10

11

12

13

14

15

16

17

18

19

20

21

Definition 5. A matrix A, ., is said to be diagonally dominant
iff, foreachi=1,2,--- .n

n
jaal > Y ag]

J=Lg#i
For Jacobi method we can use the following Matlab code:

Matlab Code 3.12. Jacobi method

0D % % % % sk % s ok % 5k ok % ok ok 5 ok ok %k ok ok 5k ok ok % ok ok ok ok ok ok ok %k ok ok K ok ok K ok koK koK
% xxxx Solve a system of linear equation-—xxxx

% ** AX=b by Jaccobi method * %

% K3k K 3k 3k 3k sk 3k Sk 3k Sk R Sk 3R Sk 3k Skosk skosk skoSk R Sko3k Sk 3k k3R Skok 3k Sk R OSK R Sk K Sk R kR Rk

cle

clear

close all

A=[4 1 2;1 3 1;1 2 5]; % input the matrix A

b=[16;10;12]; % input the vector b

x0=[0;0;0]; % input the vector X0

n = length(b):

Sfprintf(’ k xl x2 x3 \n’
)

Jor j =1 :n

x(j)=((b(j)-A(,[1:j—1,j+1:n])*x0([1:j—1,j+1:n])
)/AGG . J) )

end

Sfprintf (" %2.0f w2.8f 2.8 2.8f \n’',1,x(1),x
(2).,x(3))

xl = x’;

k = 1;

while abs(x1-x0) > 0.0001

for j =1 :n

xnew(j)=((b(j)-A(j,[1:j—1,j+1:n])xx1([1:j—1,j+1:
nj))/ Al(j.jl);
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22 end
23 x0 = x1,
2w X1 = xnew’;

» fprintf( %2.0f %2.8f  2.8f 2.8f \n’, k+l
,Lxnew (1) ,xnew(2), xnew(3))

s K= Kk + 1 ,
7z end

The result as the following:
Kk x1 X2 x3
| 4.00000000 3.33333333 2.40000000
s 2 1.96666667 1.20000000 0.26666667
. 3 3.56666667 2.58888889 1.52666667
s 4 2.58944444 1.63555556 0.65111111
: 27 3.00003358 2.00003137 1.00002897
s >>

Now for 3.3 if we suggests an iterative method by

1 n
it = — <b1 — Za1j$]f>

a
11 s

1 1—1 n
k+1 ) § ekl § -k
Qi

j=1 j=i+1

ko1 _ L — k+1
x, - (bn ;awa}] )
This called Gauss-Seidel method.

In the Jacobi method the updated vector x is used for the
computations only after all the variables (i.e. all compo-
nents of the vector x) have been updated. On the other hand
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in the Gauss-Seidel method, the updated variables are used
in the computations as soon as they are updated. Thus in
the Jacobi method, during the computations for a particular
iteration, the “known” values are all from the previous itera-
tion. However in the Gauss-Seidel method, the “known” val-
ues are a mix of variable values from the previous iteration
(whose values have not yet been evaluated in the current
iteration), as well as variable values that have already been
updated in the current iteration.

Example 3.13. Apply the Gauss-Seidel method to solve

5.%1 — 2%2 + 3%3 =12
—3$1 + 9%2 + T3 = 14
2$1 — T9 — 7$3 =—12

Choose the initial guess x\*) = (0,0, 0).
Solution: To begin, rewrite the system

1
o = 5(12 + 25 — 32%)

1
A 5(14 + 32kt — k)

k4l

~1
zh — (=12 — 22 bt

7

the approximation is

k 1 To T3
0 0 0

2.40000000

2.35555556

2.06349206

2.10412698

2.02765432

2.02579995

1.99558176

1.99566059

1.99935756

1.99864970

1.99962128

1.99966830

DR W N~
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For Gauss-Seidel method we can use the following Mat-
lab code:

Matlab Code 3.14. Gauss-Seidel method

% K 3k 3k 3k sk 3k 3k 3k ok sk ok 3k Sk Sk sk R 3k Sk skook 3kosk 3k sk sk >k Sk Sk sk ok >k 3kook sk R R Sk ok ok R 3k ko ok
% xxxx Solve a system of linear equation xxxsx

% ** Ax=b by Gauss—Seidel method kK
% K3k 3k 3k osk sk sk sk sk sk skok skosk skosk skosk sk sk sk skosk sk sk sk sk skosk sk sk sk sk sk sk skosk kR skok ko sk
clc
clear
close all
A=[4 1 2;1 3 1;1 2 5]; % input the matrix A
b=[16;10;12]; % input the .vector b
x0=[0;0:;0]; % input the vector XO
xnew=x0 ;
n = length(b);
Sfprintf(’ k x1 x2 x3 \n’)

Sprintf( " %2.0f %2.0f %2.0f 2.0f \n", 0 ,x0(1),
x0(2) ,x0(3))
flag=1;
w=0;
while flag > O
wwt1;
for k=1:n
sum=0;
Jor i=1:n
if k=i
sum=sum+A (k, i) xxnew(i) ;
end
end
xnew (k) =(b (k)—sum) /A(k,k) ;
end
Sfprintf( %2.0f 2.8 %2.8f 2.8 \n’ ,w,xnew(1),
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36

37

xnew(2) ,xnew(3) )
for k=1:n
if abs(xnew(k)—x0(k)) > 0.0001
x0=xnew:;
break
else
Sflag=0;
end
end
end

The result as the following:

k x1 x2 x3

0 0 0 0

1 4.00000000 2.00000000 0.80000000
2 3.10000000 2.03333333 0.96666667
3 3.00833333 2.00833333 0.99500000
4 3.00041667 2.00152778 0.99930556
5 2.99996528 2.00024306 0.99990972
6 2.99998437 2.00003530 0.99998900

>>

3.9 EXERCISE

1. Will Jacobi’s or Gauss-Seidel iteration iterative method
converge for the linear system AX = b, if

—10 2 3
A= 4 =50 6 |.
7 8 =90
Solve the system in both methods if b = [5,40, 75]" with

initial gauss X = (0,0,0).
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2. Solve the system

-2 1 0 0 0 1 1
1 =21 0 0 ) 0
o 1 -2 1 O 3| =10
o 0 1 -2 1 T4 0
o 0 0 1 =2 T5 0

using both the Jacobi and the Gauss-Seidel iterations.

3. Solve the system linear of equations

201 + Txg + x3 = 19
4$1+$2—$3:3
1 —3$2+12$3 =31

by the Jacobi method and by the Gauss-Seidel method
(stop after three iterations).
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Chapter 4

Interpolation and Curve Fitting

Suppose one has a set of data pairs:

Lil| L1 | X |+ " | Tp

YillYr [ Y2 | | Yn

and we need to find a function f(x) such that

yi = f(zi), i=1,...n 4.1)

The equation (4.1) is called the interpolation equation or
interpolation condition. It says that the function f(x)
passes through the data points. A function f(x) satisfying
the interpolation condition is called an interpolating func-
tion for the data.

Some of the applications for interpolating function are:

1. Plotting a smooth curve through discrete data points.
2. Reading between lines of a table.

3. in some numerical methods we need an approximation
function of tabular data.
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4.1 General Interpolation

The general interpolation is to assume the function f(x) is a

linear combination of basis functions f,(z),..., f,.(x)
f(@) = afi(z) + azfo(z) + - + anfu(2)
The problem then is to find the values of a;, i = 1,...,n so

that the interpolation conditions

Yi = f(fcz) = a1f1(56z‘) + azfz(xz') T+t anfn(xi) 1=1,...,n

are satisfied. We are assuming that we have the same num-
ber of basis functions as we have data points, so that the
interpolation conditions are a system of n linear equations
for the n unknowns q;.

Writing out the interpolation conditions in full gives

y1 = fi(zr)ar + fo(zr)as + -+ + fu(@1)a,
Yo = fi(x2)ar + fo(xe)as + -+ + fu(xa)a,

Yn = fi(zn)ar + fo(zn)ag + - + ful2,)a,

or, in matrix form

filz1) folwn) - fulz)] [a Y1
filze) falwa) -+ fulw2)| |a2 Yo

i) @) S| o] |

This shows that the general interpolation problem can be
reduced to solving a system of linear equations. The matrix
in these equations is called the basis matrix. Each column
of the basis matrix consists of one of the basis functions
evaluated at all the = data values. The right-hand-side of
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Figure 4.1: digram of function f(z) of example 4.1, the given points are
blue stars

the system of equations is the vector of y data values. The
solution of the linear system gives the coefficients of the
basis functions. We can use the general formalism above to
solve many interpolation problems.

