear simulta-
neous equations in two unknowns given by

flz,y) =0
g(x,y) =0 (2.10)

44

to solve this system by fixed iteration method, transform
this system of equations into an equivalent system of the

form

r = F(z,y)
Yy = G(SU,y)

compute subsequent iterates by

Lp+1 = F(il?n, yn)
Yn+1 = G(gjn, yn)

The convergent condition for this subsequent is

|Fy| + |Fy| < 1
G|+]Gyl < 1

Example 2.15. consider the solution of

flx,y) =2 +1y> =62 +3=0
g(z,y) =2® =y’ —6y+2=0

starting with zy = yo = 0.5. In this case

$=F(x,y)=w
yZG(w,y)zw
pt
x22 2
Co=5 Gy:Ty

45

(2.11)

(2.12)

7

8

Now consider that at the point (0.5,0.5) we have

so, the convergence condition is satisfied at the point (0.5, 0.5).

then

y
|F|+|F|—|—|+\ 0\
(0.5) (0.5)2
2 + 2 <
Gl + 16, = 120 + |2
(0.5) (0.5)
2 + 2 <

3 3
3
T, = % — 0.5417
3 3
342
= % — 0.3390

by the same procedure we have:

and so on.

9 = 0.5330 y2 = 0.3520
x3 = 0.0325 y3 = 0.3512

The following Matlab code is for example 2.15:

Matlab Code 2.16.

100 sk skesk ok ok sk ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ook ok ok ok ok Kok ok Kok ok

00 * * k * * *

Ob sk * * %

Jind a root of a SysSterm sk sk kkkx
% =x. “of Two nonlinear equations [and g

By Fixed Point Method

Xk
Xk

0D % % % sk % sk ok s 5k ok s ok koK ok ok ok ok ok ok ok

clc
clear
close all

46

9

10

11

12

s x=@(x,y) xxx*x0.5;

14

15

16

22

23

24

25

26

28

% Define the functions [and g

% and their partial derivative

f=@(x,y) (x"3+y~3+3)/6 ; % the function f[(x,y)
g=@(x,y) (x3-y-3+2)/6 ; % the function g(x,y)

Jy=@(x,y) yxyx*0.5;
gx=@(x,y) xxxx0.5 ;
gy=@(x,y) —yxyx0.5;

a=0.5; b=0.5;

f to x
J toy
of f to x

f toy

fprintf(’ n
Sprintf(%2.0f
for k=1:1:8

wl=abs (fx (a,

% partial derivative of
% partial derivative of
% partial derivative

% partial derivative of

% Initial root value

Xn Yn. \n’)
%2.8 f 2.8 \n", 0 ,a,b)

b)+fy(a,b));

w2=abs (gx(a,b)+gy(a,b)) ;

if wl > 1 ; break ; end

if w2> 1 ; break ; end

a=f(a,b) ;

b=g(a,b)

Sfprintf(%2.0f %2.8f %2.8f \n", k ,a,
b)

end

The result as the following table:

D WON~OB

Xn
0.50000000
0.54166667
0.53298008
0.53250741
0.53238788

Yn

0.50000000
0.33898775
0.35207474
0.35122633
0.35126185

47

) 0.53237312 0.35125757
s 6 0.53237077 0.35125750
o 7 0.53237043 0.35125745
o 8 0.53237038 0.35125745

n >>

2.11 EXERCISE

1. solve problems 1 and 2 from exercise 2.9 by the fixed
point method.

2. solve the system

T =siny

Y = COST

using Newton method and the fixed point method with
(20, y0) = (1,1).

48

Chapter 3

Linear Algebraic Equations

Many important problems in science and engineering re-
quire the solution of systems of simultaneous linear equa-
tions of the form

a1y + a12T9 + -+ ATy = bl

as1T1 + a92T9 + -+ AonTy = bg

(3.1)
Ap1T1 + ApaTo + - o+ + Appy = bn

Where the coefficients a;; and the right hand sides b, are
given numbers, and the quantities z; are the unknowns
which need to be determined. In matrix notation this sys-
tem can be written as

AX =b (3.2)

where A = (a;;), b = (b;)) and z = (z;). We shall assume that
the n x n matrix A is non-singular (i.e. that the determinant
of A is non-zero) so that equation (3.2) has a unique solu-
tion.

