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Chapter One: Methods of solving partial differential equations

Section(1.1): Origin of Partial Differential Equations
(1.1.1) Introduction:

Partial differential equations arise in geometry, physics and

applied mathematics when the number of independent variables in
the problem under consideration is two or more. Under such a
situation, any dependent variable will be a function of more than
one variable and hence it possesses not ordinary derivatives with
respect to a single variable but partial derivatives with respect to

several independent variables.

(1.1.2) Definition Partial Differential Equations(P.D.E.)

An equation containing one or more partial derivatives of an

unknown function of two or more independent variables is known
asa (P.D.E.).
For examples of partial differential equations we list the

following:

0z 0z
1'&+0__Z+Xy

6y{( )2+(—)}— —)
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(1.1.3) Definition: Order of a Partial
DifferentialEquation (O.P.D.E.)

The order of a partial differential equation is defined as the

order of the highest partial derivative occurring in the partial

differential equation.

The equations in examples (1),(3),(4) and (6) are of the first

order ,(5) is of the second order and (2) is of the third order.

(1.1.4)Definition: Degree of a Partial
DifferentialEquation (D.P.D.E.)

The degree of a partial differential equation is the degree of

the highest order derivative which occurs in it after the equation
has been rationalized, i.e made free from radicals and fractions so
for as derivatives are concerned. in (1.1.2), equations (1),(2),(3)
and (4) are of first degree while equations(5) and(6) are of second

degree.

(1.1.5) Definition: Linear and Non-Linear Partial

Differential Equations

A partial differential equation is said to be (Linear) if the
dependent variable and its partial derivatives occur only in the first
degree and are not multiplied . Apartial differential equation which

Is not linear is called a(nonlinear) partial differential equation.




Chapter One: Methods of solving partial differential equations

In (1.1.2), equations (1) and (4) are linear while equation
(2),(3),(5) and (6) are non-linear.

(1.1.6) Notations:

When we consider the case of two independent variables we

usually assume them to be x and y and assume (z) to be the
dependent variable. We adopt the following notations throughout
the study of partial differential equations.

0z 0z 0°z 0%z it 0%z
p_ax'q_ay'r_axz’s_axay a  Jy?

In case there are n independent variables, we take them to be

X1y X2y vee ven en ,X, and z is than regarded as the dependent variable.
In this case we use the following notations:

0z _ 0z _ 0z
- 0xq Pz = X, 0x,

Sometimes the partial differentiations are also denoted by

P1

making use of suffixes. Thus we write :

du du d0%u d0%u

ax W T Gy e T g Y T 502

2
y

and so on.
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(1.1.7) Classification of First Order p.d.es into:

linear, semi-linear ,quasi-linear and non-linear equations

*|linear equation: A first order equation f(x,y,z p,q) = 0

Is known as linear if it is linear in p,q and z , that is ,if given
equation is of the form:
P(x,y)p + Qx,y)q = R(x,y)z + S(x,y)
for example:
1.yx?p + xy?q = xyz + x%y3
2.p+q=2z+xy
are both first order L.P.D.ES

*Semi-linear equation: A first order p.d.e. f(X,y,z,p,q) = 0

Is known as a semi-linear equation, if it is linear in p and q and
the coefficients of p and q are functions of x and y only. i.e if the
given equation is of the form:

P(x,y)p + Q(x,y)q = R(x,y,2)
for example:

1.xyp + x%yq = x%y?z?

Xzyz

72

2.yp +xq =
are both semi-linear equations

*Quasi-linear equation: A first order p.d.e.f(x,y,z,p,q) = 0

Is known as quasi-linear equation, if it is linear in p and q. i.e if

the given equation is of the form:

P(x,y,2)p + Qx,y,2)9 = R(x,y,2)
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for example:
1.x%zp + y?zq = xy

2.(x* —yz)p + (y* —zx)q = 2% —xy
are both quasi-linear equation.

*Non-linear_equation: A first order p.d.ef(x,y,z, p,q) = 0 which

does not come under the above three types ,is known as a non-
linear equation.

for example:

1.p?+qg*=1

2.pq =z

3.x2p? + y2q? = 72

are all non-linear p.d.es.
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Section(1.2):Derivation of Partial Differential Equation
by the Elimination of Arbitrary Constants

For the given relation F(x,y,z a,b) = 0 involving variables
X,y,z and arbitrary constants a and b,the relation is differentiated
partially with respect to independent variables x and y. Finally

arbitrary constants a and b are eliminated from the relations

OF OF
F(X,y,z,a,b)—O,g—O and a—y—O
The equation free from a and b will be the required partial

differential equation.

Three situations may arise:
Situation (1):
When the number of arbitrary constants is less than the
number of independent variables, then the elimination of arbitrary
constants usually gives rise to more than one partial differential

equation of order one.

Example: Considerz =ax+y ............ (1)
where a is the only arbitrary constant and x,y are two
independent variables.

Differentiating (1) partially w.r.t. x, we get
0z

& e (2)

Differentiating (1) partially w.r.t. y, we get
0z

o = 1 3)
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Eliminating abetween (1) and (2) yields

Z=X(%)+y ............ (4)

Since (3) does not contain arbitrary constant, so (3) is also
partial diff. equation under consideration thus, we get two p.d.es
(3) and (4).

Situation (2):
When the number of arbitrary constants is equal to the
number of independent variables, then the elimination of arbitrary

constants shall give rise to a unique partial diff. eq. of order one.

Example: Eliminate a and b from

az+b=a’x+y ... (1)
Differencing (1) partially w.r.t. x and y, we have
0z
a (&) =a’ @\%............ (2)
0z
a (a—y) =1 &N 3)

Eliminating a from (2) and (3), we have

(62) (62) _q
ox/) \dy/
which is the unique p.d.e. of order one.

Situation (3):

When the number of arbitrary constants is greater than the
number of independent variables. Then the elimination of arbitrary
constants leads to a partial differential equations of order usually

greater than one.
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Example: Eliminate a, b and c from

Z=ax+by+cxy  ............ (1)

Differentiating (1) partially w.r.t. x andy we have
Zmatcy ) Z—;=b+cx ............ 3)
fom (2)and (3) 2= = 027 =0 4)

a‘f;y =C e, 5)

Vet v22 ML 1o+ o\
X=- yay—ax y +cxy +exy

from (1) and (5)

2

0z 0z 0%y
xax+yay—z+xyaxay ............ (6)

Thus, we get three p.d.es given by (4) and (6) which are all of

order two.

... Examples ...
Examplel: Find a p.d.e. by eliminating a and b from
z = ax + by + a% + b?
Sol. Givenz =ax+by+a?+b% ............ (1)
differentiating (1) partially with respect to x and y,

0z 0z
weget —-=a and O_y_b
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substituting these values of a and b in (1) we see that the

arbitrary constants a and b are eliminated and we obtain

(2 o)+ G+

which is required p.d.e.

Example2: Eliminate arbitrary constants a and b from
z=(x—a)?+ (y —b)? to form the p.d.e.

Sol. Given z=(x—a)’+(y—b)? ............ (1)

differentiating (1) partially with respect to x and y, to get

WA, . N
&—2(x—a) a—y—Z(y b)

Squatring and adding these equations, we have

2
(5) + G0 =427 + 4Gy~ b)?

97\
L\ (r 2
(52) + G2 =4l 2% + 5 — b
) :

(a—i) + (—)2 =4z  using (1)

Example 3: from p.d.es by eliminating arbitrary constants a and b

from the following relations:

@ z=akx+y)+b (b) z=ax+ by + ab
(c)z=ax+a’y?’+b (d)z=(x+a)(y+b)
Sol.(a) Givenz=a(x+y)+b ............ (1)

Differentiating (1) w.r.t.x and y, we get
0z 0z

ax a oy

9
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eliminating a between these, we get

0z % P :
x oy which is the required p.d.e.

(b)Try by yourself ~ (c)Try by yourself  (d)Try by yourself
... Exercises ...

Ex.(1):Eliminate a and b from z = axe¥ + %aze2y +b to form

the partial differential equation.

Ex.(2): Eliminate h and k from the equation(x — h)? + (y — k)? +

z? = a?to form the p.d.e.

Ex.(3): Eliminate a and b from the following equations to form the

p.d.es
@22=25+% (b)2z = (ax + y)? + b(c)log(az —

1)=x+ay+b

Ex.(4): Eliminate the arbitrary constants indicated in brackets from
the following equations and form corresponding partial diff. eqs
(1) z = AePlsinpx , (pand A)
(2) z= AeP’tcospx, (p and A)
(3) z=ax®+by> ,(aandb)
2
(4) 4z=|ax+(¥)+b| (aandb)

(5) z=ax?+bxy+cy? , (ab,)
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Section (1.3): Methods for solving linear and non-linear
partial differential equations of order one

(1.3.1) Lagrange's method of solving Pp + Qg = R,
when P, Q and R are function of x,v, Z.

A quasi-linear partial differential equation of order one is of
the form Pp + Qq = R, where P,Q and R are function of x,y,z.
Such a partial differential equation is known as (Lagrange
equation), for example: * xyp + yzq = zx

*x=-y)p+-z)g=z—-x

(1.3.2) Working Rule for solving Pp + Qq = R by
Lagrange's method

Step 1. Put the given quasi-linear p.d.e. of the first order in the
standard form Pp+Qgq=R ............ (1)

Step 2. Write down Lagrange's auxiliary equations for (1) namely
x _dy _ dz

PTG TR (2)

Step 3. Solve (2) by using the method for solving ordinary
differential equation of order one. The equation (2) gives three
ordinary diff. egs. every two of them are independent and give a

solution.

11
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Let u(x,y,z) =a and v(x,y,z) = b, then the (general
solution) is @(u,v) = 0, wher @ is an arbitrary function and the
complete solution is u = av + 3 where «, (3 are arbitrary constant.

Ex.1: Solve 2E — 3E = 2X
== 9x Ay

; 0z 0z
Sol. Given 2& — 3a_y =2X iiiiinnn. (1)

The Lagrange's auxiliary for (1) are

dx _ dy _ dz

ST T T g e (2)

Taking the first two fractions of (2), we have
%:f_i_) —3dx —2dy =0 ..co...... (3)
Integrating (3), =3x—2y=a ............ 4)

a being an arbitrary constant

Next, taking the first and the last fractions of (2), we get

KL, ydx=dz —xdx—dz=0..... ®))
2 2X

2
Integrating (5), >~ —z=b ....c.co.... (6)

b being an arbitrary constant

From (4) and (6) the required general solution is
X2
@(a,b) =0 - Q)<—3x— 2y,7—z) =0

Where @ is an arbitrary function.

2
Ex.2: Solve (y Z) p + xzq = y?

X

12
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Sol. leen( )p+xzq V2 (1)

The Lagrange's auxiliary equation for (1) are
dx dy dz

L )

yz  xz  y?
X

Taking the first two fractions of (2), we have

x?zdx = y?zdy - x?dx—y?dy=0 ............ (3)

3
Integrating (3), X? — y? =a > x>—y3=a; ...... (4)

a, being an arbitrary constant.

Next, taking the first and the last fractions of (2), we get
xy?dx = y?zdz - xdx—zdz=0 ............ (5)

i x? z?
Integrating (5), > - —=b - x? —z? = by ...(6)
b, being an arbitrary constant

From (4) and (6) the general solution is
B(a, b)) =0 - O3 —y3x2—-2z2)=0

Ex.3:Solve Xa_)z( + y% + t% = xyt

Sol. Given x—+ya +t——xyt ............ (1)

The Lagrange's auxiliary equation for (1) are
x _dy _dt_ dz

Ty T gt (2)

Taking the first two fractions of (2), we have
T L& oo 3)
X y X y

Integrating (3), Inx —Iny =lna - § =a ...... (4)
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Taking the second and the third fractions of (2), we get
dy _dt _ dy dt_

———=0 ............ (5)

y t y t

Integrating (5),Iny —Int=Inb - ==b ...... (6)

Next, taking the second and the last fractions of (2), we get
dy dz

S T xtdy —dz=0 ............ (7)
Substituting (4) and (6) in (7), we get
cyfdy—dz=0 ... (8)

Integrating (8), %y3 —z=c¢
Using (4) and (), -xXyt—z=c ... (9)
Where a, b and c are an arbitrary constant

The general solution is

@®(a,b,c) =0 @(Xy 1 t ) 0
= - —_ - - —_ =
(a,b,c y't'3Xy 7

@ being an arbitrary function.

Rule: for any equal fractions, if the sum of the denominators

equalto zero,then the sum of the numerators equal to zero also.

Now, Return to the last example depending on the Rule
above we will find the constant c.
Multiplying each fraction in Lagrange's auxiliary (2) by

yt, xt, xy, —3 respectively, we get the sum of the denominators is

14
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xyt+ xyt+xyt—3xyt=0 ............ (10)

Then the sum of the numerators equal to zero also:

ytdx + xtdy + xydt —3dz =0 - d(xyt) —3dz=0...... (11)
Integrating (11), xyt—3z=c ............ (12)

Note that (12) and (9) are the same.

Ex.4:Solve (y—z)p+(z—x)q=x—Yy
Sol.Given(y —z2)p+ (z—X)q=X—V .ceeevn..... (1)

The Lagrange's auxiliary equations for (1) are
dx dy dz

=W _ Az o g 2)

y—-z Z-X X-y

The sum of the denominators is
y—z+z—X+x—-y=0

Then, the sum of the numerators is equal to zero also, (by Rule)
dx+dy+dz=0 ............ (3)

Integrating (3), x+y+z=a ............ (4)

To find b, multiplying (2) by x,y,z resp. the sum of the
denominators is
X(y—z)+y(z—x)+z(x—y) = xy—x2+yz—xy+zx—yz=0
Then, the sum of the numerators is equal to zero

xdx +ydy +zdz=0 ............ (5)

2 2 2
Integrating (5), X? + y? + Z; =b ............ (6)

Where, a and b are arbitrary constants.

The general solution is

15
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x2 y? 72
@(a,b) =0 - ®<x+y+z,7+7+?>=0

... Exercises ...

Solve the following partial differential equation:
1. p tanx + q tany = tanz .

2. Zp = —Xx .

3.y°p —xyq = x(z—2y) .

4. (x*+2y*)p —xyq = xz .

5. xp+yq=1z.
6.(—a+x)p+(-b+y)g=(—c+2).
7.x°p+vy%q+2z°=0.

8.vzp + zxq = xy .

9.v%p + x%q = x%y?z? .

10 p=a=c25

(1.3.2) The equation of the form f(p,q) = 0

Here we consider equations in which p and g occur other
than in the first degree, that is non-linear equations. To solve the

equation f(p,q) =0 ......... (1)
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Taking p=constant=a ............ (2)
q=constant =b ............ 3)
Substituting (2),(3) in (1), we get
F(a,b)=0 - b= F;(a) or a=F,(b)........... 4)
Fromdz =pdx +qdy ............ (5)
Using (2),(3) = dz=adx +bdy ........... (6)
Integrating (6), z=ax +by+c ........... (7)
Where c is an arbitrary constant
Substituting (4) in (7) to obtain the complete integral (complete
solution)

z=ax+F,(a)y+c or z=F,(b)x+by+c .......... (8)

Ex.1: Solve p? + p = ¢
Sol. p2+p—q* =0 ........... (1)
The equation (1) of the form f(p,q) = 0
Let p=a,q=0»b
Substituting in (1)

a’+a—b>=0- b?’=a’+a »b=+ya%+a
The complete integral is

z=ax+by+c

=ax t+a’+ay+c

Where c is an arbitrary constant.

Ex.2: Solve pq = k, where k is a constant.
Sol. Giventhat pg =k ............ (1)

17
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Since (1) is of the form f(p, q) = 0, it's solution is

z=ax+by+c ............ (2)

Letp = a,q = b, substituting in (1) , thenab =k » b =% ..(3)

a

Putting (3) in (2), to get the complete solution

Z=ax + Sy + ¢ ; cisan arbitrary constant .

. 02 _ 50z _ 023
Ex.3: Solve s 36y_(6y)

Sol. Giventhatp —3g =¢q3 ........... (1)

Since (1) is of the form f(p,q) = 0, then

Let p=a, gq=0b

Substitutingin (1), a—3b=b% - a=b3+3b ......... (2)

Putting (2) in the equation z = ax + by + ¢ , we get
z=(b>+3b)x+by+c

Where ¢ is an arbitrary constant

The equation (3) is the complete integral .

(1.3.3) The Equation of the form z = px + qy + f(p.q)

A first order partial differential equation is said to be of

Clariaut form if it can be written in the form
z=px+qy+f®q) (1)
to solve this equation taking p = a , g = b and substituting
in (1), so the complete integral is
z=ax+by+ f(a,b) ...(2)

18
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Example 1: Solve z = px + qy + pq
Sol. The given equation is of the form z = px + qy + f(p, q)
let p = a and g = b substituting in the given equation, so

the complete integral is

Z=ax + by +ab

where a, b being arbitrary constant.
. 0z 0z 0z 0z 0z
Example 2: Solve x =Ty 9y~ Z 5—+—.
Sol. Rearrange the given equation, we have
Xp+yq=z—>5p+pq
Z=xp+yq+5p—pq ...(3)
Equation (3) is of Clariaut form

let p = a and g = b substituting in (3), then the complete

integral is |z =ax + by + 5a —ab

where a, b being arbitrary constant.

Example 3: Solve px + qy =z — p® — q3

Sol. Rearrange the given equation, we have
z=px+qy+p3+q°3 ..(4)
let p = a and g = b substituting in (4)

z = ax + by + a® + b3that is the complete integral and

a, b being arbitrary constants.

19
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(1.3.4) The Equation of the form f(z,p,q) =0

To solve the equation of the form

f(z,p,q) =0 ...(1)
l. Let u=x+ay ...(2)

where a is an arbitrary constant
2. Replace p and g by % and a;l—i respectively in (1) as follows,

dz 0z au_az au_dz

P=ox  ox ou 0udx du
0z dz Jdu 0z ou dz
Q—E—a.a—a.a—aa (3)
ou ou
from (2) a—l and 3 T C

3. Substituting (3) in (1) and solve the resulting ordinary

differential equation of first order by usual methods.

4. Next, replace u by x + ay in the solution obtained in step 3 to

get the complete solution.

Example 1: Solve z=p+¢q
Sol. Given equationis z=p+q ...(4)
which is of the form f(z,p,q) = 0. Let u = x + ay where a isan
arbitrary constant.