Example 4.1. We will interpolate the data

z] -1 0 1 2
y| 1.4 0.8 1.7 2

by a_function of the form

f(z) = are " + as + aze® + ase*”
In this case the basis functions are
filx)=e™,  fole) =1, f3(z)=¢" fo(z)=2e"
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Now the problem is to determine the coefficients a;, as, a3 and
as. The basis matrix is

et 1 e 2 el 1 el e?
e "2 1 e%2 22 e 1 & ¢
e ™ 1 e% 2| el 1 el €2
e T ] et 2 e 21 e et

and the right-hand-side vector is b = [1.4,0.8,1.7,2]" and the
coefficients of the basis functions are [ay, as, a3, a4] = [0.7352,—1.0245,1.1978, -
So our interpolating function is (see figure 4.1):

f(z) =0.7352¢ ™" — 1.0245 + 1.1978¢e" — 0.1085¢*"

Example 4.2. We will again interpolate the same data in ex-
ample 4.1 but by a cubic polynomial

f(z) = ay + asx + azx® + agx’.
In this case the basis functions are

file) =1, folz) =2, f3(z)=2% fs3(z)=2"

Then the basis matrix is

1z 2% o3 (1 -1 1 —1
1 zg 23 23 |1 0 0 0
1 a3 23 23] |1 1 1 1
1 x4 27 23 1 2 4 8
and we need to solve
1 =11 —-1] [ay 1.4
1 0 0 0 az| (0.8
1 1 1 1 as| 1.7
1 2 4 8] |ayg 2

Solving the problem gives [al,a2,a3, a4 = [0.8,0.5,0.75, —0.35]
and we have the interpolating polynomial (see figure 4.2):

f(z) = 0.8 4 0.5z + 0.752% — 0.352°
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Figure 4.2: digram of function f(z) of example 4.2, the given points are
blue stars

4.2 Polynomial Interpolation

We have from the Fundamental theorem of Algebra:
Given any set of data

(:Ui,yi), z'zl,...n,

there is a unique polynomial of degree at most n — 1 which
interpolates the data. Note that a polynomial of degree n — 1
has n coefficients, the same as the number of data points.
Writing the interpolating polynomial as

p(z) = a1 + asr + azx® + - - + apa"
the basis functions are

h@) =1, f@)=2z f@) =2 . fux)=2""
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Figure 4.3: digram of function f(x) of example 4.3

For data z,...,z, the basis matrix is
1 SR x?‘l_ _al_ _yl_
1 29 23 ... xg‘_l a.g 2 y.g (4.2)
_1 Tn 33121 . :1:2_1_ i | Yn |

Example 4.3. Determine the equation of the polynomial of
degree two whose graph passes through the points (1,6),
(2,3) and (3,2).

Solution:

Suppose the polynomial of degree Two is y = a; + asx + azz?.
Then, the corresponding system of linear equations is

a1+a2+a3:6
CL1+2CL2+226L3:3
a1 + 3as + 32az = 2
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Or by matrix notation

111 a 6
1 2 22 as| = (4.3)
1 3 32 as 2

and the solution of the above system is: a; = 11, a; = —6 and
a3 = 1 which gives y = 2> — 62 + 11. (see figure 4.4)

Example 4.4. Determine the equation of the polynomial whose
graph passes through the points:

x| O 0.5 1.0 1.5 2.0 3.0
y| 0.0 -1.40625 0.0 1.40625 0.0 0.0

The Solution is Homework

which giving the interpolating polynomial

p(x) = =62 + 522 + b5 — bat 4 2.
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Figure 4.4: digram of function f(z) of example 4.4
4.3 Lagrange Interpolation

Another way to construct the interpolating polynomial is
through the Lagrange interpolation formula. Suppose one
has a set of data pairs (z;,¥;);i=0,1,2,---  n, then the inter-
polation polynomial p,(z) is expressed in terms of the L;(z)
as

pu(T) = Zyk Ly(z) (4.4)
k=0

=y Lo(x) +y1 Li(x) + -+ yn Ln(2) (4.5)

where .

r — X
Li(x) = :%'[# — (4.6)
or
Li(x) = ( —zo)(x —21) - (@ — e ) (@ — Tpp1) -~ (2 — 20)

(xp —xo)(xp — 1) - (2 — 2p1) (T — Tpg1) - - - (T — Tp)

Note that
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Li(x;) = 0 = { (1) Z ; Z (4.7)

this lead to

pn(i) = yo Lo(x;i) + - + yi—1 Li—1(zi) + yi Li(zi) + yit1 Liva(zi) + - + yn Ln(zs)
=90+ F+y10+y 1 +yi1 04+ +yn 0
=Y

Theorem 4.5. Letxy, x4, - - , x,, ben+1 distinct numbers, and
let f(z) be a function defined on a domain containing these
numbers. Then the polynomial defined by

pa(®) = fla) Li(z) (4.8)
k=0

is the unique polynomial of degree n that satisfies

Example 4.6. We will use Lagrange interpolation to find the
polynomial p,(z), of degree 3 or less, that agrees with the
following data

v || O 23
Y; 3|-4|5|-6

~

In other words, we must have a polynomial p(x) satisfy p(—1) =
3, p(0) = —4, p(1) = 5 and p(2) = —6. First, we construct the
Lagrange polynomials {Lj(w)}jfzo using the formula (4.6). This
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yields

(x —x1)(x — 22) (T — x3)

Pl = G =) (= o) — )
@)@ -1)@-2
C1—0)(—1-D(-1-9)
x(x* -3z +2)
(—11)(—2)(—3)
= T(w — 32”4 27)
(x — x0)(x — 22)(z — x3)
Lafw) = (21 = o) (21 — 22) (21 — 3)
_ (x+ 1)(x—1)(z—2)
(04+1)(0—1)(0-2)
_ (22 = 1)(z — 2)
(D(=1)(=2)
1o 2
—5(95 — 22" —x+2)
Lo(z) (x — x0)(x — 21) (T — x3)

(w2 — @o) (w2 — 21) (22 — w3)
_ (x4 1)(z—0)(z —2)
(1+1)(1-0)(1-2)
_ z(2? —z —2)
(2)(1)(-1)

—1
= 7(x3 — 2% — 2x)
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_ (@ wo)(z —m) (2 — x9)
(w3 — @o) (w3 — 21) (23 — 22)

_ (x+1)(z—0)(x—1)
2+1)(2-0)(2-1)

Lg(iﬂ)

_ z(r? —1)
{3)(2)(1)
= g(x?’ — )

By substituting x; for x in each Lagrange polynomial L;(x), for
j=0,1,2,3, it can be verified that
Li(a) =4 L 157 (4.10)
o 0 @77

It follows that the Lagrange interpolating polynomial p(z) is
given by

ps(x) = flzx) Li() (4.11)

k=0

p3(z) = Zf(xj) Lj(x)

= yo Lo(z) + y1 L1(z) + y2 La(z) + y3 L3(z)

= (3) (_—) (23 — 32 4 22) + (—4) (%) (2 — 22% — 2 4 2)

+(5) (%) (% — 2% — 22) + (—6) (é) (2% — )

— —62° +82% +Tx — 4

Substituting each z;, for i = 0,1,2,3, into ps3(x), we can verify
that we obtain p3(x;) = y; in each case. [see figure 4.5]
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Figure 4.5: digram of function p;(z) of example 4.6

Using Lagrange Interpolation method with the Matlab code
to plot the interpolation polynomial.