There are two classes of method for solving systems of this
type. Direct methods find the solution in a finite number
of steps, or iterative methods start with an arbitrary first
approximation to x and then improve this estimate in an
infinite but convergent sequence of steps.

49

3.1 Gauss elimination

Gauss elimination is used to solve a system of linear equa-
tions by transforming it to an upper triangular system (i.e.
one in which all of the coefficients below the leading diago-
nal are zero) using elementary row operations. The solution
of the upper triangular system is then found using back
substitution.

We shall describe the method in detail for the general exam-
ple of 3 x 3 system

a1171 + ajpx2 + a13rs = by
2171 + G922 + a3x3 = by

a3171 + azex2 + aszrs = b3

In matrix notation this system can be written as

ailr aiz2 ai3 T by
o1 Q22 Q23 x2 | = | ba
as; asy ass T3 b3

STEP 1

The first step eliminates the variable x; from the second and
third equations. This can be done by subtracting multiples
Mo = Z—ﬁ and mg; = Z—ﬁ of row 1 from rows 2 and 3, respec-

tively, producing the equivalent system

aip a2 13 1 b1
0 a%) aé? To | = béz)
oo o) \e)

(2)

where aij = Qjj — My;ay; and b(2) = bl — mﬂbl (Z,j = 2, 3)

50

STEP 2

The second step eliminates the variable z, from the third

equation. This can be done by subtracting a multiple mg, =
2)
%z from row 2 and 3, producing the equivalent upper trian-

gular system

app a1z aig T b1
0 a%) a%) x| = bé”
0 0 af) \u b\

where a:(fg) = a%) — mgga%) and b§2) = béz) — m32b§2).

Since these row operations are reversible, the original sys-
tem and the upper triangular system have the same solu-
tion. The upper triangular system is solved using back sub-
stitution. The last equation implies that

ass

This number can then be substituted into the second equa-
tion and the value of 2, obtained from
b2 — oZng

2
aé2)

T =

Finally, the known values of 2, and z3 can be substituted
into the first equation and the value of x; obtained from

by — ajoxs — a1373
T —

ai

It is clear from previous equations that the algorithm fails

if any of the quantities a%) are zero, since these numbers

are used as the denominators both in the multipliers m;;

51

and in the back substitution equations. These numbers
are usually referred to as pivots. Elimination also produces
poor results if any of the multipliers are greater than one
in modulus. It is possible to prevent these difficulties by
using row interchanges. At step j, the elements in column
j which are on or below the diagonal are scanned. The row
containing the element of largest modulus is called the piv-
otal row. Row j is then interchanged (if necessary) with the
pivotal row.
It can, of course, happen that all of the numbers a%), @5'21.3"
e affj) are exactly zero, in which case the coefficient matrix
does not have full rank and the system fails to possess a
unique solution.

Example 3.1. To illustrate the effect of partial pivoting, con-
sider the solution of

0.61 1.23 1.72 T1 0.792
1.02 2.15 —5.51 Ty | = 12
—4.34 11.2 —4.25 X3 16.3

using three significant figure arithmetic with rounding. This
models the more realistic case of solving a large system of
equations on a computer capable of working to, say, ten sig-
nificant figure accuracy. Without partial pivoting we proceed
as follows:

Step 1: The multipliers are my; = +2 = 1.67 and mg; =

—4.34 _
0.61 -
—7.11, which give

0.61

0.61 1.23 1.72 1 0.792
0 010 —8.38 xo | = | 10.7
0 20.0 795 T3 21.9

52

Step 2 The multiplier is m3, = 23 = 200, which gives

0.61 1.23 1.72 T 0.792
0 010 —8.38 xo | = | 10.7
0 0 1690 x3 —2120

Solving by back substitution, we obtain

T3 = —1.25 T = 2 T = 0.790

With partial pivoting we proceed as follows:

Step 1: Since |-4.34| > |0.610| and |1.02|, rows 1 and 3 are
interchanged to get

—4.34 11.2 —4.25 1 16.3
1.02 215 —-5.51 To | = 12
0.61 1.23 1.72 T3 0.792
The multiplier is my = 4% = —0.235 and mg; = 280 = —0.141
which gives
—4.34 11.2 —4.25 1 16.3
0 4.78 —6.51 xy | = | 15.8
0 2.81 1.12 T3 3.09
Step 2 Since |4.78] > |2.81|, no further interchanged are
needed and mj, = 231 = 5.88, which gives
—4.34 11.2 —4.25 1 16.3
0 4.78 —6.51 o | = | 15.8
0 0 495 T3 —6.20

Solving by back substitution, we obtain

x3 = —1.25 x9 = 1.60 x1 = 0.1.59

By substituting these values into the original system of equa-
tions it is easy to verify that the result obtained with partial
pivoting is a reasonably accurate solution. (In fact, the ex-
act solution, rounded to three significant figures, is given by

53

r3 = —1.26, xo = 1.60 and x; = 1.61) However, the values ob-
tained without partial pivoting are totally unacceptable; the
value of x1 is not even correct to one significant figure.

54

3.2 EXERCISE

Solve the following systems of linear equations using Gauss
elimination () without pivoting (ii) with partial pivoting.

1.
0.00521 + 29 + 23 =2

T+ 2x9 23 =4
—3r1 — X9 + 613 = 2

2.
r1— X9 +2x3 =25
201 — 209+ 13 =1
30x1 — 29 + T3 = 20
3.

1.1921 4+ 2.37x9 — 7.31x3 + 1.7bx4 = 2.78
2.15x1 — 9.76x5 + 1.54x3 — 2.08x4 = 6.27
10.721 — 1.11z9 4 3.7873 4+ 4.4924 = 9.03
2.17x1 + 3.58x9 + 1.70x3 + 9.33x4 = 5.00

3.3 Gauss Jordan Method

The following row operations produce an equivalent system,
i.e., a system with the same solution as the original one.

1. Interchange any two rows.
2. Multiply each element of a row by a nonzero constant.

3. Replace a row by the sum of itself and a constant mul-
tiple of another row of the matrix.

55

Convention: For these row operations, we will use the fol-
lowing notations:

e R, +— Rj means: Interchange row i and row j.
e aR; means: Replace row : with o times row «.

e R;+aR; means: Replace row ¢ with the sum of row ¢ and
a times row j.

The Gauss-Jordan elimination method to solve a system of
linear equations is described in the following steps.

1. Write the extended matrix of the system.

2. Use row operations to transform the extended matrix to
have following properties:

(@) The rows (if any) consisting entirely of zeros are grouped
together at the bottom of the matrix.

(b) In each row that does not consist entirely of zeros,
the leftmost nonzero element is a 1 (called a leading
1 or a pivot).

(c) Each column that contains a leading 1 has zeros in
all other entries.

(d) The leading 1 in any row is to the left of any leading
I’s in the rows below it.

3. Stop process in step 2 if you obtain a row whose ele-
ments are all zeros except the last one on the right. In
that case, the system is inconsistent and has no solu-
tions. Otherwise, finish step 2 and read the solutions
of the system from the final matrix.

56

Example 3.2. Solve the following system of equations using
the Gauss Jordan elimination method.

r+y+z =5
20 +3y +5z = 8
dr 4+ 52z = 2

Solution: The extended matrix of the system is the following.

111
235
4 0 5

DO OO Ot

use the row operations as _following:

Ry = Ry — 2Ry
Ry = R3 — 4R,

1 11}5
2 3 0|8
4 0 5|2

Ry = Ry + 4R, 11 1] 5

0132

Ry=1Rs |00 1]|-2

Ry=Ry—3R; _ i
Ri=R/ —3R; |1 V03
01 0|4

Ry =R — Ry 00 1]-2

From this final matrix, we can read the solution of the system.
It is
T =3, y =4, z=—2

Example 3.3. Solve the following system of equations using
the Gauss Jordan elimination method.

r+2y—3z = 2
6x+3y—92 = 6
Tr+ 14y — 212z = 13

57

Solution: The extended matrix of the system is the following.

1 2 =32
6 3 -91]6
7 14 21113

use the row operations as following:

1 2 —-31|2 Ro—R,_6R, |1 1 —3]2
6 3 —-91|6 0 -9 9 |—6
7 14 —21(13| RB3=Rs3—TRy |0 0 0 |-1

We obtain a row whose elements are all zeros except the last
one on the right. Therefore, we conclude that the system of
equations is inconsistent, i.e., it has no solutions.