Now, replacing p and g by Z—i and aZ—z respectively in (4),

we get

20
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dz
=>z=(1+a)%

=>du=(1+a)% ...(5)
Integrating (5), u+c=1+a)lnz
where c is an arbitrary constant
Replacing u,
x+ay+c=Inz1+4

— epXtay+c — ,(1+a)

x+ay+c
— Z =€ 1l+a (6)

and that is the complete integral.
Example 2: Solve (2)2 zZ— (2)2 =1
] ox dy
Sol. Rearrange the given equation, we have
ptz—q* =1...(7)
This equation is of the form f(z,p,q) =0
Letu = x + ay , where a is an arbitrary constant
Now, replacing p and g by % and as—i respectively in (7), we
get
(dZ)2 ( dZ)2 _4
du Z7\4 du)
— - (L) -1
(z—a*) ) =
= +Vz — a? % =1 Dby taking the square root

= +Vz—a?dz =du...(8)

21
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Integrating (8),

3
t2(z—a?)z=u+c..©9)

Replacing u in (9) to get the complete integral

2 3
ig(z—a2)5=x+ay+c

(1.3.5) The Equation of the form f;(x,p) = f>(y.q) =0

In this form z does not appear and the terms containing x and p
are on one side and those containing y and g on the other side.
To solve this equation putting
fitx,p) = L0,9) = a...(1)
where a is an arbitrary constant
~ filkp)=a = p=g.(xa)...(2)
L) =a = q=g:(ya)...03)
Substituting (2) and (3) in dz = pdx + qdy, we get
dZ = gl(xr a)dx + gZ(y; a)dy(4)
Integrating (4),

z = ng(x,a)dx+fgz(y,a)dy+b

which is a complete integral containing two arbitrary constantsa
and b.

Example 1: Solve p = 2xq?

Sol. Separating p and x from g and y, the given equation reduces

b _ 2
tox = 2q*“...(5)

22
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Equating each side to an arbitrary constant a, we have

B =da = = ax
x p
a
2¢°=a =q=+ |-
2
Putting these values of p and g in
dz = pdx + qdy , we get
dz = axdx + \/%dy ...(6)

Integrating (6), z = %xz + \/g y+b

where a and b are two arbitrary constants.

Example 2: Solve xq — y?p — x*y* =0
Sol. Separating p and x from g and y, the given equation reduces

p+x* _ q
= y2'°°(7)

to

Equating each side to an arbitrary constant a, we have

p+x?

—=a = p=ax—x* ...(8)
%=a = g=ay? ...(9)
Putting (8) and (9) in dz = pdx + qdy , we get
dz = (ax — x?)dx + ay*dy ...(10)
2 3
Integrating (10) , [z = = — %3 +a>=+b

which is a complete integral containing two arbitrary constantsa
and b.

23
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Example 3: Solve p—3x%2 = q*> -y

Sol. Equating each side to an arbitrary constant a, we get
p—3x?=a = p=a+ 3x? ..(11)
°-y=a = qg=+Ja+y ...(12)

Putting these values of p and g in dz = pdx + qdy , we get
dz = (a + 3x?)dx £ Ja + ydy ...(13)

Integrating (13) , z = ax + x3 i%(a + y)3/2 + b

which is a complete integral containing two arbitrary constant a
and b.

(1.3.6) Charpit’s Method (General Method of Solving
p.d.es of Order One but of any Degree)

Let the given p.d.e of first order and non- linear in p and g be
f,y,2,p,q) =0 .-(1)

To solve this equation we will use the following charpit’s

auxiliary equations.

dp dq dz _dx _dy
of of ~ of of af of — _of  _of
ox " Po oyt 9% TP 9% "o Tag
or
dp dq dz dx dy

fe+vf, h+af. —ph—dfa —f —fa
After substituting the partial derivatives in charpit’s auxiliary
equations select the proper fractions so that the resulting integral
may come out to be the simplest relation involving at least one of p

and gq.

24
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Then, putting p and g in the relation dz = pdx + qdy which

on integration gives the complete integral of the given equation.

Example 1: Solve z = px + qy + p? + ¢* by charpit’s method.
Sol. Let f(x,v,2,p,9) =z—px —qy —p* —q* =0...Q2)
charpit’s auxiliary equation are

dp dq dz dx _ dy

ft0fs fytdfs —Pho—afy —f» —1
From(2) f,=-pr.f,=—q.f,=1.f,=—x-2p,fp=-y—2q

dp  dq _ dz _dx
—p+p —q+q pl+2p)+qy+2q) x+2p
dy
Ty +2q

Taking the first fraction dp =0 - p =a...(3)
Taking the second fraction dg =0 — q=0b ...(4)
Substituting (3) and (4) in (2) to get the complete integral

z = ax + by + a? + b?

where a and b are arbitrary constants.

Example 2: Solve 2zx — px* —2qxy + pq = 0 by charpit’s
method.
Sol. Let f(x,y,z,p,q) = 2zx — px? —2qxy + pq = 0...(5)

fx =2z = 2px —2qy, f, = —2qx, fz =2xfp =
—x%+q, fo=—2xy+p
Substituting in charpit’s auxiliary equations , we get
dp _ dq _ dz _dx __ ady (6)
2z-2px—2qy+2px  —-2qx+2qx  —-p(-x2+q)—q(-2xy+p) x%2-q 2xy-p "
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Taking the second fraction of (6)
dg=0 - qg=c...(7)
Substituting (7) in (5)
2zx —px*> —2cxy+cp =0

__ 2xz-2cxy 2x(z—cy)

p - x2—c - p = Y2—c (8)
Putting (7) and (8) in dz = pdx + qdy
2x(z—c 2x(z—c
dz = (2 Y) dx + cdy = dz — cdy = (2 Y) dx
xXc—c x4 —c

dz—cdy _ 2xdx

..(9)

Integrating (9), In|z — cy| = In|x?> = c| +1Inb

(z—cy)  x2-c”

z—cy =b(x?*—¢)

z =b(x*>—c)+cy

which is a complete integral where b and c are two arbitrary
constants.
... Exercises ...

Solve the following equations:

1. g = 3p?

2.zpq =p+q

3.p* —yiqg=y" —x*

4. (y*+4)xpg— (x> +2)=0
5.q—px—p*=0

6. px +qy = pq

8.p2—q? =z
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(1.3.7) Using Some Hypotheses in the Solution

Sometimes we need some hypotheses to solve the partial
differential equation, here we will give three types of hypotheses.

A) When the equation contains the term (px) or its’ powers we use

the hypothesis X = Inx

as follows
=%=%.6—X=E.6—X=z.1(since X=Inhx = a—le)
dx dx 0X 0X Ox 0X x dx X

0z

=>xp=§

Then substituting this result in the given equation and solve it by

previous methods.

Example 1: Solve z = px by hypotheses

Sol. From X = Inx we have xp = Z—)Z( ..(1)

Substituting (1) in the given equation, we get

) d
2= = ox =% ()
Integrating (2), X =Inz +1In@(y) ...(3)

where @ is an arbitrary function for y
replacing X in (3) to get the complete integral
Inx =Ind(y).z

=|z =-24...(4)
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Example 2: Solve ¢ = px + p*x? by hypotheses
Sol. Given that g = px + (px)? ...(5)

0z

from X =Inx wehave Xp = % ...(6)

Substituting (6) in (5), we get

0z 92\ 2

q=7xT (a_x) ..(7
0z .

Let P tthen (7) will be

q=-t+t? ..(8)

The equation (8) is of the form f(t,q) = 0

Thenlett = a and g = b, putting in (8) b = a + a?
Substitutingin z=aX + by + ¢
=z=aX+(@+a?>)y+c...(9

where c is an arbitrary constant

replacing X in (9) to get the complete integral

z=alnx+ (a+a®)y+c

B) When the equation contains the term (qy) or its’ powers we use

the hypothesisY =1ny

as follows:
0z dz 0Y dz 0Y oz 1, . ay 1
q=@=5.5=5.5=5.;(smce Y=lhy = 525)
0z
=>Cly=a—y

Then solving by the same way in (A).
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Example 3: Solve 2p + qy = 4 by hypotheses

Sol. Giventhat 2p+qy =4 ...(10)
fromY =1Iny we have qyzg—i ..(11)
Substituting (11) in (10), we get
2p + 0z _ 4
PT oy =
Let 2= tthen,
oY
2p +t =4 ...(12)

The equation (12) is of the form f(p,t) = 0

Thenletp = aand t = b, putting in (12) 2a+ b =4
—=b=4-2a ...(13)
Substituting (13) in z =ax + bY + ¢

= z=ax+ (4 —-2a)Y +c...(14)

where c is an arbitrary constant

replacing Y in (14) to get the complete integral

z=ax+(4—-2a)lny+c

Example 4: Solve p?x? = z? + q*y* by hypotheses

Sol. Given that p2x? = z2? + g2y? ...(15)
fromX =Ilnxand Y =Iny we have
0z 0z
xp—a—Xand qQy =, ...(16)
Substituting (16) in (15), we get
0z 2 _ 2 0z 2
() =22 +(2) ..(17)
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Let t =2 and r = %putting in (17)

0X

2 _ 12 — 52

Note that (18) is of the form f(t,r,z) = 0

Taking u=X+aY

_62_62 ou dz odu E

T 9x 0x'0u  ou'0X  du
_62 0z 0u Jdz Jdu E

~ oy ovou ouor %au
u

Ju
because ( a_x=1 and Eza)

Then ¢t

r

putting (19) in (18)

(dZ)Z y (dZ)2
=) g2 (=
du du

=Z

(1—a?) (dz>2 = 72

du
> dz _
du

HV1-a?% = du
Integrating (20),

+Vv1—a

+Vv1—a?lnz=u+c (cisconstant)

Now, replacing u in (21) to get the complete integral

+V1l—a?lnz=X+a¥Y+Inc ...(22)

Next, replacing X and Y in (22) to get the complete integral

+v1—a?lnz=Inx+alny+Inc

Inz? =lncxy*  where b = +V1 — a?

= zP = cx y®

30
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=% (taking the square root)

...(19)

..(18)

.(20)

.21

..(23)
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So, (23) is the complete integral.

C) When the equation contains the terms > or * or its’ powers we

use the hypothesis|Z = In z

as follows:
=02 0202 _0z %Z_ 0% (sincea—z—z)
T 9x 9x'9z 9z ax  ox 0z
YA
hence 2=22
z ox
RYA
by the same way we have = P

then substituting this terms in the given equation and solve it by the

same way in (A) and (B).

Example 5: Solve px+qy =2z by Z=1Inz

Sol. Giventhat px +qy =z ...(24)

Dividingonz, Zx+1y =1 ...(25)
' = LAY 9y /4 i ting

usingZ =Inz we have S and 7.3 ,substituting in (25)
YA YA

Let t =22 and r = Zthus, (26) would be
0x dy

xt+yr=1 ...(27)
Clear that (27) is of the form f;(x, t) = £, (y, 1)

Then putting x, pin one side and y, g in the other side
xt=1—-ry=a (a is constant)

Then xt=a —>t=§ ...(28)
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l—ry=a —>r=% ...(29)

Substituting (28), (29) in  dZ = tdx + rdy

a 1—a
=>dZ—;dX+7dy ...(30)
Integrating (30), we get

Z=alnx+(1—-a)lny +1Inb (where b is constant)
Replacing Z from the hypothesis to get the complete integral

~Inz = In(bx%y(1-9) (by properties of In)

= |z = b x?y(1-9) ...(31)

Then (31) is the complete integral.

Example 6: Solve p? + q* = z*(x + y) by hypotheses

Sol. Dividing on z?2,

2 2

e+ L =x+y ...(32)
usingZ =Inz we have g = Z—i and g = g—i ;substituting in (32)
0z\% . (92\?* _ 1
(a) +(5) —x+y ( )

Let t = Z—i and r = g—iputting in (33)
t’?+r2=x+y ...(34)
Then t2—x=a »>t=+Va+x
y—ri=a -or=+/y—a
Substituting in  dZ = tdx + rdy

= dZ = +vVa + xdx + +,/y —ady ...(35)
Integrating (35), we get
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Z=4= g (a + x)3/2 + % (y — a)3/2 +c (where c is constant)

Replacing Z from the hypothesis to get the complete integral

2 2
=|nz = ig(a+x)3/2 ig(y—af/z + ¢

... Exercises ...
p’x* =z(z - qy)
pq = z%ysecx
p+q=ze Y
p? +2q = z°(x = y)
p* +2zp = z*(x =)
p? 4 q% = 72
xp +4q = cosy

© N o 0 B~ 0 DN PE

p*+q* =2z%
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Section(1.4): Homogeneous linear partial differential
equations with constant coefficients and higher order

A linear partial differential equation with constant coefficients is
called homogeneous if all it's derivatives are of the same order.

The general form of such an equation is

oz

0"z 0"z
AO@+A1W+°"+Anm=f(x»y) ............ (1)

Where Ay, A4, ..., A, are constant coefficients.

For example:
0%z 9%z 9%y
1. 3-5+5 awog T By 0 homo. of order 2.
93z 93z 33z 53y
2. 2553 5200 ° Fxay2 B a5y = LAV homo. of order 3.

For convenience aa_x and % will be denoted by D or D, and D’

or D, respectively. Then (1) can be rewritten as:

(AoD} + A1D} Dy i AD)z = f(x,¥) oo (2)

On the other hand, when all the derivatives in the given equation
are not of the same order, then it is called a non-nomogenous linear
partial differential equation with constant coefficients.

In this section we propose to study the various methods of solving
homogeneous linear partial differential equation with constant
coefficients, namely (2).

Equation (2) may rewritten as:

F(Dy,Dy)z=f0,y)| oo (3)
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Where F(Dy,Dy) = A¢D} + A1 D} 1Dy,  AnDY
Equation (3) has a general solution when f(x,y) =0

i.eF(Dy,Dy)z =0

- (AoD;g' + AlD;-l_lDy+...+AnD§})Z == O (4)

And a particular solution (particular integral) when f(x,y) # 0

“ Now, we will find the general solution of (4)

Let z = @(y+ mx) be asolution of (4) where @ is an arbitrary

functionand m is a constant, then
D,z=0"(y+mx).m
D%z = @ (y + mx).m?

DIz = 9™ (y + mx).m"

DD,z =m@"(y + mx)
DD,z = m*@®)(y + mx)

DiDyz = m" @+ (y + mx)

= m" 0™ (y + mx) ,where r+s=n
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Substituting these values in (4) and simplifying, we get :
(Agm™ + A;m™ T+ A,m" 2 + -4+ 4,)0™(y + mx) =0 ...(5)
Which is true if m is a root of the equation
Aym" + Am™ I+ A,mh 2+ -+ A, =0 L. (6)

The equation (6) is known as the (characteristic equation) or the
(auxiliary equation(A.E.)) and is obtained by putting D, = m and
D, =1 inF(D,,D,)z = 0, and it has nroots.

Let my,m,,...,m, be n roots of A.E. (6). Three cases arise:
when the roots are distinct.
If my,m,,..,m, are n distinct roots of A.E. (6) then
O.(y +myx),0,(y + myx), ...... ... ,0,(y + m,x) are the linear
solution corresponding to them and since the sum of any linear
solutions is a solution too than the general solution in this case is:

z=0,(y+mx)+0,(y + myx)+ -+ 0,(y + myx) .....(7)

Ex.1: Find the general solution of
(D3 + 2D%D, — 5D, D5 — 6D3)z =0

Sol. The AEE.ism3 +2m? - 5m—6 =0

> (m+1D)(mM*+m—-6=0

- m+1)(m+3)(m—-2)=0

my=-1, m,=-3, my=2
Note that m,,m, and m; are different roots, then the general
solution is

z=0,(y +myx)+ 0,(y + myx) + 03(y + m3x)
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- z2=0,(y—x)+0,(y —3x) + 05(y + 2x)
Where @, , 0, ,®5 are arbitrary functions.

Ex.2: Find the general solution of m? —a? = 0 where a is a
real number.

Sol. Giventhat m? —a? =0 — m? = a?

The general solution is
zZ = @1()’ + ax) + Qz(y — ClX)

Where @,,@, are arbitrary functions.

when the roots are repeated.

If the root m is repeated k times.lem; =m, = =my,

then the corresponding solution is :

z=0.(y + mx) +x0,(y + myx) + -+ x*710,. (y + myx) }..(8)

Where @4, ..., @, are arbitrary functions.

Note: If some of the roots m,,m,,...,m, are repeated and the
other are not . i.e. my = m, = -+ = my, * My, * -+ ¥ m, then

the general solution is :

z=0.(y + mx) + x0,(y + myx) + -+ x*71@,, (y + myx) +
D1y +mpx)+ -+ 0,(y+myx) ............ (9)
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Ex.3: Solve (D3 — D3D, — 8D, D% + 12D3)z = 0
Sol. The AE.is m3—-m?—-8m+12=0
-» (m=-2)(m-2)(m+3)=0
m =m,=2 , mg=-3
Then, the general solution is
z=0:(y + 2x) + x0,(y + 2x) + B3(y — 3x)

Where @, , @, , @5 are arbitrary functions.

Ex.4: Find the general solution of the equation that it's A.E. is :
(m—-1?*m+2¥m—-3)(m+4)=0
Sol. Giventhat (m—1)?(m+2)*(m—-3)(m+4) =0
m=my,=1 mg=my=mg=-2 ,mg=3 ,m;=—4
The general solution is
z=0:(y+x) +x0,(y +x) + D3(y — 2x) + x@,(y — 2x)
+x2@5(y — 2x) + B6(y + 3x) + 97 (y — 4x)
Where @, , ... , @, are arbitrary functions.

When the roots are complex.

If one of the roots of the given equation is complex let be m,

then the conjugate of m, is also a root, let be m, , so the general

solution is:
z=0,(y+mx)+0,(y + myx)+ -+ 0,(y + m,x)
Where @, ... ,@,, are arbitrary functions.
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Ex.5: Solve (D5 + D3)z = 0

Sol. The A. E. is m?>+1=0 - m=+i

The general solution is
Z = @1(}7 + lX) + @2()1 - l.X)
Where @,,@, are arbitrary functions.

Ex.6: Solve (D% — 2D,D, + 5D3)z =0
Sol. TheA.E.is m?—-2m+5=0
2++v4—-20
2
m1=1+2l ,m2=1—2i
z=0,(y+ (1 +20)x) + 0,(y + (1 — 2i)x)

That is the general solution where @, ,®, are arbitrary functions.

21

- m

Ex.7: Solve (D; — D3Dy, + 2D%D% — 5D, D5 + 3D})z = 0
Sol. The AE.is m*—m®+2m?-5m+3=0
-» (Mm-1?m?*+m+3)=0

~14V1-12 _ —14V11i
2 o 2

1+ v11i
a 2
Then, the general solution is

m=m,=1, m=
1 2

_—1—11i
B 2

- ms y My
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z=0,(y+x)+x0,(y+ x) + 05 <y + (_1 +2\/Hi)x>
. o, (y . (—1 —Zx/ﬁi)x)

Where @,,...,0, are arbitrary functions.
¢ Particular integral (P.1.) of homogeneous linear
partial differential equation
When f(x,y) # 0in the equation (3) which it'SF(Dx,Dy)Z = f(x,y)

multiplying (3) by the inverse operator— of the operator

( X Y)
F(D,, D) to have

1 1
F(Dx,Dy) ' F(Dy,Dy) z = F(Dx.Dy) f(xy)

Sl z= F(D;Dy) FOo,V) |, (11)

Which it's the particular integral (P.1.)