Matlab Code 4.7. Lagrange Interpolation method

%

K3k sk oskosk R koK sk ok ok Sk Skosk Rk Sk Skoskiakesk Sk skosk >k skosk sk ok 3k Sk Sk sk >k skoskoskosk >k skosk sk ok sk sk ok ok ok sk skoskok

%W *** % interpolation
% %k ok
% xx Plot using Lagrange Polynomial
Interpolation xx
%

KK kK K K K K 3K K R K SR K K R K K K 3k 3k 3k Sk 3k kR sk Sk sk ok koK sk 3kosk 3kosk 3kok kR skosk skosk sk ok sk sk ok kok

clc
clear
close all

% xi=[-1.000, —0.960, —0.860, —0.790, 0.220,
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0.500, 0.930]; % x_i data
% yi=[—1.000, —0.151, 0.894, 0.986, 0.895,
0.500, —0.306]; % y_i data

Xi=[—2, _190’192’3];
yi=[4, 3, 5,5,-7, —2];

nelength (xi) ; % nme n+l i.e degree of the
polynomial

% we plotting the lagrang polynomial use.-x
values

% from x_1 to x_n with 1000 divisions
dx=(xi(m)— xi(1))/1000;
x=(xi(1):dx:xi(m));

xlabel( 'x’);
ylabel('y’);

L=ones (m, length(x) ) ;

Jor k=1m %the -rows, i.e L1,L2, L3, 14....
for i=1:m %the columns L11, L12, L13....L17

if (k™=1i) % if k not equal to i
L(k,:)=L(k,:) .x((x—xi(i))/(xi(k)—xi(i
)));
end
end
end
y=0;
Jor k=1:m
f=yi(k).xL(k,:) ;
y=ytf:
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end

plot(x,y, —b’, linewidth,b3) % the
interpolation polynomial
hold on

plot(xi,yi, '«r’, linewidth’ ,4)

xlabel(’x");

ylabel('y’);

title (' Plot using Lagrange Polynomial
Interpolation ’)

The result as the figure 4.6.

Plot using Lagrange Polynomial Interpolation

Figure 4.6: digram of Matlab code example 4.7
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4.4 EXERCISE

1. Solve example 4.6 using polynomial interpolation method
and compare with the Lagrange interpolation method.
Estimate the value of f(1.5) and f(2.5).

2. Solve examples 4.1, 4.2, 4.3, 4.4 using Lagrange inter-
polation method and compare with polynomial interpo-
lation method. Find the approximation value of f(1.25)
and f(2.75).

3. Construct the cubic interpolating polynomial to the fol-
lowing data and hence estimate {(1):
f(z;)| 511|55|209

4. Use each of the methods described before to construct
a polynomial that interpolates the points

{(_27 4)7 (_17 3)7 (07 5)7 (17 5)7 (27 _7)7 (37 _2)}
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4.5 Divided Differences Method

It's also called Newton'’s Divided Difference. Suppose that
P,(z) is the nth Lagrange polynomial that agrees with the
function f at the distinct numbers z(, z, ---, z,. Although
this polynomial is unique, (Why ?), there are alternate alge-
braic representations that are useful in certain situations.
The divided differences of f with respect to zg, zi, ---, x, are
used to express P,(z) in the form

P,(z) = aptai(z—x0)+az(z—x0)(x—21)+" - ~+an(x—x0) - -+ (x—2_1)

(4.12)
for appropriate constants ay, ay, ---, a,. To determine the
first of these constants, aj, note that if P,(z) is written in
the form of Eq. (4.12), then evaluating P,(x) at z, leaves
only the constant term ay; that is

ap = Pu(z0) = f(20)

Similarly, when P(x) is evaluated at x;, the only nonzero
terms in the evaluation of P,(x;) are the constant and linear
terms

f(zo) +ar(zy — xo) = Bu(x1) = f(21)
SO

oy = 112 = J(@0) (4.13)
r1 — o

We now introduce the divided difference notation, The ze-
roth divided difference of the function f with respect to z;,
denoted f|z;], is simply the value of f at z;

The remaining divided differences are defined recursively;
the first divided difference of f with respect to z; and z;,; is
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denoted f|z;,z;.1] and defined as

Tit1 — Ty

f[% $i+1] -

The second divided difference, f|x;,z;i1, fir2] is defined as

flwiv, Tigo) — floi, Tigd]

flai, Tiv1, Tivo] = (4.106)
Tit2 — Ty
Similarly, after the (k—1)st divided differences f[x;, x; 1, -+ , Zi1k1]
and f[rii1,%iv2, - ,Tivk_1,Tirk] have been determined, the
kth divided difference relative to x;, x; 1, Ti10, - , Tips IS
f[xz', Tig1, - ,ZEH-k] _ f[xi—i-la Li42, " 7332'—1-/6] o f[xu Lit1y 7$i+k—1]
Litk — L
(4.17)
The process ends with the single nth divided difference
f[xo’xl’ . ’xn] _ f[xl,QZ'Q, T 73371] T f[x()axla T 73:71—1] (418)
Ty — Xy

Because of Eq. (4.13) we can write a; = f[z(,z1] just as gy can
be expressed as ag = f[zo] = f(zy). Hence the interpolating
polynomial in Eq. (4.12) is

P,(z) = flxo|+flro, x1](z—x0)+as(x—x0) (x—21)+ - +ay(z—x0) - - - (T—Tp_1)

As might be expected from the evaluation of ¢y and a;, the
required constants are

ak:f[5'3073317"' ,SUk]

for each £ = 0,1,...,n. So P,(z) can be rewritten in a form of
Newton’s Divided Difference

P,(x) = flxo] + Zf[a:o,xl,--- o) (r —xo)(x —21) - (T — 28 1)
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Table 4.1: General Newton’s Divided-Difference Table
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The value of f[xy,z1,---,z;] is independent of the order of
the numbers zy, =1, ---, =, as shown later. The generation
of the divided differences is outlined in Table 4.1.

Example 4.8. Complete the divided difference table for the
set of data pairs:

x 1.0 1.3 1.6 1.9 2.2
f(x) | 0.7651977 | 0.6200860 | 0.4554022 | 0.2818186 | 0.1103623

and find the interpolating value of v = 1.5.

Solution:

The first divided difference involving xy and r is
T — Xz
f[xo,xl] _ f[ 1] f[ 0]
T1 — Xy
~0.6200860 — 0.7651977

1.3—-1.0
= —0.4837057

The remaining first divided differences are found in a similar
manner and are shown in the fourth column in Table 4.2. The
second divided difference involving xy, x1 and x5 is

fler, 2] — flzo, 21]

f[$0,951,352] =
Iy — I
~0.5489460 — (—0.4837057)
B 1.6 — 1.0
= —0.1087339

The remaining second divided differences are shown in the
5th column of Table 4.2. The third divided difference involving
xg, T1, T2 and x3 and the fourth divided difference involving all
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the data points are, respectively,

flzr, 2, 23] — flzo, 21, 229

f['xO) x1,T2, 1:3] —

T3 — Xy
~ —0.0494433 — (—0.1087339)
N 1.9-1.0
= (0.0658784

and

flzo, x1, T2, T3, 4] = fl1, 29, w3, 24] — fl20, 21, T9, 73]
y L1y L2, L3, pr—

~0.0680685 — 0.0658784

22-1.0
= 0.0018251

All the entries are given in Table 4.2.
The coefficients of the Newton divided difference of the inter-
polating polynomial are along the diagonal in the table. This
polynomial is
Py(z) = 0.7651977 — 0.4837057(z — 1.0) — 0.1087339(x — 1.0)(z — 1.3)
+ 0.0658784(x — 1.0)(x — 1.3)(x — 1.6)
+0.0018251(z — 1.0)(z — 1.3)(z — 1.6)(z — 1.9)

we can now find the value of P(1.5) = 0.5118200.

4.6 EXERCISE

1. Solve example 4.8 using polynomial interpolation method
and Lagrange interpolation method, then compare with
the Newton’s Divided Difference method. Estimate the
value of f(1.1) and f(2.0).

2. Solve all Exercise 4.4 using Newton’s Divided Difference
method and compare with all previous methods.
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4.7 Curve Fitting

Curve fitting is the process of finding equations to approx-
imate straight lines and curves that best fit given sets of
data. For example, for the data of Figure 4.7, we can use
the equation of a straight line, that is:

y=mx+b

Figure 4.7: Straight line approximation

For Figure 4.8, we can use the equation for the quadratic
or parabolic curve of the form

y = ax®+bx +c

In finding the best line, we normally assume that the data,
shown by the small circles in Figures 4.7 and 4.8, represent
the independent variable , and our task is to find the depen-
dent variable. This process is called regression.

Regression can be linear (straight line) or curved (quadratic,
cubic, etc.). Obviously, we can find more than one straight
line or curve to fit a set of given data, but we interested in
finding the most suitable.

Let the distance of data point z; from the line be denoted
as d;, the distance of data point z, from the same line as
dy, and so on. The best fitting straight line or curve has the
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Figure 4.8: Parabolic line approximation

property that
d2 +di+ -+ d2 = minimum (4.19)

and it is referred to as the least squares curve. Thus, a
straight line that satisfies equation (4.19) is called a least
squares line. If it is a parabola, we call it a least squares
parabola.