Example 3.4. Solve the following system of equations using
the Gauss Jordan elimination method.

dy+ 2 = 2
20 +6y — 2z = 3
dor +8y — bz = 4

Solution: The extended matrix of the system is the following.

04 112
2 6 -2|3
4 8 =5|4

use the row operations as following:

04 112 Ry s Ry 2 6 —213
26 —21/3 04 112
4 8 —5l4| Rs=R3—2R1 [0 0 010

Ry = 1Ry .

R, = Ry — 6R, 10?9

01 113

R1:%Rl 00 010

58

6

7

We can stop This because the form of the last matrix. It cor-
responds to the following system.

7

T—qZ= 0
1 1
Y+ ZZ =3
We can express the solutions of this system as
7 1 1
r = le Y= _ZZ + 3

Since there is no specific value for z, it can be chosen arbi-
trarily. This means that there are infinitely many solutions
for this system. We can represent all the solutions by using a
parametert as follows.

7t 1t+1 t
Tr = — = —— — z =
i YTy

Any value of the parameter t gives us a solution of the sys-
tem. For example:

t = 4 gives the solution (z,y, z) = (7,5, 4)
t = —2 gives the solution (z,y, z) = (5, 1

For Gauss elimination method we can use the following
Matlab code:

Matlab Code 3.5. Gauss method

% KKK KKK 5k 3k ok K Sk R Sk R Sk ok Sk Sk koo skook R Sk R Sk ok kR Skok sk ok RSk R kR kR Skok kok
% xxx%x Solve a system of linear equation xxxx

% %% by Gauss elimination method * %
% KK Sk k3R Skosk 3k sk Sk k3R SRSk sk o3k Sk sk 3RSk sk sk sk sk sk sk Sk sk sk sk sk sk sk Sk sk sk sk sk skosk sk sk ko
clc

clear

close all

59

s a=[34-222

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

4 9-358
-2 -37 6 10
1467 2]

[mnj=size(a);

% m = Number of Rows

% n = Number of Colomns
Jor j=1:m-1

for z=2:m
% Pivoting
if alj,.j)==
t=al(j,:);
a(j,:)=alz,:);
alz,:)=t;
end
end
for i=j+1:m
a(i,:)=a(i,:)—a(j,:)«(ali,j)/alj.j));
end

end
x=zeros(1,m);

%

Back Substitution

for s=m:—1:1

c=0;

Jor k=2:m
c=ct+a(s,k)*xx(k);

end

x(s)=(a(s,n)-c)/a(s,s);

end
% Display the results
disp ('Gauss elimination method: ’) ;

a
X

’

60

10

11

12

13

14

15

16

17

18

The result as the following:

Gauss elimination method:

a ==
3.0000 4.0000 —2.0000 2.0000
2.0000
0 3.6667 —0.3333 2.3333
5.3333
0 0 5.6364 7.5455
11.8182
0] 0] 0 —4.6129
—17.0323
ans =
—2.1538
—1.1538
—2.8462
3.6923
>>

For Gauss Jordan elimination method we can use the

following Matlab code:
Matlab Code 3.6. Gauss Jordan method

%
%
%
%

cl

KKK K 3K 3k 5k 3k ok R ok R Sk 3k Sk ok 3k osk skok skook koK sk ok ok Skosk skok skok koK ok ok ok ok ok skok kok
xxxx Solve a system of linear equation xxxx
xx by Gauss Jordan elimination method * %
K3k ok 3k ok skok sk ok R ok R Sk R Skook sk sk skook skook R Sk ok Sk ok skosk skok skook skook ok ok ok kR skok kok
&

clear

61

; close all
s a =134 -22 2

9

10

11

17

18

19

20

21

22

23

24

25

26

27

28

29

31

32

33

34

35

36

37

38

39

4 9 -358
-2 -37 6 10
1467 2]