The operator F(D,, Dy ) can be written as

F(Dy,D,) = (Dy — myD,)(Dy = m,D,) ... (Dy — myDy) ....(12)
Substituting (12) in (11) :

1
(Dx—mlDy)(Dx—szy)...(Dx—m Dy)

o [0 )

. (D —my y)ul fxy)
This equation can be solved by Lagrange's method .

7 =

f,y) . (13)

Taking u; =

The Lagrange's auxiliary equations are
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Taking the first two fractions of (14)

mydx+dy=0 ->|myx+y=al| .......... (15)
Taking the first and third fractions of (14)

_ du1 _
dx = oy flx,y)dx =duy| .......... (16)

Substituting (15) in (16) we have
f(x,a—mux)dx = du,

Integrating the last one we have
U= Jf(x,a —mpx)dx + b

Let b =0, then we have u,
By the same way , we take

%
DX R 4 mn_lDy

U, = uq

And solve it by Lagrange's method to get u, , then continue in

this way until we get to

1
Z=Upn = Un—1

And by solving this equation we get the particular integral (P.1.)

Ex.1:solve (D% —D3)z = sec*(x +y)

Sol. Firstly, we will find the general solution of

(pZ-D2)z=0 ... (1)

The A Eis m?—1=0->m?=1 - m=+1
my =1, my =-1
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L Zz=0v+x)+0,(y—x) (2)
Where @,,®, are arbitrary functions.

Second, we will find the particular integral as follows

1 2
—Dzsec (x+y)

— (.= D,)D, 7 D) sec?(x +y)

1
(DxtDy)

Let u, = sec?(x +y)

(D, + Dy)ul = sec?(x + y)
The Lagrange's auxiliary equations are

dx dy du,
1 1 sec?(x+7y)

Taking the first two fractions

dx=dy - x—y=a  .......... 3)
Taking the first and third fractions
du
dx = leﬂ/) - sec’(x+y)dx=du;  .........

Substituting (3) in (4), we have
sec?(2x —a)dx =du;  ............ (5)

Integrating (5), we have

Uy = %tan(Zx —a)+b
Let b =0 andreplacing a , we get
Uy = %tan(x +y) (6)

Putting (6) in z,
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1 1
Z, = —— * -tan(x + y)
? (Dx - Dy) 2

1
> (Dy —Dy)z; = Etan(x +9)

The Lagrange's auxiliary equation are
dx dy dz,
1 -1 %tan(x + v)

Taking the first two fractions
dx =—dy - x+y=a .......... (7)
Taking the first and third fractions

dz,

dx = 7
Etan(x +y)

%tan(x + y) dx = dZ2 ........ (8)
Substituting (7) in (8)
%tana dx = dZZ ......... (9)

Integrating (9) , we get

1
Extana =2z,+Db

Let b = 0, and replacing a from (7) we get the particular integral

Z, = %xtan(x + V) (10)

Hence the required general solution is
Z=2Z1+2,

=@1(y+x)+Q)2(y—x)+§tan(x+y) .......... (11)

Short methods of finding the P.I. in certain cases :
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|Case 1 |When f(x,y) = e***bY where a and b are arbitrary

constants

To find the P.l. when F(a,b) # 0, we derive f(x,y) for x any y

n times:

Dxeax+by — aeax+by

D}%eax+by — azeax+by

D;C'Leax+by — aneax+by
Dyeax+by = beax+by

D)%eax+by o bzeax+by

Djr}eax+by = bneax+by
D;Dye®™*PY = q"hSe®**bY where r+s=n
So
F(Dx, Dy)eax+by — F(a, b)eax+by

1

Multiplying both sides by FnDy) | we get
eax+by — 1 F(a b)eax+by
F(Dy, Dy)
Since F(a, b) # 0, then we can divide on it :
1 ax+by _— 1 ax+by *
D) F(DnDy) ey

Which itis equal to z , thenthe P. 1. is
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— 1 ax+by _— 1 ax+by
zZ = FDnDy) e D) e , where F(a,b) # 0

when F(a,b) = 0, then analyze F(D,,D,) as follows
a
F(Dy,Dy) = (Dy — EDy)rG(Dx»Dy)

Where G(a, b) # 0, we get
1 1

— ax+by _— eaxtby
a
F(Dx’ DJ’) (Dx - EDy)rG(Dx: Dy)

_ 1 1
= a
(Dx_gDy)r G(a,b)

Z

eax+by from *

Since G(a,b) # 0
15! 1
G(a,b) (D, — %Dy)r

eax+by

Then by Lagrange's method r times , we get
1 1 x"

ax+by _ - —e

" F(DuDy) G(a,b) 1!

ax+by

Z

Which it's the P.l. where F(a,b) =0, G(a,b) # 0

Ex.2: Solve (D% — D, D, — 6D%)z = e**~3Y
Sol.
1) To find the general solution
The A.E. of the given equation is
m>—m—-6=0 - (m—-3)(m+2)=0
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vz =0,y +3x) + 0,(y — 2x)
Where @,and@,are arbitrary functions
2) To find the particular Integral (P.1.)
a=2,b=-3
F(a,b) = a? — ab — 6b?
F(2,-3)=44+6—-54=—-44+#0

1 1
eax+by — er—Sy

“2 = F(a, b) —44

nZ =21+ Z

1
=0;(y +3x) + 0,(y — 2x) — E€2x—3y

Ex.3: Solve (DZ — D, D, — 6D3)z = e3**Y
Sol.
1) The general solution is similar to that in Ex.2
2) To find P.1.
e
F(a,b) = a® — ab — 6b?
F31)=9-3-6=0,
analyze F(Dy,D,),F(Dy,D,) = D% — D,D,, — 6Dy
= (Dx —3D,)(Dy + 2D,)
(Dx—%Dy)r—w.r:l, 342=5#0=G

1 x"

— . e3X+y — fe3x+y
G(a,b) 7!

eadxtby —

X
Zz I
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X
=0:(y +3x) +0,(y — 2x) + §e3x+3’

Where @,and@,are arbitrary functions

Case 2 I when f(x,y) = sin(ax + by) or cos(ax + by)

where a and b are arbitrary constant
Here, we will find the P.1. of (H.L.P.D.E.) of order 2 only, by

the same way that in case 1 we will derive f(x,y) forx and y .
Let f(x,y) = sin(ax + by)
D,sin(ax + by) = acos(ax + by)
D2sin(ax + by) = —a? sin(ax + by)
Dysin(ax + by) = b cos(ax + by)
D3 sin(ax + by) = —b* sin(ax + by)
D,.Dy sin(ax + by) = D,[b cos(ax + by)]
= —ab sin(ax + by)
F(D% D,D,,D?)sin(ax + by) =F(—a? —ab, —b?) sin(ax + by)

1
,DxDy,D%)

Multiplying both sides by F(02

1
F(D%,DxDy,D3

sin(ax + by) = )F(—az, —ab, —b?) sin(ax + by)

If |F(—a? —ab,—b?) # 0 | then we can divide on it
1
" F(DZ,D,D,,D2)
1
- F(—a?,—ab,—b?)
Which it is the particular integral.
And if F(—a? —ab,—b?) = 0 then we write
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o ei@ _ e—ie 0 ei9 + e—iG
siIng = —— CcoS e —
20 ’ 2

And follow the solution of the exponential function in casel.

Ex.4: Solve (D% — D, D, — 6D%)z = sin(2x — 3y)
Sol.
1) The general solution z; is the same in EXx.2
2) The P.1.z,
a=2,b=-3
F(—a? —ab,—b?*) = —a? + ab + 6b*?
F(—4,6,-9)=—-4—-6+54=44+0

1
Z, = Esin(Zx —3y)

The required general solution

nZ =21+ 7

1
=0,y +3x)+ 0,(y — 2x) + ﬂsin(Zx — 3y)

Where @,and@,are arbitrary functions.

Ex.5: Solve (D% —3D,D, + D2)z = e***3Y + e**Y + sin(x — 2y)
Sol.
1) Finding the general solution z;
The A.E. is
m?—-3m+2=0 = (m-2)(m-1)=0

-’-m1=2,m2=1
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vz =0.(y +2x) + 0,y + x)
where @, and @, are arbitrary functions.

2) The P.I. of the given equation is
1

— — 2x+3y x+y : _

P.l. =z, F(DwDy) e +o Doy e + o Do) sin(x — 2y)

1
Let u, = e2*+3y a=2b=3

L F(DyDy)
F(D,,Dy,) = a* — 3ab + 2b?
F(1,1)=4-18+18=4 %0
1
u, = Zer+3y
— 1 x+y \ L b b 1
Uy, = F(DxDy) e a=1>b=
F(Dy,D,) = a? — 3ab + 2b?
F(1,1)=1-34+2=0
Analyze F(D,,D,),
F(D,,D,) = (D, — 2Dy)(D, — D)
— 1 xr ax+by
Y2 = G(a,b) Tl
1 x
— _ __pxty
—11°
U, = —x e
— 1 3 2
Uz = F(Dy, Dy) sin(x — 2y)

F(—a? —ab,—b?*) = —a? + 3ab — 2b*
F(-1,2,-4)=-1—-6—-8=-15%#0

1
U, = ——sin(x — 2
3 T ( y)
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Then, the required general solution is

1
z=2z+2, =0,(y +2x) + 0,(y + x) +Zezx+33’ — xe*ty

L
— Esm(x —2y)

where @, and @, are arbitrary functions.

Ex. 6: Find the P.l. of the equation

(DZ — 4D,D, + 3D2)z = cos(x + y)
Sol.a=1,b=1
F(—a? —ab,—b?) = —a® + 4ab — 3b*
F(-1,-1,-1)=-14+4-3=0

. ix+iy 4 ,=ix—=iy
Taking cos(x +y) = *¥———

2

7 = 1 1 eix+iy 4 1 e—ix—iy
2|DZ%—4D,D,, + 3D2 Dz — 4D,.D,, + 3D?
X x~y y x xX=y y
Letu, = —— iy

DZ—4DyD,+3D5

Tofinduja=ib=i

F(a,b) = a® — 4ab + 3b?

F(i,i) = i®* — 4i*+3i* =0
Analyze F(D,,D,),

F(D,,D,) = (D, — D,)(D, — 3D,)

U, = xeix+iy

—2i

1 L
By the same way u, = ~ xe— iy

R .yl
— | Xty 4 —ix—i
Z 5 _Zixe lee
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—x [eix+iy_e—ix—iy]

— = —sin(x + y)which is the P.I.

Case 3|When f(x,y) = x*y®? where a and b are Non- Negative
Integer Number

The particular integral (P.l.) is evaluated by expanding the

function in an infinite series of ascending powers of D, or

1
F (Dy.Dy)

D,, (i.e.) by transfer the function according to the following

(xy)

! = LHiG G
1-6

Ex.7: Find P.1. of the equation (D% — 2D, D))z = x3y

— 1 3
Sol.P.1. —D%_ZDnyx y
:ﬁaﬁy, Djy™ =0if n>m
D}(1-250)
1 Dy 4D} 4Dy
_D§[1+20x D2 + - ]xy , =0
lx y+ X ]

_ 1 xTy _ Xy x
_Dx[4+10] 20 T 60

Ex.8: Find P.1I. of the equation (D3 — 7D, D% — 6D3)z = x*y

Sol. P.I. = ! x2y

D3—7DyxD3—6D5
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1
= xzy

2 3

D3|1— 7D_y+6D_y
X D2 D3
X X

1 7D2  6D3\ [(7D2 6D3\°
=—[1+(=+= )+ +=) + |x%y
Dy Dy Dy Dy Dy
_ L2 singe (7 4 99 — o (72 L 6P\ _
—D;[x y]S|nce(D§+D;)—O,(D§+D;) =0
_1x’y  1x*y xPy
D23 D,12 60

Ex.9: Solve (D; —a®D,D3)z = x,wherea € R
Sol.

1) the general solution z,
The A.E. of the given equation is
mi—a’m=0 = m(m?—-a?)=0

= mm-a)im+a) =0

~my =0,m, =a ,m3=—a (differentroots) . z, = 0,(y) +
?,(y + ax) + @3(y — ax)
where @,,®, and @5 are arbitrary functions.

2) The P.I. of the given equation is

P.l. =2z,=
. 2 2
Dy—a?DyD;
_ 1
- 2p2
D3 1_a Dy
X 2
Dx
1 a®D3 a’Dy 2 a®Dy aDy 2
=S[1+22+ (22) +|xEE=0,(52) =0)
D3 D2 D2 D2 D2
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1
=—|x
Dg[]
1 x?
- DZ|2
1 [x®] x*
D 6| 24

then, the required general solution is

z2=21+2; =0:(y) + 0,(y + ax) + B3(y — ax)+§

When f(x,y) = e®**2YV where V is a function of x
and y

The P.I. in this case is z = ——— g@x+by y
F(Dx:Dy)

1

— padx+tby 174
F(Dy+a, D, + b)

and solving this equation depending on the type of V can get the
particular integral (P.1.), as follows:

Ex.10: Find P.I. of the equation D, D,z = e***3Yx%y

1

Sol. P.l. =——e?*3x2yq=2,b=3andV = x*y
DDy
—,2x+3y 1 2
€ (Dx+2)(Dy+3)x y
_ p2x+3y 1 2

3(Dy +2)(1 + %)x

DZ

1 D
ey 1+ Dy Dy |2
3(Dx+2)[ 379 ]xy

=e
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2
_ p2x+3y 1 xzy_x_
3(D, + 2) 3
2
_ vy 1L [xz _x_]
6(1+ = 3
_lpzee3y[q _Dx DE Dy ([,2, _ %] (2%
_6ex y[l T2 7%t ny 3]’(8_0)
1 x? x y 1
— _ p2x+3y 27, _ — z
e [xy 3 xy+3+2 6]
1 x? 1 x oy 1
— 2X+3y | A28, 4+ — 4+ = — —
¢ [6’”’ 18 67 18" 12 36

Ex.11: Find P.1. of the equation (D% — D, D, )z = e**¥ xy?

Sol.
Pl == 2 —e*™ xy?a=1,b=1andV = xy*
x~ “xVy
—p Xty 1 2 2 _ — —
e ENEER \ xy*since DZ — D,D,, = D,(D, — D)
= XtV 1 = xyz
(Dx + 1)Dx(1 - D_y)
1 D, D32, 5
= e*tY +—=+-—=+-|xy
(Dx +1)D, D, Dy
1 [ 2x 2X]
= eXtVy .X'yz + 24 + )
(D, +1)D, 1 D, Dil
1 [ x3]
— pXtYy 2 + 2 + —
EENGCIES RN )
2,2 3 4
= eXtY = alibd + alibd + al
(D, +1)| 2 3 12
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3 4-

2 2
= e**Y[1- Dy +DZ - D§ + Df — Df + -] [+ 22+ =

where D2 =0
=e*tY x2y2+_y ——xy - x? y—£+y +2xy +x% =2y —2x+ 2
2 3 12 3

Ex.12: Find P.I. of the equation (D, — Dy)zz = e*V sin(x + 2y)

1

Sol.P.l. = > e Y sin(x + 2y) ,a;, =1,b; =1
(Dx_Dy)
=Xty ! + 2
e (Det1- Dy_/r)z sm(x Y)
= >sin(x + 2y)
(Dx I Dy)
1
= Xty DI—20,0)1D% sin(x + 2y) ,a, =1,b, =2
F(—a3,—a,b,,—b3) = —a3 + 2a,b, — b3
F(=1,-2,-4)=-14+4—4=-1%0
1
Nz = ex+3’.—15in(x +vy) = z=-—e**Ysin(x +7y)

Case 5 When f(x,y) = g(ax + by) where F(a,b) + 0

The particular integral of H.L.P.D.E. of order n is

f glax + by) d(ax + by) ..d(ax + by)

" F(a,b) ) n—times _ times

Ex.13: Find P.I. of (D% +2D,D, - 8D2)z = /2x + 3y
Sol.

a=2b=3 ,9(2x+3y) =,/2x + 3y

F(a,b) = a? + 2ab — 8b?
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F(2,3) =4+12—-72 = —-56 # 0, integrating g twice
-, =1

sPl=z=— [f2x + 3y d(2x + 3y)d(2x + 3y)

3/
—56f (2x + 3y) /2d(2x + 3y)

__ 4 s/
= TBe (i) XTI

L (2x+39)%:
210 Y

When f(x,y) = g(ax + by) where F(a,b) = 0
If F(a,b) = 0, then F(D,, D) can be written as

F(Dy,Dy) = (bD, — aDy)"

x™ g(ax+by)
n! hm

and the particular solution is IZ =

Ex.14: Find P.I. of (D% —6D,D, +9D3)z=3x+y
Sol.a=3,b=1 ,9g(Bx+y)=3x+y
F(a,b) = a? — 6ab + 9b?
F(31)=9-18+9=0
Then F(D,,D,) = Df — 6D,D, + 9D = (D, —3D,)* ,son =2

“Pl.=z= ’; =2 =—x2(3x +)

Ex.15: Find P.1. of (D% —4D,D, + 4D%)z = tan(2x + )
Sol.a=2b=1 ,g(2x+y)=tan(2x +y)
F(a,b) = a? — 4ab + 4b?

F21)=4—8+4=0

56



Chapter One: Methods of solving partial differential equations

Then F(D,,D,) = DZ — 4D,D, + 4D% = (D, — 2D,)? ,son =2

x?tan(2x+y) 1 o
= ==X
2! 12

Ex.16: Find P.1. of (D% — Df,)z = sec’(x + y)

~Pl.=z tan(2x +y)

Sol.a=1,b=1 ,g(x+7y)=sec?(x+7y)
F(a,b) = a? — b?
F1,)=1-1=0
Then F(Dy,D,) = D? — D2 = (D, — D,,)(Dy + D)
1 2
C T 0o =D)D, +Dy) (r+y)

sec’(x + y) by case (5) we have

Let u, =

1
(Dx+Dy)

! fg(ax + by)d(ax + by) CFOLD)=1+1=2

U4 =
1 F(a,b)

_1 /A
_Efsec (x+y)d(x+y)

1
= Etan(x +v)

1 1
= z=-——"-—<=tan(x +y)
(Dx o Dy) 2
F(Dy,Dy) =D, — D,
F(1,1)=1-1=0 wheren =1

_ x'1tan(x +y)
112 1

K4

= gtan(x +y) which its’ the particular integral
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...General Exercises ...
1- (D} —Dy)z =0
2- (D = 7D,D5 — 6D3})z = cos(x = y) + x* + xy* + ¥’
3-(Dy —2Dy)z = e (y + 1)
4- (D2 +3D,D, +2D2)z=x+y

5- (DZ — 5D,D, + 4D2)z = sin(4x + y)

5¢e*

ey

6- (2DZ —D,D, —3D2)z =
7- (D,% — 3Dny + ZDJZ,)Z = e?*7Y 4 cos(x + 2y)

8- (D,% — Dny)z =Iny

9- (Dx + Dy)z = sec(x +y)

10- x(y2 — z8)p + y(z%? — x?)q = z(x? — y?)