4.8 Linear Regression

With this method, we compute the coefficients m (slope) and
b (y-intercept) of the straight line equation

y=mx+b (4.20)

such that the sum of the squares of the errors will be min-
imum. We derive the values of m and b, that will make the
equation of the straight line to best fit the observed data, as
follows:

Let x and y be two related variables, and assume that cor-
responding to the values z;, 29, - - - , z,, we have observed the
values y1,v2, - ,y,. Now, let us suppose that we have plot-
ted the values of y versus the corresponding values of z, and
we have observed that the points (x1,41), (z2,v2), (%3,y3), -+,
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(zn,yn) approximate a straight line. We denote the straight
line equations passing through these points as

y1 =mx; +0b
Yo =mxo + b
y3 = mx3 + b (4.21)
Yp = mx, + b

In equations (4.21), the slope m and y-intercept b are the
same in all equations since we have assumed that all points
lie close to one straight line. However, we need to determine
the values of the unknowns m and b from all n equations.
The error (difference) between the observed value y;, and
the value that lies on the straight line, is y; — (maz; +b). This
difference could be positive or negative, depending on the
position of the observed value, and the value at the point
on the straight line. Likewise, the error between the ob-
served value 3, and the value that lies on the straight line is
yo—(mzx2+b) and so on. The straight line that we choose must
be a straight line such that the distances between the ob-
served values, and the corresponding values on the straight
line, will be minimum. This will be achieved if we use the
magnitudes (absolute values) of the distances; if we were
to combine positive and negative values, some may cancel
each other and give us a wrong sum of the distances. Ac-
cordingly, we find the sum of the squared distances between
observed points and the points on the straight line. For this
reason, this method is referred to as the method of least
squares.
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Let the sum of the squares of the errors be

Z squares = [y; — (max1 + b)]* + [y2 — (may + b)]?

Since () squares) is a function of two variables m and b,
to minimize (4.22) we must equate to zero its two partial
derivatives with respect to m and 6. Then

0

o Z squares = —2x1[y; — (mxy + b)] — 2xa[ys — (Mg 4+ 0)]

and
0
% Z squares = —2[y; — (mz1 + b)] = 2[ys — (may + )]
— o = 2[yp — (mx, +b)] =0 (4.24)

The second derivatives of (4.23) and (4.24) are positive and
thus (> squares) will have its minimum value.

Collecting like terms, and simplifying (4.23) and (4.24) to
obtain

S am+ (S w =3
=1 =1 =1
=1 =1

or by matrix notation

2 i=n .o
Z =1 Li n b D i1 Vi

We can solve the equations of (4.26) simultaneously by any

method from previous chapter, like Cramer’s rule, m and n
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are computed as: (for simplicity we right 3" as S'=7, z as z;

and y as y; )

where

m—D]L
A

D,

h— =2
A

A = det [225”2 2 ﬂ

i n

Dy = det szyy an]

D= det FZQC; Znyy]

(4.27)

(4.28)

(4.29)

(4.30)

Example 4.9. Compute the straight line equation that best
fits the following data

x 0 10 20 30|40 | 50 60 70 80 | 90 | 100
y|27.6131.034.0| 37| 40| 42.6|45.5|48.3|51.1|54|56.7
Solution:

There are 11 sets of data and thus n = 11. We need to compute
the values of >z, > 22, Y y and " zy:
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x Y z? Ty
0 27.6

10 31

20 34

30 37

40 40

50 42.6

60 45.5

70 48.3

80 51.1

90 54

100 56.7

S =550 >y =467.8] > 2% = 38500 | X xy = 26559

Now we can compute the values of equations (4.28), (4.29)
and (4.30):

2
A = det Fx %x] — det [38500 550] — 121000

Sz 550 11
L [ay Sl [26559 550]
Dl—detlzy », = det 1678 11 = 34859
a2 Say],, [38500 26559]
Dy = det [Zx Z?J = det 550 4678 | 3402850
this lead to
D,
m = K = (0.288
D
b— KZ — 28.123

then the linear approximation of the data is:
y=mz + b= 0.288z + 28.123
see figure 4.9.
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Curve Fitting using Linear Regression

a0

25

X

Figure 4.9: Plot of the straight line for Example 4.9

Example 4.10. Compute the straight line equation that best
fits the following data

770 | 677|428 | 410 | 371 | 504 | 1136 | 695 | 551 | 550
54 | 47 | 28 | 38| 29 | 38 80 | 52 | 45 | 40
068 | 504 | 560 | 512 | 448 | 538 | 410 | 409 | 504 | 777
49 | 33 | 50 | 40 | 31 | 40 27 | 31 | 35 | o7
496 | 386 | 530 | 360 | 355 | 1250 | 802 | 741 | 739 | 650
31 1026 | 39 | 25 | 23 | 102 | 72 | 57 | 54 | 56
092 [ 577 | 500 | 469 | 320 | 441 | 845 | 435|435 | 375
45 |1 42 | 36 | 30 | 22 | 31 52 129 | 34 | 20
364 | 340 | 375 | 450 | 529 | 412 | 722 | 574 | 498 | 493
33 | 18 | 23 1 30 | 38 | 31 62 | 48 | 29 | 40
379|579 | 458 | 454 [ 952 | T84 | 476 | 453 | 440 | 428
30 | 42 | 36 | 33 | 72| 57 | 34 | 46 | 30 | 21

QL<~NRIR VIR |88 (8w R
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Solution:

There are 60 sets of data and thus n = 60. by the same proce-
dure in example 4.9 we find:

o [e? 2], [19954638 32780]
A_det[zx n | T 3180 60

B Say Yo 1487462 32780
Dy = det [zy e Y _
B a2 Say] 19954638 1487462
Dy = det {Zaz Sy T gors0 2423
this lead to
D
7n::z§::008
D
b= KZ — ~3.3313

then the linear approximation of the data is:
y =mz+b=0.08z — 3.3313

see figure 4.10.
the Matlab code for Linear regression is:

Matlab Code 4.11. Linear regression curve fitting

%

KKK K Rk 5K Sk Sk sk Sk R Sk R Sk R K R 3k ok kR K Sk R Sk R K R Sk R 3Kk 3Kk skok kook koK sk sk ok ok ok ok
% sk x k Linear Fitting

Xk kK
%

KKK K K K K Sk Sk Sk Sk R Sk R K R K R 3K K K R 3K Sk R SR R KR R 3K R 3K R 3Kk SRk 3Rk R Sk sk sk ok kR sk
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100

Figure 4.10: Plot of the straight line for Example 4.10

clc
clear
close all

Curve Fitting using Linear Regression

300 400 500 600 VOO BOOD 900 1000 1100 1200 1300

X

% inter the dasta points

X

=[770,677,428,410,371,504,1136,695,551,550,568,504,560,5

y

=[54,47,28,38,29,38,80,52,45,40,49,33,50,40,31,40,27,31

% x=[0,10,20,30,40,50,60,70,80,90,100];

%y

=[(27.6,31.0,34.0,37,40,42.6,45.5,48.3,51.1,54,56.7];
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14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

% x = 1:5;
%y =1[1213 375 2.25];

% the number of data is n

n = length(x):

% we need to comput the quantities

sumxi = sum(x) ;

sumyi = sun(y) ;

sumxiyi = sun(x.*y) ;

sumxi2 = sum(x."2);

% comput m and b

m=(sumxix sumyi—n* sumxiyi) / (sumxi"2—nxsumxi2)

b=(sumxiyix sumxi—sumyix sumxi2) / (sumxi"2—nxsumxi2
)

% y=nwc+b

xmin=min(x) ; xmaw=max(x) ;

dx=(xmax-xmin) / 100;

w=xmin: dx : xmax;

Jwanwwtb ;

plot (w,fw, —b ", 'linewidth ' ,3) % the
interpolation polynomial

hold on

plot(x,y, «r’ , linewidth’,1)

xlabel ('x");

ylabel('y’);

title ('Curve Fitting using Linear Regression’)

4.9 Parabolic Regression
The least squares parabola that fits a set of sample points
with

y:ax2+bx+c (4.31)
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where the coefficients a, b and ¢ are found from

O aPa+ (Y _ap+nc=» y
O aPa+ (O 2+ (O _x)e=) xy (4.32)
O aha+ (O 2+ (D _aPe=) 2%
where n is number of data points.