[m nj=size(a);
% m = Number of Rows

% n

for

end

for

end

for

end

= Number of Colomns

Jj=1:m-1
% Pivoting
Jor z=2m

if a(j.j)==0
t=al(l,:);
a(l,:)=alz,:);
al(z,:)=t;

end

end

Jor i=j+1m
a(i,:)=a(i,:)-a(j,:)x(al(i,j)/alj.j)):

end

Jjan—1:2

Jor i=j—1:—1:1
a(i,:)=a(i,:)-a(j,:)x(ali,j)/alj.j));

end

s=1m
a(s,:)=a(s,:)/al(s,s);
x(s)=a(s,n);

62

o % Display the results

a disp ('Gauss—Jordan method: ') ;
» A

wm X

The result as the following:
1 Gauss—Jordan method:

3 A =
5 1.0000 0) 0 0
—2.1538

6 0 1.0000 0 0
—1.1538

7 0 0 1.0000 0
—2.8462

s 0 0 0 1.0000
3.6923

1 ans =

13 —2.1538

14 —1.1538

15 —2.8462

16 3.6923

18 >>

3.4 EXERCISE

1. solve exercise 3.2 by Gauss Jordan Method

63

2. Solve the following system of equations using the Gauss
Jordan elimination method.

r+y+2z =1
20+ —y+w = —2
r—y—z—2w = 4
20 —y+2z2—w = 0

64

3.5 Matrix Inverse using Gauss-Jordan method

Given a matrix A of order (n xn), its inverse A~! is the matrix
with the property that AA™! = I = A~'A, Note the following
identities

1. (A)1 =4
2. (AT)"1 = (AT
3. (AB)"' = B4~

Moreover, A is invertible, then the solution to the system of
linear equations AX = b can be written as X = A~'b. We can

Al 1]

"Elemenigly RBow Bperations”

LT |A]

Figure 3.1: digram of find the inverse of a matrix using elementary row
operations

use Gauss Jordan method To obtain the inverse of a n x n
matrix A as following:

1. Create the partitioned matrix (A|/), where I is the iden-
tity matrix.

2. use Gauss Jordan Elimination steps on partitioned ma-
trix.

65

3. If done correctly (A have an inverse), the resulting par-
titioned matrix will take the form (7|A™).

4. Double check your work by making sure that AA™! = I,

Below is a demonstration of this process:

2
—1
o}

Example 3.7. Find inverse of the matrix A =

S = W
— O O
=

ing Gauss-Jordan method.
Solution: The partitioned matrix of the system is the follow-

ing.
3 2 0100
1 -1 0/0 10
0 5 11001

use the row operations as _following:

3 2 0]/1 00

Ry > Ry 1 =1 0/0 1 O
1 =1 0{0 10 > 13 2 01 0O
0O 5 1/0 0 1 5 1/0 0 1
Ry = Ry — 3R, 1 -1 00 1 O
0O 5 0]1 =3 0
0O 5 1|0 0 1
Ri—R,—R, |1 -10[0 10
0O 5 01 =320
O 0 1/—-1 3 1
0O 0 1/-1 3 1
1 2
Ry =Ri+ Ry 100 5 5 0
010+ 20
001|-1 3 1

Now we have

Y= —=

Al =

Ooow|c[oow|w
— O O

—1
checlk the solution (AA™! = I).

3.6 Cramer’s Rule

Cramer’s rule begins with the clever observation

I 0 0
ro 1 0| =a
s 01

That is to say, if you replace the first column of the identity
matrix with the vector x = (z1, 22,23)T, the determinant is
r1. Now, we've illustrated this for the 3 x 3 case and for
column one. In general, if you replace the ith column of an
n x n identity matrix with a vector x, the determinant of the
matrix you get will be z;, the ith component of x.

Note that if Ax = b, where

ajl a2 a3 b 1
A = as1 A9y G923 , b = bg .and x = X9
asp azz2 ass b3 x3
then
1 00 by a2 a3
A i) 10 = bg A9o9 A93
xz 0 1 bs a3y ass

Take determinants of both sides then we get

det(A)xy = det(By)

67

where B is the matrix we get when we replace column 1 of
A by the vector b. So,

= th(Bl)
T det(A)

In general
" det(A)’

where B; is the matrix we get by replacing column i of A
with b.