11- (y2 + z%2 — x®)p — 2xyq = —2xz

12- pg+2y(x+1)g+x(x+2)g—2(x+1)=0
13- (x> +2x)p+ (x+1)gy =0

1

3 2 3 p—
14- (Di —3D,Dy +2Dj )z = ——
15- (D3 +2DZD, — D, D2 —2D3)z = (y + 2)e*
16- (4D2—4D.D, +D2)z = (x + 2y) /2

X xPy y y

17- DyD,z = e* Vxy?*
18- (Dy — Dy)z = tan(x + 2y)
19- 2(D3 —9D2D, + 27D,D% — 27D3)z = tan™* (3x + y)

i 3. _ 9.4y 9Z 4 _ .3.092 _ 3 3
20- (y°x 2x)6x+(2y xy)ay—x y
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Chapter Two: Non-homogeneous Linear Partial Differential Equations

Section(2.1):Non-homogeneous linear partial differential
equations with constant coefficients

Definition:A linear partial differential equation with constant
coefficients is known as non-homogeneous |l.p.d.e. with
constant coefficients if the order of all the partial

derivatives involved in the equation are not all equal.

For example:
0%z 0z
1) 5;5'+'5;'+'Z =x+Yy
o) 07, 02 L 0r ey

0x3  0xd0y 0Oy

Definition: A linear differential operator ~ F(D,, D,) is known as
(reducible), if it can be written as the product of linear
factors of the form aD, + bD, + ¢ with a,b and c as
constants. F (D, D,) is known as (irreducible), if it is
not reducible.

For example:

The operator D7 — D which can be written in the form

(D, — Dy)(D, + Dy) isreducible, whereas the operator D7 — D;

which cannot be decomposed into linear factors is irreducible.

Note:A I.p.d.e with constant coefficient F (D, D, )z = f(x,y) is
known as reducible, if F(D,, D)) reducible, and is known as

irreducible, if F(D,, D,) is irreducible.
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(" (2.1.1)Determination of Complementary function N

(C.F.)(the general solution) of a reducible non-

\ homo.l.p.d.e. with constant coefficients )

Iet F(Dy,D,) = (aDy + bD, + c)*,where  a,b,c  are

constants and k is anatural number

then the equation F(Dy, Dy )z = 0 will by
(aD, + bD,, + ¢)*z = 0 and the solution is
zze%x(b(ay—bx) a0 k=1
Or
zze%y(Z)(ay—bx) b0 k=1
Forany k > 1, the solution is
zZ = e%cy[Q)l(ay —bx) + x0,(ay — bx) + -+ x* 1@, (ay — bx); b =0
Or

z = e_?cx[(bl(ay — bx) + x@,(ay — bx) + -+ x*1¢,(ay — bx); a # 0

Where @, ..., @,, are arbitrary functions.

Ex.1: Solve (2D, -3D,, —5)z=0
Sol. The given equation is linear in F(D,, Dy)
Then a=2,b=-3,c=-5k=1
The general solution is
zZ = eng)(Zy + 3x)

Where @ is an arbitrary function.
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Ex.2: Solve (D, — 5)z = e**Y

Sol. To find the general solution of (D, —5)z =0

Wehave a=1,b=0,c=-5k=1

~z1 = e”*@(y) , Where @ is an arbitrary function.

TofindtheP.l. z, ,wehave a=1,b=1
F(a,bp)=a—-5 - F(1,1)=1-5=—-4%#0

1
N Ty = Xty

—4
Then the required general solution of the given equation is

Z =17 + Z, — 7= esxw(y) — ZeX'|'y

Ex.3: Solve (2D, + 5)?z =0
Sol. The given equation is reducible, then
a=0,b=2,c=5,k=2.

The general solution is

=5

z £ Pr(=20)F 2P, (- 2x)]
Where @, and @, are arbitrary functions

Ex.4: Solve (D, — 2D, + 1)*z =0
Sol. Wehave a=1,b=-2,c=1k=4
then

1
z=e2[0,(y + 2x) + xB,(y + 2x) + x%205(y + 2x) + x30,(y + 2x)]
Where @, , ..., @, are arbitrary functions

62



Chapter Two: Non-homogeneous Linear Partial Differential Equations

hen F(D,, Dy )can be written as the product of linear factors

of the form (aD, + bD, +¢) , i.e. F(Dy,D,) is reducible ,

then the general solution is the sum of the solutions

corresponding to each factor.

Ex.5: solve (2D, — 3D, +1) (D, +2D,—2)z=10

linear linear
Sol. The given equation is reducible, then we have
a1=2,b1=‘—3 ,C1=1 ,k1=1
-1
z; =e2 0,2y + 3x)
a2=1,b2=2 ,C2=—2 ,k2=1
z, = e**Q,(y — 2x)
The general solution is
. -1
z2=12,+12, > z=ez 0,2y+3x)+e*@,(y — 2x)

Where @, , @, are two arbitrary functions.

Ex.6: solveD,(D, + D, +1)(D, + 3D, —2)z =0
Sol. We have
a,=1,b=0 ,¢4=0 k=1
a,=1,b,=1 ,c,=1 ,k,=1
az=1,b3=3 ,c3=-2 ,k;3=1
Then the general solution is

z=0,y) +e*0,(y — x) + €205 (y — 3x)
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Where @, ..., @5 are arbitrary functions.
Ex.7: solve (D3 — D,D3 — D%+ D,D,)z =0
Sol. We have , (D — D,D2 — DZ + D,D,)z = 0
D,(D?—D2—Dy,+D,)z=0
Dx[(Dx - Dy)(Dx + Dy) - (Dx - Dy)] =0
Dy(Dy —Dy)(Dy+ Dy —1)z=0
Then,a; =1 ,b;=0 ,c;=0 ,k;=1
a,=1,b,=—1 ,c, =0 k,=1
a;=1,b;=1 ,c3=-1 ,k;=1
Then the general solution is
z=0,) + 0,(y +x) +e"03(y — x)

Where @,, ..., @5 are arbitrary functions.

@VhenF(Dx,Dy) is irreducible then the general solution is
7= Z Ai e diXtbiy
i=1

Where F(a;, b;) = 0 ,4;,a;, b;are all constants.
Ex.8: Solve (D, — D3)z =0
Sol. The given equation is irreducible, then
F(a,b)=0 - F(a;b;))=0
a—b3=0 - aq—-b>=0 - aq=b’

The general solution is

o [09)
7 = z A; e®iXthiy — 2 A; ebi3x+biy
i=1 i=1
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Where A; , b;are constants.
Ex.9: Solve (D2 + D, + D,)z=0
Sol. The given equation is irreducible, then
Fla,b)=a*+a+b=0 - a*+a;+b;=0
- bi=-a;"— q

The general solution is

(00 (0]
z = Z A; e@X by — ZAi pix+(—ai®— a;)y
i=1 i=1

Where A; , a;are constants.

Ex.10: Solve (D, — D%)z = e***3¥
Sol. (1) we find the general solution of the irreducible eqution
(Dxy —D2)z =0
Fla,b)=a—b2 =0 - F(a,b) = a;,—b;>=0- q;
2

(0] (0]
. . 2 .
Z; = ZAi ealx+bly — ZAi ebl X+b;y
i=1 i=1

Where A; , b;are constants.
(2) The P.1.is

Then

F(a,b) = a — b?
ZF(23)=2-9=-7%0

h 7, = —— @2X+3Y

-7
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And the required general solution is

Ziby L
zZ=2z;+2z, = ZAi ebi"x+biy _;62x+3y
i=1

When F(D,, D,) can be written as the product of linear and

non-linear factors the general solution is the sum of the

solutions corresponding to each factor.
Ex.11: Solve (D, + 2D,)(D, — 2D, + 1)(D, — D%)z =0
Sol:
Factorl, a;, =1 ,by=2 ,¢c=0 ,k;=1
Factor2, a, =1 ,b,=-2 ,c, =1 k=1
Factor 3, F(a,b) =a—b* =0 - a=b%* > a;=b

1
1= ®1(J’ = ZX) - eEY(Z)Z (y + ZX) + zAl ebi2x+biy
i=1

Where @, @, are arbitrary functions and 4, , b;are constants.
Ex.12: Solve (D% — D3 + D,)z = x* + 2y

Sol: (1) The general solution of (D2 — DZ + Dy )z = 0 is

F(a,b) =a*—-b*+a=0 »b=+Va’+a-b; =+ /ai2+al-

Then

(0]
z : alx+ a?+a;y
i=1

(2) The P.1.is
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Z; = (x% + 2y)
' DZ-DZ+D,
1 2
= s (x° +2y)
Dy (1 + Dy — %)
1 2
Dy[1 - (52~ Dy))
1 D2 D2 ’
=D—[1+D——DX+<D——DX) +"'](X2+2y)
X X X
=0
1 e ,
=D—[x +2y—2x+2]=?+2xy—x + 2x
X

The required general solution is

N aixt |at+a;y x3
z=zl+ZZ=ZAie e +?+2xy—x2+2x

=1
Ex.13:Solve(2D, + 3D, )(3D, — 4D, + 5)(3D, — D3)z=0
Sol:

FaCtorl, a1=2 ,b1=3 ,C1=0 ,k1=1
FaCtOI'Z, a2=3 ,b2=_4‘ ,C2=5 ,k2=1

b? b}
Factor 3, F(a,b) =3a —b* =0 »a=>= - a=-

The general solution is

5 > blZ
~z=0,2y—-3x) +e¥0,(3y + 4x) + z A; g3 X tby
i=1
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Where @,, @, are arbitrary functions and 4; , b;are constants.

determine the P.1. of non-homo.p.d.e. when

f(x,y) =sin(ax + by) or cos(ax + by) we put D? = —a?,

D; = —b* , D,D, = —ab , which provided the denominator is
non-zero, as follows.

Ex.14: Solve (D% — D, )z = sin(x — 2y)

Sol: (1)The general solution z, of (D2 — D)z = 0 is

F(a,b)=q2—b=ﬁ - a? = b;

oo

E . 2
7 = A, edix+aiy

i=1

(2) To find the P.1. of the given equation

il
P.l.=z= —Dsin(x — 2y)

a=1, b=-2 —-D2=-a’=-1

1
= _1—_DySil’l(x - Zy)
Multiplying by 1-1+D
- y
-1+D, (e — 29)
= 1—D§ sin(x — 2y
D§ = —b?=—-4
-1+D, 5
=Ty on— )
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— é[_ sin(x — 2y) — 2 cos(x — 2y)]

...EXxercises...
Solve the following equations:
1.(D +DyDy+ D, —1)z=0
2.(Dy +1)(Dy—Dy+1)z=0
3.(Df + DD, + Dy)z=0
4.(DZ+ Dy +4)z = e**7Y
5.(DZ + D,Dy + D, — 1)z = sin(x + 2y)
6.(Dy—Dy, —1)(D, =D, —2)z=x
7.(DF —DZ + Dy +3D, — 2)z = x%y
8.(Dy + 3Dy, — 2)*z = 2e**sin(y + 3x)
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Chapter Two: Non-homogeneous Linear Partial Differential Equations

Section(2.2): Partial differential equations of order two
with variable coefficients

In the present section, we propose to discuss partial differential
equations of order two with variable coefficients. An equation is

said to be of order two, if it involves at least one of the differential

0%z 0%z 0%z
— S = ,t = —, but none of higher order
0x2 0x0y oy?’ g !

coefficients r =

the quantities p and g may also inter into the equation. Thus the

general from of a second order partial differential equation is

R 2+ 5000 22 1 100 22 4 P y)
%Y a2 Y axdy Yy dy? ;Y

T+ QY oo+ V()Z = f(3)
(1)

Or Rr+Ss+Tt+Pp+Qq+Vz=7f.(2)

Where R,S,T,P,Q,V, f are functions of x and y only and not all

R,S,T are zero.

We will discuss three cases of the equation (2):

hen one of R, S, T not equal to zero and P, Q,V are equal

to zero ,then the solution can be obtained by integrating both

sides of the equation directly.

2
Ex.15:Solve y% +5y—x%y* =0

Sol: Given equation can be written
e
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2 _ yx? _5..(3)

9x2
Integrating (3) w.r.t. x

9z _ yx3
dx 3

—5x+ 0,(y)...(4)

Integrating (4) w.r.t. x

yx* 5
z = E_Exz +x0:(y) + 0,(y)

Where @, and @, are two arbitrary functions.

%z

2
—y‘x =0
d0x0y y

Ex.16: Solve xy

Sol: Given equation can be written

0%z

ox 0y =y ..(5)

Integrating (5) w.r.t. x

0z

3y — VTt @1 (y)-..(6)

Integrating (6) w.r.t. y

xy?
2=+ j 0, (y)3y + 0,(x)

2

=2+ 00) + B,

Where @pand @, are two arbitrary functions.

When all the derivatives in the equation for one

independent variable i.e the equation is of the form
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Rr+Pp+Vz=f(x,y) orTt+Qq+Vz=f(xy)
Some of these coefficients may be Zeros.

These equations will be treated as a ordinary linear differential

equations, a follows:

2
Ex.17: Solve yZ—y; + 32—; =2x+3

0z 0%z  0q
Sol: let 3y q 552 oy

Substituting in the given equation, we get

o 2x+3

q= )

3
Y y

dq _ aq
ya+3q—2x+3 > 6y+

Which it's linear diff. eq. in variables g and y , regarding x as a
constant.

3
Integrating factor (I.F.)of (7) = ef§ay = 3y = 43

And solution of (7) is

3 2x + 3 -
yq=f . y>dy + 04(x)

3
y3q = (2% +3)°2 + 0, (0)

2x + 3 3
q=—73—tY 01(x)
Z_; = 2x3+3 + y73@,(x) , integrating w.r.t.y

2x + 3
3

7 =

1
Y = 5579100 + 0200
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Where @, and @, are two arbitrary functions.
Ex.18: Solve a—zz —2y%Z 4 y27 = (y — 3)e?*+3Y
dx ax
Sol: The given equation can be written as
Di = 2yDy +y?z = (y — 3)e** ™™

- (Dx —y)?z = (y — 3)e***37..(8)
The A.E. of the equation (D, — y)?z = 0 is

(m-=y)?=0->my=my,=y
~zp = 01(y)e’™ + x0,(y)er*..(9)
Where @, and @, are two arbitrary functions.

The P.l. (z,) is

1
(y _ 3)62x+3y = (y _ 3)—62x+3y
(2 —y)?

1
Zy = ——————
? (Dx_y)z

NZ =271t 2Zy

=0,(y)eY* + x0,(y)e’* + (y — 3)@829&33;

under this type, we consider equations of the form

[Rr+Ss+Pp=f(x,y) _f(xY)J

6

And£s+Tt+Qq=f(x,y) afazy T3z Q——f(xy)]

These can be transform to a linear, p.d.es of order one with p or
q as dependent variable and x,y as independent variables. In
such situations we shall apply well known Lagrange's method.
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9%z 9%z 0z
dx2 y axdy dx

Ex.19: Solve x

2 2
Sol: let p =2 92 _0p 9z _0p
dx  0x? 0x 0xdy 0y

Substituting in the given equation , we get

o _ 9 _
x— 3y p = 0...(10)
Which it is in Lagrange's form, the Lagrange's auxiliary equations

ax _dy _dp 1)
BB

are:

Taking the first and second fractions of (11)

: % = 6_1—3; - Inx = —Ilny + lna -»|xy = av.(lz)

Taking the first and the third fractions of (11)

%:%p—)lnlenp+lnb—>13)

From (12) &(13), the general solution is

X 4
@(a,b) =0 - (D(xy,g) =0- . g(xy)

_ X
—gCey)

—p

daz X
Pl g(xy)...(14)

Integrating (14) w.r.t. x , we get
X

Where g and ¢ are two arbitrary functions.

Then (15) is the required solution of the given equation.
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...EXercises...

Solve the following equations:

. 622_ %_ 2

1)) In (W)—x+y ) E—x=x
0’z 9%z _ x 2 0%z 9z _
3))axay_a_yZ_y 4)) y _ay2+2yay_1

Section2.3: Partial differential equations reducible
to equations with constant coefficients

In this section, we propose to discuss the method of solving the
partial differential equation, which is also called Euler-Cauchy type

partial differential equations of the form :

n an

n 0
apx™ P n+a1x ya 13, A +any = f(x,y)...(1)

i.e. all the terms of the equation of the formula a,x"y™

To solve this equation ,define two new variables u and v by

x=e%andy =eYsothat u = lnx and v = Iny...(2)

Let D,, = %and D, =

v

0z 0z 0du 1 0z .
Now,a—a Pyt a,usmg(Z)
0z 0z
Wo—=x'— - |D,,z=xD,zl..
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Chapter Two: Non-homogeneous Linear Partial Differential Equations

0%z 0 ,0z
Again x?% - — = x?— (=
8 0x? 0x ax)

_,20 1 oz
=X ax(x au)from (3)

1 0%z 0z
— 2. . w2 . 2
x x 0xou x Ju x
0%z 0z
— x - _
dxdu OJu
B d (62) 0z
__xau 0x Ju
£ 0 (1 62) 0z
__xau x du du
11d%z 0z
— 'y Ry "
x o0u? OJu
- 0%z 0z
T Ju?  du

~x*DZz=D,(D, — 1)z
And so on similarly, we have
yDyz = D,z ,y*D;z = D,(D, — 1)z,...

Hence

" ZZ ;= p (D, — 1)(Dy —2) ... (D, — 1 + 1)z...(4)

axm

am
ym ayniz =D,(D, — DDy —2) ...(D, —m + 1)z...(5)

R —————————
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n+mZ

8
xnysz =Dn,(D,-1)..(D, —n+1)D,(D,—1)..(D, —m+ 1)z ...(6)

Substituting (4),(5),(6) in (1) to get an equation having constant
coefficients can easily be solved by the methods of solving homo.
And non-homo. Partial differential equations with constant
coefficients, Finally , with help of (2), the solution is obtained in

terms of old variables x and y.