Example 4.12. Compute the straight line equation that best
fits the following data

1.211.5|1.8|26|3.1/4.3/4.9|5.3
4515158677073 |7.6|74
5.7164|7.1|7.6|86|9.2|9.8
7.216.9|6.6|5.14.5|3.4|2.7

QLS<PNR || R

Solution:

We compute the coefficient of equations (4.32) from the data
of the table and get:

n =15
Zx =79.1
Zx2 — 530.15

Z 7% = 4004.50
Z 7t = 32331.49

> y=878
> ay =437.72
> aty = 2698.37

111



5

6

7

By substitution into equations (4.32) to get

(Zx2)a+(2x)b+nc:2y

530.15a + 79.1b 4+ 15c = 87.8

(Z z%)a + (Z z%)b + (Z r)e = ny

4004.50a + 530.150 + 79.1c = 437.72

(Z *)a + (Z z°)b + (Z %) = Z 2%y
32331.49a + 4004.50b 4 530.15c = 2698.37
Solve these equations with any method from previous chapter

togeta = —0.2, b = 1.94, and ¢ = 2.78. Therefore, the least
squares parabola is

y=—0.22" 4+ 1.9z + 2.78
The plot for this parabola is shown in Figure 4.11.
the Matlab code for parabola regression is:

Matlab Code 4.13. parabola regression curve fitting

%

KKK Kk 3k R R K Sk ok 3k ok Kk ok kR koK ok kR K 5k ok R 3k K 5k ok Rk Kk 5k ok kK ok sk ok koK sk kR ok ok ok

% xxxx least squares parabola Fitting
Xk kK
%

KK kK K KKK SRk kR Sk kK sk K sk koK k3R K Sk R Sk R Kk R Sk sk 3k sk 3k 5k kR kR koK sk sk sk sk ok ok

cle

clear

close all

% inter the dasta points
X

=[1.2,1.5,1.8,2.6,3.1,4.3,4.9,5.3,5.7,6.4,7.1,7.6,8.6,9.
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Figure 4.11: Plot of the least squares parabola for Example 4.12

=[4.5,5.1,5.8,6.7,7.0,7.3,7.6,7.4,7.2,6.9,6.6,5.1,4.5,3.

X

=[770,677,428,410,371,504,1136,695,551,550,568,504,560,5

y

=[64,47,28,38,29,38,80,52,45,40,49,33,50,40,31,40,27,31,:

Curve Fitting using parabola Regression

x=[0,10,20,30,40,50,60,70,80,90,100];

Y
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17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

=[(27.6,31.0,34.0,37,40,42.6,45.5,48.3,51.1,54,56.

% x
% y

1:5;
[1 2 1.3 3.75 2.25];

% the number of data is n
n = length(x);
% we need to comput the quantities
sumxi = sum(x) ;
sumyi = sum(y) ;
sumxi2 = sum(x."2);
sumxi3 = sun(x. 3);
sumxi4 = sum(x. 4);
sumxiyi = sum(x.xy) ;
sumxi2yi = sum(x.xx.xy)
% comput a0O,al,a2 from the. linear system
B

A=[sumxi2, sumxi,n

sumxi3, sumxi2 , sumxi

sumxi4 , sumxi3, sumxi2 | ;
B=[sumyi, sumxiyi, sumxi2yi] ’;
% S=[a0,al,a2]
S=inv (A) «B;
xmin=min(x) ; xmawEmax(x) ;
dx=(xmaexmin) / 100;
w=xmin : dx : xmax;
Jw=S(1)+w. 2+S(2)*xw+S(3) ;

plot (w, fw, —b ", 'linewidth ' ,3) % the
interpolation polynomial

hold on

plot(x,y, «r ', linewidth ,1)

xlabel('x");
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« ylabel('y’);
« title (’Curve Fitting using parabola Regression’)
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Chapter 5

Numerical Differentiation and
Integration

5.1 Numerical Differentiation: Finite Differ-
ences

The first questions that comes up to mind is: why do we
need to approximate derivatives at all? After all, we do know
how to analytically differentiate every function. Neverthe-
less, there are several reasons as of why we still need to
approximate derivatives:

e Even if there exists an underlying function that we need
to differentiate, we might know its values only at a sam-
pled data set without knowing the function itself.

e There are some cases where it may not be obvious that
an underlying function exists and all that we have is a
discrete data set. We may still be interested in studying
changes in the data, which are related, of course, to
derivatives.

e There are times in which exact formulas are available
but they are very complicated to the point that an ex-
act computation of the derivative requires a lot of func-

116



tion evaluations. It might be significantly simpler to ap-
proximate the derivative instead of computing its exact
value.

e When approximating solutions to ordinary (or partial)
differential equations, we typically represent the solu-
tion as a discrete approximation that is defined on a
grid. Since we then have to evaluate derivatives at the
grid points, we need to be able to come up with meth-
ods for approximating the derivatives at these points,
and again, this will typically be done using only values
that are defined on a lattice. The underlying function it-
self (which in this cased is the solution of the equation)
is unknown.

Suppose that a variable f(x) depends on another variable x
but we only know the values of f at a finite set of points,
e.g., as data from an experiment or a simulation:

(@1, f(21)), (22, [(@2)), -+, (2n, [ ()
with equal mesh spacing h = z;,; —x; fori = 1,2,--- 'n —1,
we have the Taylor series Suppose then that we need infor-
mation about the derivative of f(z). We begin by writing the
Taylor expansion of f(z + ) and f(x — h) about z:

h? h? ht
fl+h) = f@)+hf @)+ @)+ (@) + 5 P @)+ 6.1
h? h? h
flx—h) = f(x)—hf’(x)+?f”(x)—Ef”’(x)+2_4f(4)(x)_|_... (5.2)
fx+2h) = f(z)+2h f’(x)+4%2 f”(x)+8%3 f”’(x)—l—IGZ—i fY(@)+- -
B2 B3 B -9
flz—2h) = f(x) —2hf’(rc)+43f”(x)—ng”’(w)+16ﬂf(4)(rc) —
(5.4)

and so on.
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X

7} T
xg xgth

Figure 5.1: digram of the forward-difference approximation of the func-
tion f(x)

5.1.1 Finite Difference Formulas for f'(z):

To derive a formula for f'(z) there are many formulas, as
example: from equation (5.1):

2
Flo+B) = Fla) + () + (e 5.5

Note that we have replaced terms in h? by corresponding
remainder terms. Dividing by h, we obtain the formula
fleat+h)=flz) h

/ ey Gelmatnl

, x+h)— f(x
) = S f)L f(x)
This formula have error of O(h) and called a forward-difference
approximation to the derivative because it looks forward
along the r—axis to get an approximation to f'(z), see figure
5.1.

By the same procedure we can get from (5.2):

fl(x) =

or

(5.6)

Flo = h) = F@) ~ hf'(2) + 5 (6 ) 5.7
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Slope f'(x)

2h

Slope [Fxo + H) — f(xg — h)]

-
X

T T T
xg—h x9 xpth

Figure 5.2: digram of the central-difference approximation of the func-
tion f(x)

ane Fla) — (o~ b

Fla) =1 ; ‘ (5.8)
This formula have error of O(h) and called a backward-
difference approximation f'(x).
Subtract (5.7) from (5.5) to get:

W (€D + SME)
3 2

Note that the error term consists of two evaluations of f”,
one at £, € [x,z + h] from truncating the series for f(z + h)
and the other at ¢ € [z — h, 2] from truncating the series for
f(z—h). If f”is continuous, the average of these two values
can be written as f"”(¢), where ¢ € [¢ — h,z + h]. Hence we
have the central-difference formula, see figure 5.2:

fla+h) = fla—h) W

fx+h)— f(x—h)=2hf"(z)+

f(z) = o7 G (&); £ €lx—h,z+h]
(5.9)
or
f'(z) = floth) —f@—h) (5.10)



The error in the central-difference formula is of O(h?), it is
ultimately more accurate than a forward difference scheme.
By the same procedure we can get (Homework):

() = —3f(x) +4f(a:27;h) — f(x 4 2h)

this is forward difference approximation, and

oy = MO =4Sl R+ e =20

this is backward difference approximation, and

_ —flz+2h)+8f(x+h) —8f(x —h) + f(x —~2h)
N 12h

+ O(h?) (5.11)

+ O(h?) (5.12)

+O(hY)

(5.13)
this a central finite difference formula. There are many
other formulas for the finite difference approximation and
every formula has it is properties.