Example 3.8. Use Cramer’s rule to solve for the the linear
system:

201+ 19 — 513+ 14 = 8
1 — 3x9 — 06y =9
209 — x3+ 214 = —5

r1+4r9 — T3+ 24 =0

Solution: write the system in matrix notation AX = b, then

we have
2 1 -5 1 8
1 -3 0 -6 9
A=lo 2 1 2 |2 b=
1 4 -7 6 0

Now we need to calculate det(A), det(By), det(Bs), det(Bs), det(By):

2 1 -5 1
1 -3 0 —6 | then

A=, 5 | o |=—=det(A)=2T#0
1 4 -7 6

68

8§ 1 -5 1
9 —3 0 —6 | then

B, = 5 9 _1 9 — det(Bl) = 81
0O 4 -7 6
2 8 =5 1
1 9 0 —6 | then
By = 0 -5 —1 2 — det(Bz) = —108
1 0 =7 6
2 1 8 1
1 -3 9 —6 | then
B3 = 0 2 —5 9 e det(Bg) = =27
1 4 0 6
2 1 -5 8
1 -3 0 9 then
B, = 0 2 —1 —5 — det(B4) =27
1 4 -7 0
This lead to:
det(Bl) &1
Tl = =—=3
det(A) 27
d _
o\ et(Bs) _ 108 _ 4
det(A) 27
d _
£ = et(Bg) _ 27 — 1
det(A) 27
det(By) 27
aj4 = = — =]_
det(A) 27

3.7 EXERCISE

1. Solve problems in exercise 3.2 and exercise 3.4 using
Cramer’s rule.

69

2. Use Cramer’s rule to solve for the vector X = [z, 29, .’,Cg]t:

-1 2 =3 1 1
2 0 1 s | =10
3 —4 4 s 2

70

3.8 Iterative Methods: Jacobi and Gauss-Seidel

Jacobi’s method is the easiest iterative method for solving a
system of linear equations. Given a general set of n equa-
tions and n unknowns (A,,«,X,x1 = b,,«1), Where

ailp Qi -+ Qip by X1

as @ - Qo by T2
A=]])] , b= S |.and x =

apl Ap2 -+ Qpp bn T

If the diagonal elements are non-zero, each equation is rewrit-
ten for the corresponding unknown, that is, the first equa-
tion is rewritten with z; on the left hand side, the second
equation is rewritten with x, on the left hand side and so on
as follows

1
T9 — —— b2 — Z a2, (33)

71

This suggests an iterative method by

1 n
lef+1 = — (bl — ZCLUZIZ?)

a
11 s

1 n
:USH = — b2 — E azjxkf
22 I
J=1j7#2

1 n—1
k+1 _ k
x, =—|b, — E AT
Ann -
7j=1

where ¥ means the value of kth iteration for unknown x

with £ = 1,2,3,---, and x(0) = (2,29,.--,2Y) is an initial
guess vector.
This is so called Jacobi’s method.

Example 3.9. Apply the Jacobi method to solve

5x1 — 2$2 + 3%3 =12
—3.7?1 + 9%2 + T3 = 14
2$1 — T9 — 7.%3 = —12

Choose the initial guess x* = (0,0,0).
Solution: To begin, rewrite the system

1
gl = 5(12 + 225 — 32%)

1
ghtl = 5(14 + 32k — of)

the approximation is

72

I o) T3

0 0 0
2.40000000 | 1.55555556 | 1.71428571
1.99365079 | 2.16507937 | 2.17777778
1.95936508 | 1.97813051 | 1.97460317

R QIN|~| O &

Example 3.10. Now for the same previous example but with
changing the order of equations:

—3371 + 9$2 + T3 = 14
201 — x9 — Txy = —12
dx1 — 229 + 3x3 = 12

Applying Jacobi method and rewrite the system
-1
ol = ?(14 — 9zk — ah)
ah = (=12 = 22 4 7ah)

1
it = (12— 5 + 228)

Choose the same initial guess x\”) = (0,0,0), the approxima-
tion is

T T2 T3
0] 0 0]
-4.66666667 | 12.00000000 | 4.00000000
32.66666667 | -25.33333333 | 19.77777778
-74.07407407 | -61.11111111 | -67.33333333

XN ~|O| &

and this is divergence.?

Theorem 3.11. The convergence condition (for any iterative
method) is when the matrix A is diagonally dominant.

73