9%z %z dz 0z
Ex.20: Solve x? — — y? — — y— Y
0: Solve x* —— =y BT 2 s R 0

Sol:letx =e%,y = eV then u = Inx andv = lny

2
Z=Dyz , x*-Z2=D,D, -1z
d ..(7)
an 0z AN
}’5—%2 \ y 'W_Dv(Dv—l)Z

Substituting (7) in the given equation,
(D2 —-D,—D2+D,—D,+D,)z=0
(Di - Dg)z =0-> Dy —Dy)(Dy +Dy)z=0

TheAEis (m—1)(m+1)=0

m1'=1 mz;—l

Then the general solution is
z=0,(v+u)+0,(v—u)

= @,(Iny + Inx) + @,(Iny — Inx)
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= @, (Inxy) + @, (ln %)

= hy(xy) + h; (%)

Where h;andh, are two arbitrary functions.

...Exercises...
Solve the following equations:
1)) (x*Di —y*Dj — yDy, + xDy)z = xy
2)) (x*Df—2xyD, Dy, + y*Dy + yD, +xD;)z =0

0%z 0%z 0z 0z
2 2 |
ay ox y

3)) x 0x? 0y?
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Classification of partial differential equations of second order:

Consider a general partial differential equation of second order
for a function of two independent variables x and y in the form

Auy, + Buyy, + Cuyyy, + Duy + Euy, + Fu = G ...(¥)
Where A4,B,C,D, E, F, G are function of x, y or constants.
The equation (*) is said to be

(i) Hyperbolic at a point (x,y)in domain Dif B> — 4AC > 0.
(i) Parabolic at a point (x, y)in domain Dif B> — 4AC = 0.
(iii)Elliptic at a point (x, y)in domain Dif B2 — 4AC < 0.

Ex.21: Classify the following partial differential equation
2uyy + 33Uy, =0

Sol:
Comparing the given equation with (*),weget A =2,B=3,C =0
B?—4AC=9-4(2)(0)=9>0

Showing that the given equation is hyperbolic at all points.
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Ex.22: Classify the following p.d.eqs.

d 2 02
1) 5 Py

u _ 2 *u
(2) atZ xZ
(3) — + — =0

Sol. (1)Re-writing the given equation, we get
AUy — U = 0
Comparing with (*), weget A =a%,B=0,C =0
B? —4AC =0—4(a?)(0)=0
Showing that the given equation is Parabolic at all points.
Sol. (2) Re-writing the given equation, we get
CUyy = U = 0
Comparing with (*), weget A =c%,B=0,C = —1
B? —4AC =0-4(c*)(=1) =4c* >0
Showing that the given equation is hyperbolic at all points.
Sol. (3)Comparing with (*), weget A=1,B=0,C =1
B?—4AC=0-4(1)(1)=-4<0

Then the equation is an Elliptic at all points.

...EXercises...
Classify the following equations:

1)) Uy — Uyy — Uy, =0
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2)) Uy — TUpg + T2Ugg = 0 ;u(r, 9)
3)) Zux + Zxy + 2z, = 2x

4))XYZyr — (xz _ yZ)ny — XYZyy T Yzx — XZy = Z(xz _ yz)

0%z
dxdy

0%z 0z 0z
+4(y—1)ﬁ+xya—£—0

5) x2(y — 1) 22— x(y? — 1)

6))u, —ugg =5

0%u 0%u 0%u
7))2ﬁ+4axay+4ay2 =2

Section 2.4: Method of Lagrange multipliers

This method applies to minimize (or maximize) a function
f(x,y,z) subject to the constraint g(x,y,z) = 0 , construct the
auxiliary function

Discussion of the method

Suppose we want to find the minimum (maximum) value of the
function f(x,y,z) which represents the distance between the
required plane g(x,y,z) = 0 and the origin and suppose that f
and g having continuous first partial derivatives and ending of f is
at the point (xg, yo, Zg) Which it's on the surface S that defined by

gx,y,z)=0
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S g(x,v.2) =0

We said that f has minimum (maximum)value at the point
(%0, Yo, Zp) if it satisfies the following condition

[Vf(x, y,z) = AVg(x,y, Z)] =ty

Where A is Lagrange's multiplier , V denote to the partial

derivatives of f and g w.r.t. x, y and z.

Ex.23: by using Vf(x,y,z) = AVg(x, y, z), find the point on the
straight y = 3 — 2x that is nearest the origin.

Sol. Let f(x,y) = x2 +y2 > Vf(x,y) =< 2x,2y >..(2)
gx,y)=y+2x—-3=0-Vg(x,y) =<2,1>..(3)
Substituting (2) & (3)in Vf(x,y,z) = AVg(x,y, z),we get
<2x,2y >=1<21>
n2x=2A& 2y =1 - x=A=2y..(4)

Substituting (4) in g(x,y), we have

3
y=3-4y - Sy=3 - y=g¢
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Then form (4),we have x = S

6 3
s (xy) = (g;g

Which it's the point on y = 3 — 2x that is nearest the origin.

The distance between the point (x, y)on a straight and

the origin is

w=(x—x0)%2+ ¥ —¥0)% ,(x0,¥0) = (0,0)

i~

Squaring both sides, we get

w?=x%+y% = f(x,y)

Ex.24: Find the point on the plane 2x — 3y + 5z = 19 that is
nearest the origin, using the method of Lagrange multiplier.

Sol. As before, let

Let f(x,y,z) =x2+y2+2z? > Vf(x,y,2) =< 2x,2y,2z >...(5)
gx,y,z)=2x—-3y+5z2—-19=0-Vg(x,y) =< 2,—-3,5 >...(6)

From the relation Vf(x,y,z) = AVg(x,y, z) .(7)
- < 2x,2y,22>=1<2,-35>

#2x=21, 2y=-31, 2z=51

>x=1, y=— z=%...(8)
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Substituting this values in g , we get

9 25
ZA+§/1+7/1=19 —»381=38 - A1=1

Substituting (A = 1) in (8) , we have

- ( )_1—35
“p x;y;Z _( ) 2 12)

Ex.25: Suppose that the temperature of metal plate is given by
T(x,y) = x* + 2x + y?. For the points (x,y) on a plate ellipse
defined by x% +4y% <24. Find minimum and maximum
temperature on the plate.

Sol. For the plate in the figure _,«.,,’/ R ™
Firstly, we will find the critical 3 Bl
Points of T(x,y) in R
T(x,y) =x%2+2x +y? > VI (x,y) =<2x+ 2,2y >=< 0,0 >
W2x+2=0 &2y=0 - x=-1&y=0
~(x,y) =(=1,0)isinR
Now, using the relation Vf(x,y) = AVg(x,y)
flx,y) =T(x,y) =x*>+2x+y? ->VT(x,y) =<2x+ 2,2y >
glx,y) = x%? +4y? —24 - Vg(x,y) =< 2x,8y >
VT (x,y) = AVg(x,y)
<2x+22y>=1<2x,8y >
~2x+ 2 =2Ax..09) &2y = 81y..(10)
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y(2—=821) =0

From (10)] y=0lor 2—841=0 —>

*ify=0 - x2+4(0)=24 - x=4V24

~ (x,y) = (V24,0) or (—V24,0)

*if)t=i - 2x+2=%x from (9)
—4
- = —
¥

Substituting in g , we have

Liayr=24 5 y=42

- -~ @)

Now , to find the minimum and maximum temperature T

substituting all pointsin T
T(—-1,0) =&}
T(V24,0) = 24 + 2v/24 = 33.8
T(—V24,0) = 24 — 2v/24 = 14.2

—4 /50 _14 .
33 ) 37

—4 —/50\ 14

— | =— =47
3’ 3 3

Note that the minimum temperature is (—1) at the point (—1,0)
and the maximum temperature is (33.8)at the point (v24,0).
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if there are two constraints intersecting ,say

g(x,y,z) =0 and h(x,y,z) = 0, we introduce two Lagrange's

multipliers Aand u and the relation will be

Vf(x,y, Z) — Avg(x» Y Z) + ,UVh(.X, Y Z)

Ex.26: the plane x+y+2z =12 intersects with the cone

z = x? + y*by an ellipse. Find the point on the intersection that

is nearest to the origin. _ 4 X
: B
Sol. f(x, v, Z) = x2 + yz + 72 /—1“ / /:,
AN i
gx,y,z)=x+y+z—-12=0 L L
4
h(x,y,z) =x*+y*—2z=0 3y

Vi(x,y,z) = AVg(x,y,z) + uVh(x,y, z)
<2x,2y.2z2>=A<1,11>4u<2x,2y,—-1>
s 2x = A+ 2ux ...(11)

2y = A+ 2uy...(12)

2z =1 —u..(13)
From (11) and (12)

A=2x(1—pw

1=2y(1 —u)}_) 2x(1-p) =2yA-w) > Cx-2y)1-pw) =0
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Thenl—u=0->u=1-41=0 from(11) & (12)
Substituting in (13) we have z = _71...(14)

Substituting (14) in g and h , we have

1
x+y—§—12=0

x? +y? = —% (Contradiction)

Or| 2x—2y =0 - x =y, in this case (Substitutingin h and g)

we get
Inhx?>+y? —z=0->z = 2x°
INng2x +2x>—12=0->x>+x—6=0
x+3)(x—2)=0->x=-30rx=2

x=y &z=2x* - (x,v,z) =(2,2,8) or(-3,-3,18)
When (x,v,z) = (2,2,8) - f(2,2,8) =72
When (x,y,z) = (—3,-3,18) — f(—3,—3,18) = 342
Then (2,2,8) is the nearest to the origin.

... Exercises ...

1)) Find the point on the curve y = x? + 3 that is nearest the
origin, using the method of Lagrange multipliers.

2)) Find the minimum distance from the surfacex? + y2 —z% =1
to the origin.

3)) Find the point on the surface z = xy + 1 nearest the origin.
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4)) Find the maximum and minimum values of f(x,y,z) = x —
2y + 5zon the sphere  x? + y? + z2 = 30.

5)) Find the maximum value of f(x,y) = 49 — x%? — y2 on the line
x+ 3y =10.

6)) The temperature at a point (x,y) on a metal plate is
T(x,y) = 4x? — 4xy + y? . An ant on the plate walks around the
circle of radius 5 centered at the origin what are the highest and
lowest temperatures encountered by the ant?

7)) Factory produces three types of product x,y,z , the factory's
profit (calculated in thousands of dollars) can be formulated in
equation p(x,y,z) = 4x + 8y + 2z,where the account s
bounded by x? + 4y? + 2z2 < 800, find highest profit for the
factory.

8)) find the greatest and smallest values that the function
2

2
f(x,y) = xy takes on the eIIipse% g y? =13

9)) Find the point on the sphere x2+ y? 4+ z2 =25 where
f(x,vy,z) = x + 2y + 3z has its maximum and minimum values .

10)) Find three real numbers whose sum is 9 and the sum of
whose squares is as small as possible.
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Chapter Three: Fourier series

Section(3.1): The definition of Fourier series and how
to find it

In this chapter we will find that we can solve many important
problems involving partial differential equations provided that we
can express a given function as an infinite sum of sines and (or)

cosines. These trigonometric series are called (Fourier Series).
Definition: Let f be defined on [—m, ] , we said

a
70 + Z (a, cosnx + b, sinnx) .. (1)
n=1

Is Fourier Series of f if it converges at all points of f on the

interval [—m, ] , where

1 T
a0=E ff(x)dx

T
1
a, = ff(x) cos nx dx

-TT
s

1
b, = ff(x) sin nx dx

T

a, ,a, , b, are called Fourier coefficients.

f is a periodic function with period 2m since sine and

cosine are periodic functions with period 27 , as shown :

f(x+2m) = f(x)
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Qo
2

N

f(x+2n) =—+ ) [a,cosn(x + 2m) + b, sinn(x + 2m)]

S
Il
=

[a,, cos(nx + 2nm) + b, sin(nx + 2nm)]

[l
IR

+
Nk

S
Il
=

Since cosine and sine are periodic functions with period 2m then
Ao N .
f(x+2m) = > + Z(an cosnx + b, sinnx)
n=1

= f(x) from the definition

1, nT<x<0

EX. 1: Find the Fourier Series for f(x) = {2 0<x<T

Sol:

s

1
aO:E ff(x)dx

T

0 T

1 1
= ff(x)dx+gff(x)dx
- 0

1
tn = — ]f(x)cosnxdx
—Tr

0 T
1 1

= — jcosnxdx+—J2cosnxdx
T T
g 0
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1 . 0 2 s
= —sinnx | +—sinnx| =0
nm — nm 0

T

T

1
b, = jf(x) sin nx dx

T
0 T

1 2
= — jsinnxdx+—jsinnxdx
T T
g 0
-1 0 -2 T
= —cosnx | + —cosnx |
nm —T  nn 0
= =+ L cosnm — = cosnm + —
nrm nm ntm nm
1 1
= — — —COSNIT
nmw N
= (1 (=)
Conm
Hence

bn =12 if nisodd

nm

{O If niseven

a
s fx) = ?0 + Z (a, cosnx + b, sinnx)
n=1

nis odd

3 2 2
=—-+-—sinx +_-—sin3x + -
2 m 31
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1. cosnmt = (—1)" ,sinnm =0
2. fiseven & f(x) = f(—x)
fisodd e f(x) = —f(—x)

for example:
f(x) = x?% cosx ,x*4, .. f is even
f(x) =x,x3,sinx , ... f is odd

3. even function X even function = even function
odd function X odd function = even function
even function X odd function = odd function

f (even function)dx = 2 f (even function)dx

j(odd function)dx = 0

5. When f is even then

T

ij@dx— jf(x)dx from 4

T

1
j f(x)cosnxdx = J f(x) cosnx dx from 3,4
o 2 even

s

1
=—jf(x)sinnxdx=0 from 3,4
n N’

n even
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When f is odd function then

T

1
ao=—j@dx=0 from4

T
—q odd
s

1
n = — jf(x) cosnxdx =0 from 3,4

———
—q odd

T

f f(x)sinnx dx from 3,4
0

s

) _1[ _ p 2

n=_ @smnx x—n
—q odd

-1 if-m<x<0

Ex. 2: Find the Fourier Series for f(x) = { 1 if 0<x<m

Sol: note that f is odd, then

ap=a, =0
b, = %f:f(x) sin nx dx} iy (noteo) 4
\(?;"--—«;
2 _ — s TN - A e
= — | sinnxdx =—cosnx | T W
s nm 0

N oY—
0O 2
0 =
|
—

— —2
== —cos0] =—[(-D"—1 te 1
— [cos nm — cos 0] — [(—1) ]  from (note 1)
4 dd
_ {nn ifniso
0 If niseven
Then, f(x) = % + Yo-4(a, cosnx + b, sin nx)
>
= —sinnx
nm
n=1
nis odd

Or
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o 4
f(x)= Z (Zn = 1)nsin (2n—1)x

—x if—-m<x<0
Ex. 3: Find the Fourier Series for f(x) = { x i)l: 7(:< x<T1

/ /\\\
S \
BN
N
N e

T T
1 2 ) |
d — f d 3 =t "='\'! a\y
O .[ f(x) X f (x) X & - _,‘v —_";‘ =7 i - 91 7

- 0 ‘i
: !
2 1 T ;

Sol. note that f is even, then ~

T T
1 2
= ff(x)cosnxdx=;jf(x)cosnxdx
v 0

T

2 27 y 1 /[
=—| xcosnxdx =—[=sinnx + — cos nx]
[ T n n 0
0
2 1 0
= —[=sinnm + — cosnm — —sinn0 + — cos n0]
Tn n n n

4 L.
%[(_1)n_1]={ﬁ if nis odd

0 If niseven
b,=0 since f is even.

Then, f(x) = % + Yn—q,(a, cos nx + b, sinnx)

[
=E Z n—1)2 cos(2n — 1)x
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Section(3.2): The Fourier convergence

When we find a Fourier series for a function f we assume that
f is defined on [—m, ] and periodic with period 2m, then f
must satisfy f(m) = f(—m) otherwise , the function becomes
discontinuous at the points =+ 2nt ,n=0,1,2,... , when f
discontinuous at x, , then the series

(00
o :
5 Z (a, cosnx + b, sinnx)

may not be convergent to f(xy) unless some certain conditions are
satisfied. There are many conditions , if at least one of them
satisfies, the Fourier series approaching f.

Here we will discuss the (Dirichlet's conditions) in the following
theorem.

Dirichlet theorem:

Suppose that f and f’ are piecewise continuous on the interval
—n < x < m. Further suppose that f is defined outside the interval
—n < x < m, So that it is periodic with period 27 then f has
a Fourier series

f(x) —70+ Z(ancosnx+b sin nx)

The Fourier series converges to f(x) at all points where f is
continuous, and to = [hmx_)x+ f(x) +lim,_,,~ f(x)] at all points

where f is discontinuous.
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Ex. 4: Find the Fourier series for f(x) = x where x € [—m, 7]

then find:
(i) The convergence on the interval [—m, r].
(if) The convergence of 1 — % + % — % + ..

(iii) The approximate value of m. ;

Sol. f is odd function then

-3

|
]
ag=a, =0 |
|

T Vs
2 2

b, =—ff(x) sin nx dx =—fxsinnxdx
T T

0 0

T
2 -1 T
=—x+—cosnx| _+— | cosnxdx
T n 0 nm
0
2 §%, w2 (1Y
=—xcosnx+Tsmnx| =S
T nm 0 n
® 2(_1)n+1 .
s f(x) = z ———sinnx
n=1 n

(i) The convergence on [—m, 7T].

[-m, ] = (-7, m) U {—m, }

N

The convergence on the interval (—m, ) which it's continuous is
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o 2(_1)n+1 -
= E —SInnx
n
n=1

The convergence on the point x = —m (where fis discount on it) is
1 1

f(—ﬂ)=—[ lim f(x)+ lim f(x)]:—[—n+n]=o
2 Lx——mt X—>-T" 2

The convergence on the point x = m (where fis discount on it) is

[-m+m] =0

N =

1
f@) =3[ lim fG) + lim ()| =

2(_1)Tl+1

(i) f(x) = Xymy ————sinnx N
Let x =~ (where f is continuous)

substituting in () , we get

(0]

T 2(-D™  nm
E = z SIn

n v,

n=1
n_ W 1_+1_3T[ 1_2+1_57l'
4—311’12 2Sli’lOTL' 351n 5 4511107-[ 5Sln >

=1 - =—1 - =1
7'[_1 1+1
4~ 35
coey T 1 1 1 .-
(iii) since s l—sto—ct (from (ii))

Thenmr=4—=+2—2+-.
3 5 7
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let n=1->n1=4

et n=2->nw=4—>=2=-1266
3 3

et n=3-om=4—>4+2=22_324¢
3 5 15

So, we approaching from the approximate value of m when

n increasing .

Ex. 5: Find the Fourier series for f(x) = e* on [—m, o] , then

find The convergence of Fourier series to f .