()

Example 5.1. Consider the values given in the following Ta-
ble and use all the applicable formulas to approximate f'(2.0):

x 1.6 1.7 1.8 1.9
f(z) || 7.924851879 9.305710566 10.88936544 12.70319944 14.7:

x 2.1 2.2 2.3 2.4
f(z) || 17.14895682 19.8550297 22.94061965 26.45562331

in fact these values from f(r) = xe®. Compare the approxi-
mate values with the value of f'(x) = xe® + e* and
f(2) = 22.1672, see the tangent line m in figure 5.3.

Solution:
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Figure 5.3: digram of the solution of example 5.1, m is the tangent line
and the others are the approximated tangent lines

then from formula (5.6):
fla+h) — flz)

flx) = >
/(2) = f(2-12)1 f(2)
17.14895682 — 14.7781122

0.1
= 23.70844619

the absolute error is |22.1672 — 23.70844619| = 1.54124619.

the relative error is |22152-23T081019| — () 065008317.

see the tangent line m1 in _figure 5.3.
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from formula (5.8):

f/(2) _ f(x)_f(x_h)

h
f2) = f(1.9)
0.1
14.7781122 — 12.70319944

0.1
= 20.74912758

the absolute error is [22.1672 — 20.74912758| = 1.41807242.

the relative error is |22182_ 20191218 | — () 068343713.

see the tangent line m2 in figure 5.3.

from formula (5.10):

e i (i)
f1) - f(19)

0.2
17.14895682 — 12.70319944

0.2
= 22.22878688

the absolute error is [22.1672 — 22.22878688| = 0.06158688.

the relative error is |221072- 2223878058 | — () 002770591.

see the tangent line m3 in figure 5.3.

from formula (5.11):

yov —3f(x) +4f(x+h) — f(x +2h)
—3f(2) +4f(2.1) — f(2.2)
0.2
_3(14.7781122) + 4(17.14895682) — (19.8550297)

- 0.2
— 92.03230487

122



the absolute error is |22.1672 — 22.03230487| = 0.13489513.

the relative error is |221502-2208230157) — () 006122606.

see the tangent line m4 in figure 5.3.

Jfrom formula (5.12):
_3f(x) — 4f(x — h) + f(z — 2h)

_ 3(2) —47(19) + £(1.8)
0.2
3(14.7781122) — 4(12.70319944) + (10.88936544)

0.2
= 22.05452134

the absolute error is |22.1672 — 22.05452134| = 0.11267866.

the relative error is |22162-2200002131| — (),005109096.

see the tangent line m5 in figure 5.3.

from formula (5.13):
—f(z+2h)+8f(x+h) —8f(x — h)+ f(x — 2h)

f'(2) =

12h
_ —f(22) +8f(2.1) —8f(1.9) + f(1.8)
1.2
| —3(14.7781122) + 4(17.14895682) — (19.8550297)
N 0.2

= 22.16699562

the absolute error is [22.1672 — 22.16699562| = 0.00020438.

the relative error is |22182-22.0099502| — 9 22001 x 107F.

see the tangent line m6 in_figure 5.3.
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5.1.2 Finite Difference Formulas for ["(z):

To get a formula for the second derivative, we choose the
coefficients to pick off the first two terms of the Taylor ex-
pansion (5.1) and (5.2):

h? h? ht
fl@+h) = f@)+hf'(@) + (@) + ") + 5 ()

h _ h / h2 2 h3 " h’4 (4)

fla—h) = () = hf'(@) + @) = 1" (@) + 5O

then

R PO 4 SO (E)

6 2

where &, € [x,z+ h] and £ € [z — h,z]. It follows that

fla+h)—2f(z)+ flw—h) h?
h? 6

f”(l‘) _ f(CE + h) B 2.2(255) + f(ﬂf B h) + O(hz)

This is the central difference formula for f"(x).

We can notice that the technique is quite flexible and can
be used to derive formulas for special cases. By the same
procedure we can find (Homework):

forward difference approximations:

_ 2f(z) —=5f(x+ h)+4f(x+2h) — f(x + 3h)

fla+h) = 2f(z) + f(x = h) = h*f"(z) +

f(x) = e & e lz—hat+h]

or

f(z) 3 +O(h?)
The backward difference approximations:

h3
and centered difference approximations:

v —f(z+2h) + 16f(z + h) — 30f(x) + 16f(x — h) — f(x — 2h)
fie) = 1212
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Example 5.2. Consider the same values given in Example
5.1 and use all the applicable formulas to approximate f"(2.0).

The solution is Homeworlk
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Figure 5.4: Integration by the trapezoidal rule

5.2 Numerical Integration

The need often arises for evaluating the definite integral of
a function that has no explicit antiderivative or whose an-
tiderivative is not easy to obtain. The basic method involved
in approximating f; f(z)dx. Ituses asum > ,a;f(z;) to ap-
proximate [ f(x)da.

5.2.1 The Trapezoidal Rule

Consider the function y = f(z) for the interval a < z <
b, shown in Figure 5.4. To evaluate the definite integral
f; f(x)dx, we divide the interval ¢ < z < b into n subinter-
vals each of length Az = b‘Ta Then, the number of points
between o = a and z, = bis z; = a+ Az, 19 = a + 2Ax, -,
z,-1 = a+ (n —1)Az. Therefore, the integral from « to b is the
sum of the integrals from a to x;, from z; to z5, and so on,
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and finally from z,,_; to b. The total area is

/abf(x)da::/amlf(a:)dsc+/xf2f(a:)das+---+/$j_l f(z)da

= Z f(z)dx

k=1 k=1

The integral over the first subinterval, can now be approx-
imated by the area of the trapezoid a F, P, x; that is equal
to %(yo + y1)Az plus the area of the trapezoid z; P, P, 25 that
is equal to %(yl + y2)Az, and so on. Then, the trapezoidal
approximation becomes

1 1 1
T = 5(3/0 +y1)Az + 5(3/1 +y2) Az + -+ £ 5(%—1 + yn) A
Or . ]
T = <§yo+y1+y2+"'+yn—1+§yn) Az (5.14)

Example 5.3. Using the trapezoidal rule with n = 4, estimate
the value of the definite integral

2
/ 22dx
1

Compare with the exact value, and compute the Absolute Er-
ror and Relative Error.

Solution:

The exact value of this integral is

2

2 3 7
/ 22dr = [—] — — = 2.3333333 (5.15)
. 3 3

1
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For the trapezoidal rule approximation we have

ro=a=1, z,=b=2;, n=4
b—a 2-1

n 4
y = f(z) =2
Then,
zo=a=1; yo = flz) =17 =1
5 5\°
$1=CL+A33:Z; y1 = f(z _<Z)
6 6\
x2—a+2Aa:_Z—l, Yo = f(x (Z_l) e
7 7\
_ Ap — - — ¢ =7
T3 =a+ 3Azx 4, ys = f(x (4)

] 2

and by substitution into equation (5.14)

1 1
T = <§yo+y1+y2+y3+§y4) Ax

(L g2, 36,49 1 64 1

-\ 2 16 16 16 2 16 4
75

— — =92.34375 5.16
5 ( )

From (5.14) and (5.16), we find that the absolute and relative
error are: Absolute Error= |2.34375 — 2.33333| ~ 0.01042.

Relative Error= |2313B-233333| ~ (.0045.

Example 5.4. Using the trapezoidal rule with n =5, and n =
10 to estimate the value of the definite integral

2
1
/—d:l?
1 T
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10

11

12

13

14

15

16

17

18

19

Compare with the exact value, and compute the Absolute Er-
ror and Relative Error.

Solution:

Homework (The analytical value of this definite integral is
In2 = 0.6931).

For Trapezoidal Rule we can use the following Matlab
code:

Matlab Code 5.5. Trapezoidal Rule

% xxxxxxxxxxx  Trapzodal RUle sk sk ks ks x
% estimates the value of the integral of y=f(x)
% Jrom a to b by using trapezoidal rule
cle

clear

close all

a=1; % the start of integral interval

b=2; % the end of integral interval

n=4; % the number of subintervals

h = (b-a)/n;

Area=0;

x = a:h:b; % .to comput the x_i values

% this Example of f(x)=x"2

y=x."2; % to comput the y_i values
for i = 2:n,

Area = Area + 2xy(i);

end

Area = Area + y(l1) + y(n+l1);

Area = Areaxh/2
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Figure 5.5: Simpson’s rule of integration

5.2.2 Simpson’s Rule

For numerical integration, let the curve of Figure 5.5 be rep-
resented by the parabola

y = ax’ + Bz + (5.17)

The area under this curve for the interval —h <z < h is

h
Area|", = / (az® + Bz +7) da
—h

3 2
ax Xz
S <—+B—+m~> ",

3 9
ah’®  Bh? ah®  Bh?
(P ) o (22
<3+2+7> ( 5 T 7)
20ah3
- O;) 29k (5.18)
1
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The curve passes through the three points (—h,yy), (0,41),
and (h,y2). Then, by equation (5.17) we have:

Yo = ah® — Bh + 7 (5.19)
Yyr =7 (5.20)
Yo = ah® + fh 47 (5.21)

We can now evaluate the coefficients «, § and v express
(5.18) in terms of yy, y; and y,. This is done with the follow-
ing procedure.

By substitution of (5.20) into (5.19) and (5.21) and rearrang-
ing we obtain

ah® — Bh = yy — yi (5.22)
ah®+ Bh = y» — (5.23)
Addition of (5.22) with (5.23) yields
2ah® = yo — 2y1 + 12 (5.24)
and by substitution into (5.18) we obtain
Areal", = %h (2ah® + 6)
1
2N gh [(yo — 211 + y2) + 611] (5.25)
or
1
Areal, = h (o + 491 + 1) (5.26)

Now, we can apply (5.26) to successive segments of any
curve y=fx) in the interval ¢« < z < b as shown on the
curve of Figure 5.6. From Figure 5.6, we observe that each
segment of width 24 of the curve can be approximated by a
parabola through its ends and its midpoint. Thus, the area
under segment AB is

1
Area|ap = gh (Yo + 4y1 + yo) (5.27)
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Figure 5.6: Simpson’s rule of integration by successive segments
Likewise, the area under segment BC is

1
Area|pc = §h (y2 + dys + y4) (5.28)

and so on. When the areas under each segment are added,
we obtain

Area = g [o +4y1 + 2y2 + 4ys +2us + -+ + 2002 + 4Yn1 + Y
(5.29)
This is the Simpson’s Rule of Numerical Integration. Since
each segment has width 2h, to apply Simpson’s rule of nu-
merical integration, the number of subdivisions must be
even. This restriction does not apply to the trapezoidal rule
of numerical integration. The value of & for (5.29) is found
from
h = b ; a,; n = even (5.30)
Example 5.6. Using Simpson’s rule with 4 subdivisions (n =

4), compute the approximate value of

2
/ ld:zs (5.31)
1

X

and compute the Absolute Error and Relative Error.
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1 90 kokokokokok ok kok ok ok

©w

5.2.3 Solution:

b—
a=xy=1; b=1x4=2; n =4; Then h = a=0.25

n
ro=1|x1=a+h=125|29=a+2h=15|23=a+3h=1.75| 24 = 2.0
Yo =1 1 = 0.8 Yo = 0.66667 y3 = 0.57143 ys = 0.5

From equation 5.29 we have

h
Area = 3 [yo + 4y1 + 22 + 4y3 + y4]

025

3
= 0.69325

—ZZ 1+ 4(0.8) + 2(0.66667) + 4(0.57143) + 0.5]

The Absolute Error = |0.6931 — 0.69325| = 0.00015

and Relative Erro

r— |0.6931—0.69325
o 0.69325

= 0.00021637216.

For Simpson’s Rule we can use the following Matlab

code:

Matlab Code 5.7. Simpson’s Rule

SIMpPSorn Rule sk sk s sk ok ok ok skok ok sk ok

% estimates the value of the integral of y=f(x)
% Jrom a to b by using Simpson rule

clc
clear

close all
a=1; %.the start of integral interval
b=2; % the end of integral interval
n=4; % the number of subintervals
h = (b-a)/n;
Area=0;

x = a:h:b; % to comput the x_ i values
% this Example of f(x)=x"2
% to comput the y_i values

y=x."2;
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15

17

18

19

20

21

22

for

Area = Area + 4xy(i);

end

for

end

Area = Area + y(l1) + y(n+1);

i = 2:2:n,

i = 3:2:n—-1,
Area = Area +2xy(i);

Area Areaxh/3

5.2.4 EXERCISE

Use the trapezoidal approximation and Simpson’s rule to
compute the values the following definite integrals with n =
4; n = 8 and compare your results with the analytical values.

1. y = f02 e da.

y = f24 Vadr.
y = f24 Vadr.
Yy = f02 r2dx.

y = [, sin(z)da.

1 1
y:fo gl

2
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Xg=4a X s Xq = b

Figure 5.7: Simpson’s 3/8 rule.

5.3 Simpson’s 3/8 Rule

The Simpson’s 3/8 rule also called four points Simpson
rule, uses a third-degree polynomial to approximate the in-
tegrand f(x), so we need four points to form this polynomial.
see figure 5.7 The definite integral will be evaluated with
this polynomial replacing the integrand

jibf(x)dx;c jibpggx)dx

by the same procedure we can find

b 3h A b—a
/ ps(x)dx = 3 [f(z0) + 3f(z1) + 3f(x2) + f(x3)]+O(h), h = 5

The method is known as the 3/8 rule because h is multiplied
by 3/8. To apply Simpson’s 3/8 rule the interval [¢, )| must
be divided into a number n of subintervals must be a

135



multiple of 3 and the Composite Simpson’s 3/8 Rule will
be

b
3h
/ p3(z)dr = 5 [yo + 3y1 + 3y2 + ys3]

3h
+ 3 lys + 3ys + 3y5 + el

h
+ g [y6 + 3y7 —+ 3y8 + ?JQ]
_|_ oo
h
i 3 [Yn—3 + 3Yn_2 + 3Yn_1 + Yn]

h
=3 [Yo + 3y1 + 3y2 + 2ys + 3ya + 3ys + 2ys + -+ -+ 3Yn—2 + 3Yn—1 + Yn)

5.3.1 Boole’s Rule

Boole’s Rule is five points rule uses a four degree poly-
nomial to approximate the integrand f(x), so we need five
points to form this polynomial. The definite integral will be
approximated with the integrand

[ e [y

by the same procedure we can find

/ pa(x)de = % [7f (o) + 32f (1) + 12f (z2) + 32f (z3) + 7f (24)]4+O(R")

To apply Boole’s rule the interval [¢,)] must be divided
into a number » of subintervals must be a multiple of 4 .
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5.3.2 Weddle's Rule

Weddle’s Rule is seven points rule, so we need seven points
to form this rule. Weddle’s rule is given by

| paards = 5 (£ + 55 () + fs) + 6 a) + Fla) + 5 (ws) + S ) +O(H)

To apply Weddle’s rule the interval [¢, )| must be divided
into a number n of subintervals must be a multiple of 6 .

5.3.3 EXERCISE

Use the trapezoidal approximation and Simpson’s rule to
compute the values the following definite integrals with n =
4; n = 8 and compare your results with the analytical values.

l. y= f02 e dx.

y = f24 Vadr.
y = f; Vrdr.
Yy = f02 r2dz.

y = [, sin(z)dz.

|
y—fo Zqde.

2
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Chapter 6

Numerical Solution of Ordinary
Differential Equations

This chapter is an introduction to several methods that can
be used to obtain approximate solutions of differential equa-
tions. Such approximations are necessary when no exact
solution can be found. The Taylor Series, Euler’'s and Runge
Kutta methods are discussed.

6.1 Taylor Series Method

The Taylor series expansion about point z is

h? h? ht
f@+h) = f@)+hf'(@) + o @) + (@) + 5 )+

For a value z; > z, close to xy, we replace f(x + h) by y; and
f(z) by yo to get
h? h3 ht (4)
o / oo o e
Y1 = Yo + hyy + 5 Y0 T Y+ 5%
For another value x; > 77, close to x;, we repeat the proce-

dure then

h? h? ht (4
yg:yl—l—hyi—i—gyi'—kgyi”—l—ﬂ:ﬂ)+---
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In general,

h? h3 ht
1 = Ui + By 4 — 4 " =B 6.1
Yi+1 y+ yz+2yz+6yz+24yz + ( )
Example 6.1. Use the Taylor series method to obtain a solu-
tion of
y = —xy (6.2)

Jor values xy = 0.0, z1 = 0.1, 2o = 0.2, x3 = 0.3, 4, = 0.4, and
xrs; = 0.5 with the initial condition y(0) = 1. (use the Taylor
series up to y'Y).