Sol. f is not odd neither even 5

T T 1 /
1 1 . Y |
apo=— | f(x)dx =— | e*dx " o i
VA T primmmm——— ! |
-7 -7 3N S5 % T
‘ | j |
1 7 Al @ity ; o
=—ef|  dx=——— =
T - [ | |

T T
1 1
a”ZE ff(x)cosnxdx=; jexcosnxdx
—TT

—TT

_ (“D™(e™-e"™)

m(1+n?)

(by [ udv twice)

T A
1 1
b, = — ]f(x)sinnxdx=— fexsinnxd
s s
—Tr v [A
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B n(_l)n+1(en _ e—n)
B (1 + n?)

Then

T_ ,—T AN, _ ,—T _an+1,,mT_ ,—T
flx) == Ze +Z,°1°=1[( DI D) s + 2D (e e )sinnx]

via m(1+n?) m(1+n?)
The convergence
[-m, ] = (—m,m) U {—m, m}
In the interval (—m, ) the Fourier series converge to e*

at the point x = —m the Fourier series converge to

_1 ; D _1 -7 [
femy =5 [ lim, f@) + lim f@)| =7 +em]

at the point x = m the Fourier series converge to

1 . 1/4
f@ =] lim fG)+ lim f()|=5[e"" +e"]
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Section 3: Extension of functions

@ The odd extension: Let f be defined on the interval [0, ], we

will define the function F(x) on the interval [—m, ] such that

f(X) ;X € [O,T[]
f(=x) ;x € [-m,0)

we must prove that F(x) = —F(—x) (i.e: Fis odd)

Fe)={_

let x € [0,7] > —x € [—m, 0)

F(=x) = —f(~(-x)) = —f(x) = —=F(x)
W F(—x) = —F(x)

By the same way if x € [—x,0) , we get
F(—x) = —F(x)

then F is odd.

hence,
T

1
ag = — fF(x)dx=0
T edd

T

1
a, =— fF(x) cosnxdx =0
T —— S———
o _odd even
odd

s T

1 2
b, = — jF(x) sinnx dx = —JF(x) sinnx dx
T[_n. odd odd T[O

even

and
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F(x)=2bnsinnx ;x € [0, 7]
n=1

but F(x) = f(x) on the interval [0, 7] , then

A
2
b, = Ej f(x) sinnx dx
0
and

f(x)=2bnsinnx ;x € [0, ]
n=1
This series is called (( Fourier sine series))

EX. 6: Find the Fourier sine series for the function f(x) = cosx

where x € [0, ] .

Sol.

2

b, = — | cosx sinnx dx

S
O

=IIN

T
1
j > [sin(1 + n) x + sin(1 — n) x]dx
0

[sin(n + 1) x — sin(n — 1) x]dx

=1Ir—\
O\a

1 [—cos(n +1x cos(n—1Dx|x
= + m#F1

T n+1 n—1 |o
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1 _(_1)n+1 (_1)71—1 1 1
ZE[ n+1 n—1 +n+1_n—1]
1 (-D"n-D)-(-D"(n+1)+n—-1-n-1
T nz—1 |
1 -D"'n-(-D"-(-1)"n—-(-1)" -2
T n? -1 |
1 -2(-D" -2
T n? —1
-2 (-1D)"+1

T n?-1
0 if nisodd n+1

—4
n(n? — 1)

if niseven

T

2 |

b; =— | cosx sinx dx

/[
0

T
1 _ —1 T
= — | sin2x dx = — [cos2x]
T 21 0
0
-1 —1
=—/|[cos2m —cos0] =—[1—-1] =0
21 21

Then the Fourier sine series is

(00]

—4
flx) = z msinnx

niseven
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The even extension: Let f be defined on the interval [0, 7], we
will define the function F(x) on the interval [—m, ] , such that:

_{ f&x) ;x€[0,m]
Flx) = {f(—x) ; x € [—m, 0]
we must prove that F iseveni.e F(x) = F(—x)
xe[0,n] - F)=f(x)

let —x € [-m,0] - F(—x) = f(—(—x)) = f(x) = F(x)
L F(=x) = F(x)

by the same way when x € [—m, 0], we get F(x) = F(—x)

then F is even , hence the Fourier series of F is

s

2
a0=ng(x)dx
0

T

2
a, = Ef F(x) cos nx dx
0
b, =0
(0 1)) -
F(x)=?+2ancosnx ;x € [0, 7]
n=1
But on the interval [0, 7] the function F(x) is equal to f(x) then
T YA
2 2
ao =g]f(x)dx ; A =Eff(x)cosnxdx ; b, =0
0 0
and

ag =
flx) = 7+ z a,, Cos nx
n=1

This series is called (( Fourier cosine series))
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Ex.7: Find the Fourier cosine series for the

f(x) =sinx ;x €[0,n]

Sol.
T T
-2 rear =2 [ sinxa
ao—n f(x x—n sin x dx
0 0
—2 T =2
=—cosx|  =—][cosm —cos0] =—
0 T T
T T
2 21
an=Eff(x)cosnxdx=Efsmxcosnxdx
0 0
17'[
=Ef[sin(1+n)x+sin(1—n)x]dx
0
= [ cos(n + Dx + ——cos(n = 1)
= | gcos(n x + —— cos(n x|,

( by the same way in EX.6)

0 ifnisodd ,n# 1
—4
n(n? —1)

if niseven

T

A

2 1

a, =gfsinxcosxdx =E-[sin2xdx= 0
0 0

2 < —4
s fx) = g+ nz:; mcosnx

niseven

function

Note) 1.sin(a + f) + sin(a — ) = 2sina cos
2.cos(a+ ) +cos(a —f) =2cosacospf
3. cos(a — ) —cos(a+ p) =2sinasinf
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Section 4: Fourier series on the interval [-L,L]

Let f be defined on the interval [—L, L], we assume that z = "Tx to
transform f on the interval [—m, 7], hence

f(x)=F(z)where-L<x<L & —n<z<m,and

F(z) = 7 Z [a, cosnz + b, sinnz]  ..(¥%)

s.t.
T

a0=% fF(Z)dZ

-7
T

1
n = — fF(z) cosnzdz

-TT
s

1
b, = - fF(z) sinnz dz

—T1T
Replacing z from the hypothesis, we get

(0]

ao nicx - nmx
f(x)—7 [a, CoS —— + b, smT]
n=1
S.t.
L L
=~ [foTa —1f () d
== f(x Tox =7 f(x)dx
L
1 nmwx m nimx
= jf(x)cos— —dx = — ff(x)cos—dx
L
b 1 ) nnxnd_l ()_nnxd
nﬂfxsmLLx fxsmLx
“L —L
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Ex. 8: Find the Fourier series and the convergence on [—1,1]

_ 3 ;-1<x<
forthefunctlonf(x)={ 23 foi;:zo

Sol. [-L,L] = [-1,1]

) L 0 1
=fo(x)dx=f—3dx+j2dx
“L —1 0
= —3x +2x‘0=—3+2=—1
L 0 1
1 nmx
an = 7 f(x)cosde= f—3cosnnx dx+f2cosn7tx dx
“L 4y 0
-3 0 2 1
=—sinnnx| _+-—sinnnx| =0
nm nm 0
L 0 1
1 nmx _ _
b, = I f(x) sianx =2 J—B sin nmx dx+j251nnﬂx dx
“L -~ | 0
3 0 2 1
= — COS NIX| ——cosnnx|
nm -1 nn
3 3 2 2
= —c0S0 ——cosnm ——cosnm +—cos 0
nm nm nm nm
5 5(—1)" 5 0 if nis even
= 4 =—({1-(-1D") =4 10 .
nm nm nm — ifnisodd
nm
Then
N = 10
fx) = > 2, nnsmnnx
nisodd
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* the convergence on [—1,1]
[-1,1] = (—1,0) U (0,1) U {-1,0,1}

(i) on the interval (—1,0) the Fourier series converge to —3
(i) on the interval (0,1) the Fourier series converge to 2
(iii) at the point x = —1 the Fourier series converge to

1 1
D =3[ lim, r@) + Jim_fe0] =5(-3+2]=—

at the point x = 0 the Fourier series converge to

1 1
10 =31 0+t f0] = 12+ 91 - 2

at the point x = 1 the Fourier series converge to

1¢ | 1 1
F() =3[ Jim, fG) + Jim £GO] =5 [-342] =
\ell)
} : |
| l ; '
.L \
| | | PIght | |
! ' e ¥ :!‘3“)
-~ - = e 1 Z
235} = 1|—’ I | |
left
| u ,
| ‘ | | |
1 ‘ ‘ rel ‘
{ y
p— - L,_.z f=———1
N\
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... Exercises ...

(i) Find the Fourier cosine series for f(x) = x where x € [0, «].
(if) For the given functions:
(a) Find the Fourier series.
(b) Find the convergence on the whole interval.
(c) Sketch the graph of the function.
1. f(x) =x? ;x€[-mm]
2. x)=1-—x% ;x€[-11]
0 ;, 1<x<0

3. fe =1,

xc ;0<x<m

x ;3 —n<x<0
4. f(x)_{o 0<x<m

Then find the sum of the series 1 + = + — + — + ---
9 25 49

x+nm ; —n1<x<0
2 f(x)—{ mT—x ;0<x<m
(iii) Find the Fourier cosine series for f(x) =T —x ;x € [0, m].
(iv) Find the Fourier sine series for f(x) =7 —x ;x € [0, «].

(v) Find the Fourier sine and Fourier cosine series for

2
1 ;0<xS§

Fx) = ,
0 ;§<X<1

Then find the sum of the series 1 — % + i — % + % —
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Section 5: Derivation of Fourier series

We know that the Fourier series for the function f(x) = x is

© (_1)n+1
x=22—sinnx ;M SXST
= "
_ sin2x sin3x
= 2(sinx — 5 + 3 — )

If we derive the both sides of this series , we get
1 =2(cosx — cos2x + cos3x — -++)

When x = 0, we get

1=2(1-1+1—-)

and this is not true because this series is not convergent this means
that the derivative of f not necessary equal to the derivative of the

series.

But there are conditions indicate whether it was possible to derive
a Fourier series end to end and be equal to the derivative of the

function f or not, which are described in the following theorem.

Theorem : If f' is bounded and periodic with a finite number of
relative minimum and relative maximum points in each period,
and f is continuous on [—L, L], (i.e.) f(L) = f(—L) then we can
derive the Fourier series end to end and be equal to the

derivative of f .
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Ex. 9: Find the Fourier series for f(x) = x*> where x € [-m, 7] ,

then find the derivative (if it exist).

Sol. since f iseven b, = 0,and - |

o
| -
T
2 2 4 2m? b
to=g | =g i S
0 W, | '
af, o W ° R T
2 [ | | |
an—Efx cosnx dx | . ¢
0
T
2 x? 1 :
—smnx| X sinnx - 2xdx
0
[ T
2 x% T 2|—x - 1
=— 751nnx|0—g 7cosnx| . cosnx - dx
[
=0 0
2 [2x 2 ]n
= —|—cosnx — —sinnx
T Ln? n3 0
2 (21 4=
= —|—cosnm
(nz ) n?
So, the Fourier series is
f(x) = ?0+ Z a,, CoSnx
n=1
5 Z
=— COS NX
3 —
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The derivative of Fourier series:

fO) =x% > f'(x) = 2x

Note that f’ is bounded from above by (27) and from bottom by

(—2m) and periodic , then the first condition is satisfied .

Next, f(x) = n? & f(—m) = (—n)? = n?

Then f(x) = f(~m)

The second condition is satisfied too.

So, the derivative is exist and equal to the following:

2

Ex. 10: Find the derivative of Fourier series for the function

fay={"F FTTEXS0 titexist

X c0<x<m

Sol. From example 3, the Fourier series is

f(x)=% z 2n—1)2 cos(Zn — 1)x
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To find the derivative : ,

———

[
[

S
Tt <x<0

! _1 )
f(x)z{ 1 ;0<x<m

)

|
Note that f” is periodic and bounded fro
and from bottom by (—1), then the first

Il = a
B
l |

= O e

R

D

- q '

J l ! | :
m above by the number (1)

condition is satisfied

Next, f(x) =m and f(—n) =(—(—m)) =n

Then £ () = f(~m)

The second condition is satisfied too.

Then we can find the derivative of Fourier series as follows:

(0.0

4
f'(x) = Z TOn =12 sin(2n = 1)x -

n=1

(0]

4
= z msin(Zn = 1)X

n=1

112
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Section 6: Integration of Fourier series

We can find the integration of Fourier series if the following

theorem is satisfied.

Theorem : If f is bounded and periodic with a finite number
of relative minimum and maximum and discontinuous points at
each period then the integration of Fourier series will be equal

to the integration of the function f.

Ex. 11: Find the integration of the Fourier series for f(x) = x

on the interval (—m, ) then prove that

X = Zzlsinnx - (1)

Note that f is periodic with period 2m , bounded from above by the
number (7r) and from bottom by (—m) and it has two discontinuous
points in every period which it is equal (m) and (—m) in the

original period.

hence, by integrating (1), we get

)n+1

—ZZ( (—cosnx) +c
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Where c is an arbitrary constant.

© 4(—-1 n+2
= x?% = Z %cosnx + 2c
n
n=1
o 4(-1D)"
=>x2=2c+ cos nx ;(—D™M2 = (=)™ (-1 = (-1)"

Note that this series is a (Fourier cosine series) then

= 2¢c = —
€T3

hence, the integration of Fourier series is

(0]

2 4(—=1)"
x2=—+z D COS NX
3 n2

n=1

To prove the given series, take x =0 -, then
) SE—

cont.point
2 o 4(-1)"
0=—+ E cos 0
3 n? ==
n=1 =1

_7.[2 e _1n

_4 (—1)
3 n2

n=1

—nz_—1+1 1+1
12 1 22 32 42
2_1 1+1 1+
12 49 16
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Ex. 12: Find the integration of Fourier series for

-1 ;T <x<0
f(x)—{ 1 ; 0<x<m

Sol. From example (2), the Fourier series for f is

(00]

4
f(x) = z msin(Zn — 1Dx .. (1)

n=1

Integrating (1) , we get

S
h(x) = jf(x)dx = z (2= 1) cos2n—1Dx+c ..(2)
n=1

where

—X ;T <x<0
x 5 0<x<m

h(x) = {

and c is an arbitrary constant

since (2) is a Fourier cosine series then ¢ = %

n 2
2 1 , T T
ag=—| xdx =—x*| =—=m
T T 0 T
0

hence ¢ =§ then (2) will be

2« -4
= — 2n—1
h(x) ”+nZl7T(2n_1)2 cos(2n — 1)x

which it is the integration of Fourier series.
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... Exercises ...

2 Tt <x <0

1. Find the Fourier series for f(x) = { x - O0<x<m

Then find the sum of 1+iz+i2+---
3 5
(0 ;—m<x

2. Find the Fourier series for f(x) =< sinx ; _7” <x
0o ; g <x<m

-7
< —
2
<z
2

3. By using the Fourier cosine series of f(x) =sinx on [0, 7]

prove that

i 1 gt
4n2 -1 2

n=1

4. Find the Fourier series for f(x) = {

x ;—-1<x<0
x+2; 0<x<1

Then use x=%tofindthesumof 1—%+%—%+-.-

x(m—x) ;0<x<m

5. Use the function f(x) = { x(m+x) ; —m<x<0

To prove that

(0]

£ zg z sin nx

n3
n=1

nisodd
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Chapter Four: The Heat Conduction Equation
The Heat Conduction Equation

Let us consider a heat conduction problem for a straight bar of
uniform cross section and homogeneous material. Let the x-axis be
chosen to lie along the axis of the bar, and let x =0 and x =1
denote the ends of the bar (as shown in the figure) suppose further
that the sides of the bar are perfectly insulated so that no heat passes
through them. We also assume that the cross-sectional dimensions
are so small that the temperature u can be considered as constant on
any given cross section. Then u is a function only of the axial

coordinate x and the time t.

The variation of temperature in the bar is governed by partial
differential equation called the (heat conduction equation), and

has the form

[ut=a2uxx 0<x<l ,O<t<00] (1)

Where a? is a constant known as the thermal diffusivity, the

parameter a? depends only on the material from which the bar is

made, and is defined by a? =£ where k is the thermal
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Chapter Four: The Heat Conduction Equation

conductivity , p is the density, and s is the specific heat of the

material in the bar.

Now, to find the solution of equation (1), we start by making
a basic assumption about the form of the solutions that has
far-reaching, and perhaps unforeseen, consequences. The
assumption is that u(x, t) is a product of two other functions, one

depending only on x and the other depending only on t.

This method is called (Separation of Variables).

118



Chapter Four: The Heat Conduction Equation
@ Separation of VVariables
Letu(x,t) = X(x).T(¢t) ...(2)

Differentiating (2) w.r.t. t and x, we get

u

and
22712‘ = X"(x).T(t) (4

Substituting (3) and (4) in (1), we get
X.T =a?X".T ...(5)

Equation (5) is equivalent to

X = 7; = A  (where A is a constant)

X a<T

Hence T' — a?AT = 0 ...(6)
and X" —-2X=0 ..(7)

where (6) and (7) are two ordinary differential equations can be

solved as follows:

The (A.E.) of (6) ism — a?A=0=>m = a?2

A T(t) = cpe® Mt ...(8)
Where ¢, is an arbitrary constant .

The (A.E)of (7)ism? —1=0=>m = +VA

s X(x) = cze‘ax + Cge_ﬁx ...(9)

Where ¢, and c5 are two arbitrary constants.
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Substituting (8) , (9) in (2), we get

u(x, t) = cpe® M [czeﬁx + c3e_‘/7x]

= u(x, t) = et [Ae*mx + Be“/zx] ...(10)

Where A= c1Cr B = C1C3

There are three possibilities to choose the constant A

1. 1> 0, This is contrary to reality because the temperature
increases infinitely with the passage of time.

2. A =0, This is also contrary to reality because the temperature
will remain constant over time.

3. 1 < 0, and this is the correct case because the temperature will

increase slightly and be restrained with the passage of time.
Let 1 = —w? = VA = wi
Then equation (10) will be :
u(x, t) = e‘“zwzt[Aeiwx + Be~WX|
from e'® = cos@ + isin 0 , we get
u(x, t) = e‘“zwzt[A(cos wx + i sinwx) + B(coswx — i sinwx)]
= e~ @W’t[(A + B) cos wx + (Ai — Bi) sin wx]
u(x, t) = e~ W t[K cos wx + L sin wx] ..(11)
Where K =A+ B ,L = Ai — Bi

So equation (11) is the general solution of the heat equation.
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@General Solution of heat equation with

homogeneous boundary Conditions

If both the ends of a bar of length [ are at temperature zero and
the initial temperature is to be prescribed function @(x) in the bar.