Solution:

For this example, h = x; — o = 0.1, and by substitution into
equation 6.1 we have:

0.01 0.001 0.0001

Yir1 =y + 0.1y, + ——y! + ——1" y§4) +.--  (6.3)
2 6 24

for i = 1,2,3 and 4. The first through the fourth derivatives

of 6.2:

y' = —zy
Y =~y —y = —a(—ay) —y = (a* — )y
y" = (22 — Dy’ + 22y = (22 — 1)(—zy) + 22y = (—2® + 32)y

y W = (=22 4+ 32)y + (=32° + 3)y = (z* — 627 4 3)y

We use the subscript ¢ to express them as

Yi = —Tiyi
! = (z7 — 1)y,

y ) = (af — 622 + 3)y;
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where z; represents zy = 0.0, 1 = 0.1, zo = 0.2, 3 = 0.3, and
x4 = 0.4. Substitution these the values of the coefficients of
y; in 6.4 we obtain the following relations:

Yo = —xoyo = —O0yo =0
y = —z1y = —0.1y,
Yy = —Zays = 0.2y (6.5)
Y3 = —x3y3 = 0.3y3
Yy = — 434 = 0.4y,
Yo = (95(2) — Dyo = —wo
yi = (21 = Dy = —0.99y;
vy = (25— 1)y2 = —0.96y, (6.6)
v = (25 — Dy = —0.91y;
yi = (2§ — 1ys = —0.84y,
o' = (=g + 3z0)yo =
v = (—m‘;’ + 3x1)y; = 0.299y,
Yy = (=3 4+ 3x9)ya = 0.592y, (6.7)
yy = (— s + 3x3)ys = 0.873ys3
vy = (—2} 4 3z4)ys = 1.136y,
) Ty — 695% +3)y0 = 3y

(29
(] — 627 + 3)y1 = 2.9401y,
Yy = (15 — 6272 + 3)y;2 = 2.7616y, (6.8)
W — (28 — 623 + 3)ys = 2.4681y;
() — 623 + 3)ys = 2.0656y,
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By substitution of 6.5 through 6.8 into 6.3, and using the
given initial condition y, = 1, we obtain:

0.01r , 0.001 ,, ~0.0001 4

11 = yo + 0.1y, + 5 Yot L o1 Yo
0.01 0.001 0.0001
:1+O'1<0)+T(_1)+T(0)+ o4 (3)

= 0.99501

Similarly
0.01 , 0.001 , 0.0001

Yo =11+ O.ly{ + Tyl + T% Tyl

= (1 — 0.01-0.00495-0.00005 + 0.00001 )
= 0.98511(0.99501)
= (0.980194

0.01 0.001 0.0001
_ 1 / e 1 " (4)
y3 = y2 + 0.1y, + 5 y2+—6 Yy + o1 V2
= (1 — 0.02-0.0048-0.0001 + 0.00001 )y
= (0.97531)0.980194

= 0.955993

0.01 0.001 0.0001
Yo = y3 + 0.1y + —y5 + Ty:'a” 2—49§4)

2
— (1 = 0.03-0.00455 + 0.00015 + 0.00001 )y
= (0.9656)0.955993

= 0.923107

0.0l , 0.001 0.0001 4
ys = ys + 0.1y + T?JZ + Tyﬁf/ Tyz(x )
= (1 — 0.04-0.0042 + 0.00019 + 0.00001)y4

= (0.95600)0.923107

= 0.88249
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We can compare between the approximated and the analyt-
ical solution [y = e_TI} for the differential equation Z—i = —xy.
Homework

6.2 Euler’'s Method

Taylor expansion from equation 6.1 is
h2 h3 h4 4
i =1 hy 4y 4 "+ =y
Yi+1 Yi + yz+2yz+6yz+24yz +
Retaining the linear terms only of Taylor expansion gives
2
y(x1) = y(xo) + hy'(x0) + Ey”(fo) (6.9)

for some ¢, between zj; and z;,;. In general, expanding y(z;
about z; yields

2

i) = (o) + 0y () + 5y (60

for some ¢; between z; and z;,;. Note that y/(z;) = f(z;,y;)-
the estimated solution v, ; can be found via

known as Euler’s method.

Example 6.2. Consider the Initial Value Problem (IVP):
y+y=22, 0<z<l1 (6.11)

with initial condition y(0) =1 and h = 0.1.
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Figure 6.1: Comparison of Euler’s and exact solutions in Example 6.2

Solution:
we have f(z,y) = —y + 2z. Starting withx =0, y =1, as

y1 = y(0.1) = yo + hf(zo,%0)
—140.1£(0,1)
—140.1(=1) = 0.9

Now withx = 0.1, y = 0.9, calculate y, = y(0.2) as

yo =y + hf(x1,y1)
— 0.9+ 0.1£(0.1,0.9)

—0.940.1(=0.942(0.1)) = 0.83

and soon- - -.
The exact solution is y(x) = 2x + 3¢ * — 2.

so the exact y(0.1) = 0.914512 and y(0.2) = 0.856192. see figure
6.1
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6.3 Runge Kutta Method

The Runge Kutta method is the most widely used method
of solving differential equations with numerical methods. It
differs from the Taylor series method in that we use values
of the first derivative of f(x,y) at several points instead of
the values of successive derivatives at a single point.

For a Runge Kutta method of order 2, the following formulas
are applicable

Runge-Kutta Method of Order 2:

kl = hf(.Tn, yn)

1
Ynt1 = Yn + é(kl + ]{:2)

When higher accuracy is desired, we can use order 3 or or-
der 4. The applicable formulas are as follows
Runge-Kutta Method of Order 3:

Iy = hf(xn,yn)
I = hf(z, + gyn + %)
Iy =hf(x, +hy, +2(I — L) (6.13)
Yt = o + (0 + 4D+ )
Runge-Kutta Method of Order 4:
my = hf(n, yn)

h

> >
h
my = hf (v + 590 + %) 6.14)

my = hf(xn +h,yn + m3)

1
Yntl = Yn + é(ml + 2mo + 2m3 + my)
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Example 6.3. Compute the approximate value of y at x = 0.2
Jrom the solution y(x) of the differential equation

Y =z +y? (6.15)

given the initial condition y(0) = 1. Use order 2, 3, and 4 Runge
Kutta methods with h = 0.2.

Solution:

For order 2, we use 6.12. Since we are given that y(0) = 1,
we begin with = =0, and y = 1. Then

ki = hf(xn,yn) = hf(0,1)
=0.2(041%) = 0.2

ko = hf(x, + h,y, + h) =hf(0.2,1.2)
=0.2[0.2+ (1.2)*] =0.328

1
Y1 = Yo + §(k’1 + k2)

1
=1+ 5(0.2+0.328) = 1.264
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For order 3, we use 6.13. Then
= hf(zp,yn) = 0.2
= hf(xn+g,yn+ %) =hf(0+
= 0.262
= hf(zn + by, +2(12 — I1))
= 0.2f(0+0.2,1 + 2(0.262 — 0.2))

=0.2[0.2+ (1 +0.124)]
= 0.391

0.2 0.2
iy [
2 Y + 2 )

Y1 = Yo + 6(11 + 415 + I3)

1
=1+ 2(02+4(0.262 +0.391)
=1.273
For Order 4: we use 6.14. Then

my = hf(z,,y,) =0.2

h 0.2 0.2
:h n y Yn - ) — 2 _1 —_—
my = hf(z, + 2y+2) Of(O+2 +2)
= 0.262

h mo
=h n )

flan + 540+ 57)

0.2 0.262
=0.2f(0+ 1
—=0.276

my = hf(z, + h,y, +ms)
= 0.2f(0+0.2,1 4 0.276) = 0.366

1
Y1 = Yo + =(mq + 2mgy + 2ms3 + my)

o
1
= 1+ (02 +2(0.262) + 2(0.276) + 0.366)

=1.274
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6.3.1 EXERCISE

Compute the approximate value of y(z) of the following dif-
ferential equations using Taylor series, Euler’s, and Runge
Kutta Method of Order 2, 3, and 4.

1. /' = 32%. with h=0.1 and the initial condition y(2) = 0.5

2.y = —y® + 0.2sin(x). with h=0.1 and the initial condition
y(0) = 0.707

3. 3y = 2* — y. with h=0.1 and the initial condition y(0) = 1
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