(i.e.) the boundary conditions are
u(0,t) = 0° ,u(l,t) = 0° (homo. Boundary conditions)
and the initial condition is u(x, 0) = @(x).

To find the general solution of heat equation under this conditions
we will substitute the boundary and initial conditions one after the

other in equation (11) as follows :
u(x, t) = e‘“zwzt[K coswx + L sin wx] ...(11)

Substituting the boundary condition u(0,t) = 0 in (11), we get

1(0,t) = e~ *W*t[K cos 0 + L sin 0]

0= e @WK o .(12)
*0

Butting (12) in (11), we get
u(x, t) = e~ WL sinwx ...(13)

Substituting the second boundary condition (u(l,t) = 0) in (13),
we get

w(l,t) = e~ Wt sinwl

2.2 ) .
0=e Y"1l | sinwl =2sinwl=0=wl =nn
N e\
20 %0
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Chapter Four: The Heat Conduction Equation

Then

up(x,t)y=e =~ 2 "L,sin— ...(14)

There are infinitely many functions in (14) so a general
combination of them is an infinite series.

Thus we assume that

(0] (0] 2. 2

S P 1
u(x,t) = u,(x,t) = e 2 "L, smT

— 00 — 00

(

\

N

x© 2.2
= u(x,t) = A e 12 smT
n=1

J

...(15)
Where A,, =L, — L_,

Now, substituting the initial condition (u(x, 0) = @(x))in equation
(15), we get

¢ nmx
u(x,0) = > A,e° sinT
n=1
¢ nmx
Q)(X) = An sin T

n=1

Which it is Fourier sine series, so the constants A,, are given by
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(
nmx

l
2
A, = 7.[ D (x) sianx;n =123, ..
0

-

J

...(16)

Hence ,(15) is the required solution where A4,, is given by (16).

Ex 1: Find the temperature u(x, t) at any time in a metal rod

(2 cm) long, homogeneous and insulated, which initially has a

uniform temperature of 3x, and it's ends are maintained at 0°c

for all t > 0. Then find the temperature of the middle of the

rodatt = 4.

Sol. 1=2,0(x)=3x,u(0,t) =0,u(2,t) =0

l 2

4 2 @()_nnxd _2[3 _nnxd
n =7 x)sin——dx =2 | 3xsin——dx
0 0
_ [—6x ? { Dty nanZ 12(=1)n*!
e T2 T 2 o nm

(0]

2.2

12(—1)"t? n’n nmx
u(x,t)=z 1) e™® 4 fsin—

nm 2
n=1
® 12 _1 n+1 n2m2 ni
u(1,4)zz cU e 7 *sin—
nm 2
n=1

°° +1
nm 2

n=1
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Chapter Four: The Heat Conduction Equation

Ex 2: A rod of length 50 cm is homogeneous and insulated, is
initially at a uniform temperature 20%, and it's ends are
maintained at 0% for all t > 0, find the temperature u(x, t).

Sol.

[l =50,0(x) =20%u(0,t) =0,u(50,t) =0

nmnx

j D(x) sm— dx

_ fZO nnxd
=0 sin N X
0
f nmx
=z sin dx
_ —40 nmx 50
Conm €03 50 | 0
80
[( 1 —1] = {TlTL’ if nisodd
0 ifniseven

Finally, by substituting in u(x, t), we get

® 2.2
_g2 T, nmx
u(x,t) = Ae 2 " sin—

80 _ on’r?,  nmx
— — e 2500 sjn ——

nm 50

124



Chapter Four: The Heat Conduction Equation

ﬁGeneral Solution of heat equation with non-

homogeneous boundary Conditions

Suppose now that one end of the bar is held at a constant
temperature k, and the other is maintained at a constant
temperature k, , then the boundary conditions are u(0,t) = k; ,
u(l,t) =k, , t > 0 the initial condition u(x,0) = @(x) remain
unchanged we can solve it by reducing it to a problem having
homogeneous boundary conditions, which can then be solved as in

previous case, thus we write
u(x,t) = ky +§(k2 —ky) + U(x,t) ..(17)

We will prove that (17) is satisfy equation (1) we derive the
equation (17) w.r.t. t and , we have
du aU au_kl—k2+aU azu_azu

ot 9t ' ox l Ix SR I

Substituting in (1) we get :

U 9%
_=a_
ot dx?

..(18)

Substituting the boundary and initial conditions in (18), we have

ki =k, +0+U(0,t) :>[U(O, £) = o] (from cond.1)

l
k2 =k1 +Z(k2_k1)+U(l,t) =>k2_k1_k2+k1 == U(l,t)
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=>[U(l, t)=0 ] (from cond. 2)

B(x) = ky +§(k2 —ky) + U(x,0) (from the initial cond.)

[U(x, 0) =0(x) — kg —é(kz — k) ]

Hence the new equation U(x,t) represent a heat conduction

equation with homo. boundary conditions and initial condition
U,6)=0,ULt)=0,U(x,0) = B(x) — k; +§(k2 — k)

Then the general solution can be found as follows:

2.2
”;Tt nm

C —a? .
U(x,t) = Z Aye 12 “sin—x
n=1

l

...(19)
(from (15))
Where
l
2 X nm
A, = Tj [Q)(x) —k, — T(kz — kl)] sinTx dx
0
...(20)
Substituting (19) in (17), we get
X - _2vmt  onm
u(x,t) =k, +T(k2 —ky) +ZAne 12 sinTx
n=1
...(21)

So (21) is the general solution with A,, shown in (20).
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Ex. 3: A rod of length 1, is initially at a uniform temperature x,
the end x = 0 is heated to 2° and the end x = 1 is heated to 39,

Find the temperature distribution in the rod at any time t.
Sol.

u(0,t) =2 ,u(1,t) =3 ,u(x,0) =0(x) =x

1
2 X nm
A, = Tf [(Z)(x) —ky _T(kz — kl)] sinTx dx
0

1

2 4 nm
=If[x—2—1(3—2)]sinTxdx
0
1
2[ x — 2 — x] sinnmx dx
0
1
= —4jsinnnxdx
0
—8
4 1 -
——cosnﬂx| ——(( 1)”—1)—{_ nis odd
nm
0 niseven

annzt nm

X s —a _
ulx,t) =2+-3-2)+ Z —e T "sin—x
1 nm 1

n=135,..
o0
—O0 2.2 2. .
=2+x+ — e TN gin nyx
nm
n=1
nisodd
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Ex. 4: A copper rod of length 50 cm, is initially at a uniform

temperature— the end x = 0 is heated to 10° and the end

x = 50 is heated to 35%, Find the temperature distribution in

the rod at any time.

Sol.

L=50,u(0,6) = 10° ,u(50,6) = 35° ,0(x) =

1
2 X nm
A, = 7] [@(x) — k4 _T(kz — kl)] sinTx dx
0

50
_ - f [x 10 — — (35 10)] in—S AW
~50) 12 50 SSEIR

50
—-10 nm
j [——10—— sm—xdx = sin—x dx

50 25 50
0
40
20 nt 50
——cos—x| __(( 1)11_1)_{— nis odd
50
0 niseven

'I‘LZTL'2 nr

X —a? t .
ulx,t) =k + T(kz — ki) + z Aye 12 sin—-x

n’n? nm
u(x,t) =10+ —(35 —10) + e~ *"7500¢ sm%x
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Ex.5:Solve the equation u,; = a?u,,,0 < x < 1,0 <t < o that
satisfies the conditions u(0,t) = 0,u.(l,t) = 0,u(x,0) = O (x) .

Sol. Using the equation

u(x,t) = e"*W’t[K coswx + L sin wx] .1
Substituting the first condition (u(0,t) = 0) in (1), we get

u(0,t) = e"*"*t[K cos 0 + L sin 0]

0= e @WK = )
Butting (2) in (1), we get

u(x, t) = e~ WL sinwx ...(3)
Differentiating (3) w. r. t. (t), we get

u,(x, ) = —a?w2e~ Wt sinwx ..(4)
Substituting the second condition (u:(l,t) = 0) in (4), we get

u (L, t) = —a’w2e~ %Wt sin wi

2.2 i )
0 = —a?w2e " ¥Ytlsinwl = sinwl = 0

nmw
>wl=nm ,n=0,%+1,+2,... =>W=T

Substituting in (3), we have

n2m?2

e thsinnTnx ...(5)

u,(x,t) =e
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Since n has infinite values, there are infinitely many functions in

(5) so a general combination of them is an infinite series, thus

® 2.2
—q?t Ty MW
u(x,t) = L,e 12 sme
— 00

® 2.2
_azn U t . nT[
u(x,t) = A e 12 sme
n=1

...(6)

Where A,, =L, — L_,

Now, substituting the third condition (u(x,0) = @(x)) in (6), then

¢ nmw
u(x,0) = ) A,e° sinTx

n=1

= nm
O(x) = A, sin I

n=1

Which it is Fourier since series, so the constants A,, are given by

l
2 nn
A, = Tjw(x) smedx
0

(7

Hence (6) is the required solution where A,, is given in (7).
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iAf}Bar with Insulated Ends

A slightly different problem occurs if the ends of the bar are
insulated so that there is no passage of heat through them. Thus in

this case of no heat flow the boundary conditions are
u,(0,t) =0,u,([,t)=0,t>0

Ex _: Solve the equation u, = a®u,, ,0 <x <1,0 <t < o that
satisfies the conditions u,(0,t) =0, u,(lt)=0,

u(x,0) = 9d(x)

Sol. Using the equation

u(x, t) = e"“zwzt[K cos wx + L sin wx] ..(1)
Differentiating (1) for x

u,(x,t) = e‘“zwzt[—KW sinwx + Lw cos wx] ...(2)
Butting the condition (1) in (2)

1, (0,) = e~ W't [—Kwsin 0 + Lw cos 0]

0=e ¥WilLy = ..(3)
Butting (3) in (1)

u(x, t) = e" WK coswx ..(4)
Differentiating (4) for x

u, (x,t) = —e~ W Ky sin wx ...(5)
Substituting condition 2 in (5), we get

u, (L, t) = —e~ Wt Kw sin wl
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0=—e¥WiKwsinwl = sinwl =0
nm
>wl=nm ,n=0,%+1,+2, ... =>W=7
Substituting this in equation (4), we get
on 2 Zt
ulx,t) =e * 2 KcosTx ...(6)

Since n has infinite values, there are infinitely many functions in
(6) so a general combination of them is an infinite series, thus

uO(x, t) == KO

nZTEZ
—-a l—

u,(x,t) = e 2 K cosn—lnx

(00}

nim
u(x, t) = —0 2 cosTx

n:

.(7)

Where K, = %" =K, +K_.,

substituting the third condition in (7), then

u(x, O)_70 Z e cos—x

D(x) = z Cn cos—x

Which it is Fourier cosine series, so the constants c, and c,, are
given by

l
=%j®(x) dx
0
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Cn lj(b(x)cos—xdx n=123,.

7

Hence (7) is the required solution.

.. Exercises ...

1. Arod of length (10 cm), is initially at a uniform temperature 2x
, and it's ends are maintained at 0°c , find the temperature u(x, t) at

any time.

2. Find the solution of the heat problem u; = 100u,, ,0 < x < 1,
0<t<oo,u(0,t)=0,u(1,t)=0,u(x,0)=5°,0<x<1.

3. Find the solution of the heat problem u; = a?u,, ,0 < x < 2,
0<t<oo,u,(0t)=0,u,(2t)=0ulx0)=/Ff(x),0<x<2

4. Find the temperature u(x,t) in a metal rod of length (25 cm)
that is insulated on the ends as well as on the sides and whose

initial temperature distribution is u(x,0) = x for 0 < x < 25.

5. A rod of length (30 cm) , is initially at a uniform temperature
(60 — 2x), the end x = 0 is heated 20°c and the end x = 30 is
heated to 50°c . find the temperature distribution in the rod at any

time.
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6. Find the solution of the heat problem U, = U, ,0 < x < 1,

31mTXx

0<t<oo,u(0,t) =1%u.(1,t) =2°%, u(x,0) = sin— 0 <

x < L.

7. Arod of length 1 unit, is initially at a uniform temperature , the
temperature of one ends is equal to zero and the rate of change of
temperature in the other end is equal to zero too. find the

temperature distribution in the rod at any time.

8. A rod of length (3 cm), is initially at a uniform temperature e’
and it's ends are maintained at 0% , find the temperature

distribution in the rod at any time.

9. Find the solution of the heat problem u; = u,, ,0 < x < 3,

0<t<oo,u,(0t)=0,u3,t)=0,u(x0)=/f(x).
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One Dimensional Wave Equation
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Section(5.1): The Wave Equation: Vibration of an Elastic string

A second partial differential equation occurring frequent in applied
mathematics is the wave equation. Some form of this equation, or a
generalization of it, almost inevitably arises in any mathematical analysis of
phenomena involving the propagation of waves, electromagnetic waves, and
seismic waves are all based on this equation.

Perhaps the easiest situation to visualize occurs in the investigation of
mechanical vibrations. Suppose that an elastic string of length | is tightly
stretched between two supports at the same horizontal level, so that the x-axis
lies along the string (see figure 1). The elastic string may be thought of as a
violin string, a guy wire, or possibly an electric power line.

Suppose that the string is set in motion( by plucking, for example) so that it
vibrates in a vertical plane and let u(x,t) denote the vertical displacement
experienced by the string at the point x at time t. If damping effects, such as air
resistance, are neglected, and if the amplitude of the motion is not too large,
then u(x, t) satisfies the partial differential equation:

Upr = C2Uyy v (D)
In the domain 0 < x <1, 0 <t < oo, Equation (1) is known as the (wave

equation), where the constant ¢ is given by ¢* = g

where T is the tension of the string and p is the mass per length of the string

material.
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By the same way that in the heat equation we will solve equation (1) by the
separation of variables method.
Letu(x,t) =Xx).T@t) ... (2)
deriving eq.(2) twice w.r.t x and t and substituting in (1), we get
T () X (x)
@ L EE) 2 2N

Equating this equation to a constant, sayA:

T (@) X (x)

ettt S S (3)
Then, we get
T —Ac*T=0 i ()
X' =2X=0 RIS )
Solving this two ordinary differential equations, we obtain
T(t) = c;e™VM 4 cpe=eVAt (6)
X(x) = cze" P e~V L (7)

Substituting (6), (7) in (2), we get
u(x,t) = (clec‘at+ cze"c‘/zt) (c3e‘/zx+ c4e"‘/zx) ...... (8)

Where ¢4, ¢, c5 and c, are constants

There are three cases to choose A:
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1- A > 0, this leads to an elastic string will vibrate without stopping, and
this is contrary to reality.
2- A = 0, this leads u(x, t) is constant and this is contrary to reality too.
3- 1 < 0, this is the right situation, let A = —w?2 = VA = wi
Substituting in (8), we get
u(x,t) = [k, coscwt + k, sincwt][ks coswx + k, sinwx] ... (9)
Whereky =c; +¢c,,ky =cii—cyi ks =c3 +ca,ky =c3i—cyi

The equation (9) is the general solution of (1)

Section (5.2): General solution of one- dimensional wave equation
satisfying the given boundary and initial conditions.

Suppose that we have an elastic string of length I, its ends are fixed at x = 0
and x = 1, then we have the two boundary conditions
u(0,t) =0,u(l,t) =0..... (10).
The form of the motion of the string will depend on the initial deflection
(deflection at t=0) and on the initial velocity (velocity at t=0). Denoting the initial
deflection by f(x) and the initial velocity by g(x), we arrive at two initial
conditions
ux,0) =f(x),u,(x,0) =gkx), 0<x<Il  .... (11)
Our problem now is to find a solution of (1) satisfying the conditions (10), (11).
Substituting the condition u(0, t) in (9), we get
u(0,t) = [ky coscwt + k, sincwt][k; cos0 + k, sin 0]
0 = [k, coscwt + k, sincwtlk; = k3 =0

Substituting in (9), we obtain
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u(x,t) = [k, coscwt + k, sincwt] k, sinwx ....... (12)
Substituting the condition u(l,t) = 0 in (12), we get
u(l,t) = [k coscwt + k, sincwt] k, sinwl

0 = [ky coscwt + k, sincwt] k, sinwl
%0 20

~sinwl=0—owl=nm;, n=12,3,...

Substituting in (12), we get

cnit cnmt Nx
u(x,t) = lkl cosS ]

+ k-, sin l

cnrt o cnmt] | nmx
+ R, sin ]

= u(x,t) = lRl cos

Where Rl = k]_ k4,R2 — kz k4
Since n has infinite values, then there are non-zero solutions
u, (x,t) of (13)

cnit . cnmt] . nmx
u, (x,t) = lRln cos—— + R,,, sin sin

[ [ [
We consider more general solution

(0.0

u(x, t) = Z u, (x,t)

n=1

oo

cnmt o cnmtl | nmx
~ulx, t) = Z [Rm coS—— + Ry, sin——| sin—— . (14)

n=1

Substituting the initial condition u(x, 0) = f(x) in (14), we get

- Nx
u(x,0) = Z[Rln cos0 + R,,, sin0] sinT

n=1
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nmnx

fG)= ) Rin sin—/

n=1

Which is Fourier sine series, then

l
2 nimx
Rip = Tff(x) sinT dx .....(15)
0
Differentiating (14) partially w.r.t t we get:

— [—cnm _cnmt cnm cnmt] | nmx
ut(x,t)=2l l R,, sin l + l R,, cos l ]smT

Substituting the initial velocity condition u; (x,0) = g(x) , we get

Fcn Cnm nmx
u; (x,0) = z [ l Rln sin 0 + e Ron cosO] sm—

- cnm nmx
& :ZT = Sy

Which is Fourier sine series, then

l l
cnnR ZJ()_nnxd R 2 ()_nnxd 16
- = - E— —_— = — _
T Ron =7 g(x) sin l X 2 = g(x) sin l x (16)
0 0

Hence the required solution is given by (14) where
Ry, and R,, are given in (15) and (16).

Ex. 1: A taut string of length 2 has its ends x=0 and x=2 fixed. The mid-
point is taken to height 1 and released from rest at time t=0. Find the
displacement function u(x, t).

Sol.:
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[ =2,9(x) =0 (from rest)

Then Ry,, = 0 because f(x) =0 A
(1)
X if 0<x<1 '

= = Co)t

ux,0) = f(x) {Z—x if 1<x<2 )
So R,,, = 0 because g(x) =0 3 = T

S ’
v

1in lff(x)sm@ dx

Nmx Nix
ljxsm— dx+f(2 —x)sm— dx

(0]

8 . nm chaghy nmx
~ulx,t) = annz sin—- cos—— sin—

n=1

Ex. 2: An elastic string of length (2 cm) has its ends x=0 and x=2 fixed with
no initial displacement. The string is released with initial velocity equal x
Find the displacement function u(x,t).

Sol.:

[=2,f(x)=0,g(x) =x
Then Ry,, = 0 because f(x) =0

l
R _2 ) mtxd
2R — gxsml X
0
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2 (2 . nmx 8 (-1t
=—foxsm—dx: (-1)

cnw 2 c n2m?

(0 0]
_cnmt | nmx
u(x,t)=zR2n sin—— sin——
n=1

(00]

218(—1)’“r1 _ cnmt | nmx

sin sin
c n?m? 2 2

n=1

Ex. 3: An elastic string of length (2) has its ends x=0 and x=2 fixed. Its
initial deflection looks like a parabola with vertex at the point (1,1). It is
set in motion with initial velocity equal x Find the displacement function
u(x, t), then find the displacement u(1, 2).

Sol.:
1=2,g(x) =x,u(0,t) =0,u(2,t) =0
f(x) is a parabola, the vertex is (1,1) then
y —k =4p(x — h)?or
(x —h)? = —4p(y — k) ... ... (%) i > Cyt)

= x-1D?=-4p@y -1, (hk)=
(1,1) ...... (%)

Putting(0,0) in (x*), we get

1=4p —p=,
Then (x*) will be
x-1?=-@-1

— |y =f(x) =—x%+2x
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So Ry, = %folf(x) sinn—?x dx

_ (%/_.2 . MIX _1l6[(-1)"-1]
= Jo (=x* + 2x) sin—= dx = ——5—-—
l
R 2 ) nmx q
=— x) sin— dx
L T

Then the displacement is

(0.0

cnmt cnmt] | nnx
u(x, t) = Z lRln CoS —— + R,, sin—— | sin——

n=1

5116[(—1)"—1] cnmt 8 (=)™ cnnt]  nmx
= CosS +

Sin SIn ——

n3m3 2 din2m? 2 2
n=1
(160 (D" — 1] 8 (—1)mth nm
u(1,2) = z [ 33 cos cnm + Wsm cnm sm7
n=1

Ex.4: Solve the wave equation u;; = 9u,,, 0 <x <1, 0 <t < oo subject
to the following conditions:

u; (0,t) =0,u(l,t) =0,u(x,0) =@ (x), u; (x,0) = g(x).
Sol.: From equation (9), we have
u(x,t) = [ky cos3wt + k, sin3wt][k; coswx + k, sinwx] ...(4.1)
Differentiating (4.1) w.r.t (t), we get
u,(x,t) = [-3wk; sin3wt + 3wk, cos 3wt][k; coswx + k, sin wx]

Substituting the first condition, we get
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u:(0,t) = [-3wk; sin 3wt + 3wk, cos 3wt] |k; cos0 + k, sin0
=1 =0

0 = [-3wk; sin3wt + 3wk, cos3wt] k3 = |k3 =0
%0

Substituting in (4.1), we get
u(x,t) = [k, cos3wt + k, sin3wt]k, sinwx .....(4.2)
Substituting the second condition in (4.2)
u(l,t) = [k, cos3wt + k, sin3wt]k, sin wl

0 = [ky cos 3wt + k5 sin 3wt] k, sinwl
%0 20

~sinwl=0— wl=nn, n=1273,....

Substituting in (4.2)

3nmt - 3nmt
l + R,, sin l

Where Rl = k]_ k4,R2 == k2 k4

u(x,t) = lRln COS—— l sin

Since n has infinite values, then there are non-zero solutions u,, (x,t), we will
take a linear combination of them for more general solution

3nmt ~ 3nmt] | nmx
u(x,t) = z lRln CoS —— + R,, sin l ] sin— ... (4.4)

n=1

Substituting the third condition in (4.4)

(0.0)

_ . nmx
u(x,0) = Z Ry, cos0 + R,, sin0 sin——
n=1 =1 =0
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$(x) = Z Rin sin—r

Which is Fourier sine series, then

Now, substituting the forth condition in (4.4) but first we will derive the
equation (4.4) w.r.t (t)

- —3nm ~ 3nmt  3nm 3nmt] @ nmx
ut(x,t)=2l l R, sin l + l R,, cos l ]smT

— [—3nm 3nm nix
u; (x,0) = z [ l Rln sin 0 + e R,y cosO sm—

Which is Fourier sine series, then

R,, = —f g(x) sm— dx e enes (4.6)

3nm

Hence, the required solution is given by (4.4) where Ry, and R,,, are given in
(4.5) and (4.6)
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... Exercises ...

1- An elastic string of length (5) has its ends x=0 and x=5 fixed is initially
in the position equal g The string is set in motion with initial velocity

equal % Find the displacement function u(x,t) for all t.

2- An elastic string of length (2 cm) has its ends x=0 and x=2 fixed with no
initial displacement. The string is set in motion with initial velocity equal
3. Find the displacement u(x, t) for all t.

3- An elastic string of length (4 cm) has its ends x=0 and x=4 fixed. It is
released from rest in the position 2x. Find the displacement of the string
u(x, t).

4- An elastic string of length (2 cm) has its ends x=0 and x=2 fixed. It is
released from rest in the position x2. Find the displacement of the string
at any time.

5- Solve the wave equation u;; = uU,,, 0 <x <1, 0 <t < oo under the
following conditions:

u(0,t) =0, u(1,t) =0,u(x,0) = 3,u; (x,0) = 5.

6- Solve the wave equation u, = a?u,,, 0 <x <5, 0 <t < o under the
following conditions:

u(0,t) =0,u, (5,t) =0,u(x,0) =2x,u; (x,0) = 4

7- Solve the wave equation Uy = Uy, 0 <x <1, 0 <t < oo under the
following conditions:

u, (0,t) =0,u(1,t) =0,u(x,0) = f(x),u; (x,0) = 0.

8- Solve the wave equation u;; = Uy, 0 <x <3, 0 <t < oo under the
following conditions:

u, (0,t) =0,u, (3,t) =0,u(x,0) = 2%, u; (x,0) = 3.
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Section 5.3: The D'Alembert Solution of the Wave Equation
In the case of the free vibration of an infinite string, the required function
u(x, t) must satisfy equation (1):

With the initial conditions (11): u(x,0) = f(x), u; (x,0) = g(x)

Where f(x) and g(x) must be specified in the interval (—oo, ) since the string

is infinite.

The general solution of (1) can in fact be found, and in such a form that

conditions (11) can easily be satisfied.

For this, we transform (1) to the new independent variables:
E=x+ct,n=x—ct e (17)

These variables are called the (canonical coordinates).

On taking u as depending on x and t indirectly via ¢ and n

We can express the derivatives with respect to the first variables in term of the
derivatives with respect to the new variables:

u ou 0¢&  Odu @

a=a—fa—ﬁ+a—n% (from (17))
=1 =1

B du N du

S 08 an

Sl = ug Fup| o (18)

(from (17))

Q
Q
N
Q
(\r
Q
=
L{R|E
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s uy = c( Ug — un) ...... (19)

azu_ d ou
dx2  Ox Ox

uxx -

0 Ju ., du
- E'(a_fJ’a_n) (from (18))

_0 9u_ 9 ou
T 9ETax  om ox

_6 (6u+0u)+6 (au+au)
~0E'\aE  an)  on \oaE  an

0%u 0%u 0%u 0%u  9%u 2%u 0%u
= + + + = + 2 e NN
02  9éon = 0&dn  On2  0&Z2 0éon  dn?

Uy = Ugs + 2Ugy + Uy, e (20)

By the same way, we get

U = cz(ugg — 2ugy + urm) e (21)

Substituting (20) and (21) in (1), we get
Cz(uff — 2ug, + unn) = c? (uff + 2ug, + unn)
c*Ugs — €*2Ugy + CPUyy — CPUgs — 2¢7Ugy — CPUp, = 0

+—4c2

—4c*uge =0=—=|ug, =0 .. (22)

Integrating (22) w.r.t & and n, we get  u, = ¢;(n)

u = j¢1<n) o0 + ¢ ()
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u(&,n) =@M +¥(E)

Where @) = [ ¢, (1) dn and ¥(¢) = ¢, (&)

@ and W are two arbitrary functions.

Now, returning to the old variables x and t, we get

u(x,t) = d(x —ct) + Y(x + ct) v (23)

Substituting the initial condition u(x,0) = f(x) in (23)

We get u(x,0) = &(x) + ¥(x)

Jf =0+ (24)

Differentiating (23) w.r.t (t), u,(x,t) = ®'(x — ct)(—c) + c¥'(x + ct)
Substituting the second initial condition u,(x,0) = g(x)
gx) = —cd'(x) + c¥'(x)

Integrating this equation from 0 to Xx:

X

k + f g(z)dz = —c®(x) + c¥(x)

0

= %+ %foxg(z) dz = —P(x) + P(x) v (25)

From (24) and (25), we can easily find ®(x) and W(x), as follows:

k 1
2c 2c

D) == f (x) - [ 9(2) dz
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1 ER N
“’<x>-§f<x>+z+zof9<z) :

Then replacing x by (x — ct) in ® and by (x + ct) in ¥ and substituting in
(23)

u(xt)——f(x—ct)————f g(z)dz + = f(x+ct)+—

x+ct

1
+E j g(z)dz

0

x+ct

1 1
= |u(x,t) = E[f (x—ct) + f (x + ct)] +2_c j g(z) dz|...... (26)

This is D Alembert s solution to (1) subject to (11), on the interval (—oo, o).

The importance of the general solution of the wave equation (D Alembert
solution) lie that physically represents the sum of two travelling waves in

opposite directions with velocity ¢ for example:

1- u(x, t) = sin(x — ct) (a wave is travelling to the right).
2-u(x,t) = (x + ct)? (awave is travelling to the left).
3- u(x,t) = sin(x — ct) + (x + ct)? (two waves in opposite directions).

4-u(x, t) = e~@=D*  (awave is travelling to the right).
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u(x, t) = e~ (x=c)’

2

Ex.5: Solve the equation U = €Uy, —0 <X <, 0 < t < oo under the

following conditions: u(x,0) = sinx, u,(x,0) =0

sol: from D Alembert solution
x+ct

1 1
u(x,t) =E[f (x+ct)+ f (x —ct)] +2_c f g(z) dz
x—ct

Since f(x) = sinx and g(x) = 0, then
u(x,t) = %[sin (x + ct) + sin (x — ct)]

This solution is a two waves in opposite directions

2

Ex.6: Solve the equation Uy = €c“uy,, —0 <X < 0, 0 <t < oo under the

1 —1<x<1 oy

following conditions: u(x,0) = { 0 otherwise

sol: from D Alembert solution
x+ct

1 1
u(x,t) =§[f (x+ct)+ f (x —ct)] +2_c j g(z) dz
x—ct

1
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Note that the solution u(x,t) is two waves in opposite directions each

1
one equal to >

Ex.7: A string is set in motion its equilibrium position with an initial

velocity u,(x, 0) = sin x Find the displacement u(x, t) of the string.

sol:
u(x,0) =f(x) =0 (since the string is an equi. position)
u,(x,0) = sinx
x+ct

1 1
u(x,t) =§[f (x —ct) + f (x + ct)] +Z J g(z)dz
x—ct

x+ct

—1[0+0]+1 inzd
—2 oC SINZ az

x—ct

_ 1 [cos (x — ct) — cos (x + ct)]
2¢
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... Exercises ...

1- Solve the following initial value problems:

A Upp = Uy, —0 < x <00, 0 <t < oo, whereu(x,0) = e %",

u;(x,0) =0
D- U = Uyy, —00 < x <00, 0 <t < oo, whereu(x,0)=0,
u,(x,0) = xe *°
2- A string with free ends is set motion with no initial velocity from an
initial position u(x, 0) = x2. Find the displacement of the string.
3- Sketch the following solution of the wave equation u(x,t) = (x + ct)?
4- Using the canonical coordinates to show that the solution of the
equation u; = c?uy,,, —0 <x <, 0 <t < oois
u(x,t) = d(x —ct) + Y(x + ct)
5- If you know that u(x,t) = ®(x — ct) + W(x + ct) satisfy the
conditions u(x,0) = f(x), us(x,0) = g(x) , show that

J-X+Ct

x-ce 9(2) dz

6- By using the canonical coordinates, show that the equation

u(x,t) =%[f(x+ct)+f(x—-ct)]+2—1c

Upr = C%Uy, —0 < x <00, 0 <t < oo can be reduced to the form
Ugy =0

7- Prove that the equation u (&¢,n) = siné + e is a solution of the
equation ug, =0

8- A string with free ends is set in motion with no initial velocity from an

initial position u(x, 0) = x3. Find the displacement of the string.
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9- Solve the wave equation u; = c?Uyy, —0 <x <00, 0 <t <

under the conditions: u(x, 0) = g u, (x,0) = §

10- Solve the wave equation u;s = c?uy,, —0 < x <00, 0 <t < ®©
under the conditions: u(x,0) = sinx, u;(x,0) = cosx

11- Prove that the solution of the equations
Px)+¥Yx)=fx), —-DPE)+¥(x)=0

Is  u(x,t) =—[f (x—ct) + f (x + ct)]

Section 5.4: Method of characteristics
The principle purpose in this section is to introduce the notion of

characteristics is more important for theoretical purposes and for an
understanding of the nature of solutions of certain types of partial differential
equations than they are as practical methods for obtaining solutions.

In this section we will discuss the solution of first order linear and
quasilinear PDEs by the characteristics method which is based on finding the
characteristics curve of PDE .

The method of characteristics can be used only for hyperbolic problems
which possess the right number of characteristics families. Recall that for
second order parabolic problems we have only one family of characteristics

and for elliptic PDEs. no real characteristics curves exist.
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5.4.1 : Advance equation(first order wave equation)

The one dimensional wave equation

0%u 0%u
F - C2 ﬁ =0 . (27)

Can be rewritten as either of the following

o) (G-ct)umo e

Since the mixed derivative terms cancel. If we let

6u ou

V= 3t Ca (29)

Then (28) becomes

~+c2=0 .....(30)

We now show to solve (30) which is called the first order wave equation or

advection equation

- Although (30) can be used to solve the one dimensional second
order wave equation (27).
To solve (30) we note that if we consider an observer moving on a curve x(t)

then by the chain rule we get

dv(x(t),t) dv N ov dx
dt  dt 0Jx dt

If the observer is moving at a rate % = ¢, then by comparing (31) and (30) we

find

dv
—=0 ..(32)

Therefore (30) can be replaced by a set of two ODES
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dx
E =C ....(33)

dv
= 0 ....(34)
These 20DEs are easy to solve. Integrating of (33) yields

x(t) =ct+c, c¢,=x(0)

sx(t)=ct+x0 L. (35)
And the other one has a solution
v=>b

Where b is a constant a long the curve given in (35)
The curve (35) is a straight line. In fact, we have a family of parallel straight

lines, called characteristics, as follows in the figure

Characteristic s t = %x — %x(O)

In order to obtain the general solution of the one dimensional equation (30)
subject to the initial value

v(x(0),0) = f(x(O)) .....(36)

We note that V= constant a long x(t) = x(0) + ct

= x(0) =x(t) —ct = f(x(O)) = f(x(t) —ct) = v(x,t)

e ——————————
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Then the general solutionis v(x,t) = f(x(t) — ct) ....(37)

1
d d -
Ex8: Solve 2> + 322 = 0, where v(x,0) = { “x 0<x<1
' ¥ 0 otherwise
d
Sol: The two ODEs are d—: =3 ...(8.1)
dv
a =Y ..(8.2)

The solution of (8.1)is x(t) = 3t + x(0) = x(0) = x(t) — 3t

And the solution of (8.2)is v(x(t),t) = v(x(0),0) = constant

1
v(x(0),0) = {EX(O) 0<x(0)<1
0 otherwise
1
={§(x—3t) 0<x—3t<1
0 otherwise
= v(x(t),t)

Let’'s sketch the characteristics through the pointsx =0, x =1

Characteristics for x(0) = 0 and x(0) = 1
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Jdu
Ex.9: Solve using the method of characteristics Y

to u(x,0) = f(x).

Sol: The system of ODEs is

dt
dx
— =7
dt

Solve (9.2) to get the characteristic curve
x(t) = x(0) — 2t

Substituting the characteristic equation in (9.1) yields

U _ ,2(x(0)-2) _, gy = p2x(0)=4t g¢

dt

Then u=k- iezx(o)"‘“
Whent = 0,u(x,0) = f(x) — u(x(0),0) = f(x(O))
Substituting in (9.4) to find the constant k

u(x(0),0) = f(x(O)) h g ¥ _ier(o)

ke = f(x(0) + 7 €O

Substitute k in (9.4) we have
1

1
u(x,t) = f(x(O)) + 2 e2x(0) _ Z p2x(0)—4t

now substitute for x(0) from (9.3) we get

u(x,t) = f (x + 2t) +iezx(e4t — 1)

du
2 — = e**,subj
.= € ,Subject

..(9.1)

...(9.2)

...(9.3)

. (9.4)

...(9.5)

Hence (9.5) is the general solution with the characteristics in (9.3)
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.. Exercises ...

Solve the following equations using the method of characteristic subject to

the initial condition corresponding

-5—3—— 0, w(x,0) =sinx

— p2X
- + ax—e ,u(x,0)

f(x)
u u

= 2x =
36t Zax e*, u(x,0) = cosx

4- + Zz =1,u(x,0) = f(x)
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Chapter Six: Laplaces Equation and Laplace Transforms

Section(6.1): 1- Laplace’s Equation in Two Dimensions

One of the most important of all partial differential equations occurring in
applied mathematics in that associated with the name of Laplace, in two
dimensions

Uy T Uyy =0 ey

Laplace’s equation appears in many branches of mathematical physics, for
example in a stable heat problems (i.e. the problems which the temperature does
not depend on time), as well as in stable electrical problems,....

We denote to Laplace's equation by VZu = 0 where V? is Laplace's operator.

2- General solution of two- dimensional Laplace’s equation
To solve equation (1), we assume that (by separation of variables)

ulx,t) =Xx).Yyy L. (2)
Where X and Y are functions of x and y respectively

92u " 9%u "
From(2), 7= = X"(x).Y(y) and 75 = X(x).Y"(y)

Hence (2) reduces to

X"00.YO) + X)) =0 =2 = -1 (3

Since the left hand side of (3) depends only on x and the right hand side
depend only on y, both sides of (3) must be equal to same constant, say u.
This leads to two ordinary differential equations.

X'"—puX=0and Y"+uY =0 e (4)
Whose solutions depends only on the value of u. Three cases arise:

Case 1- When u = 0, thenreducesto X" =0and Y" =0
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Chapter Six: Laplaces Equation and Laplace Transforms

Solving these, X = Ax + Band Y = Cy + D, then a solution of (1) is
u(x,y) = (Ax + B)(Cy + D) e (5)

When x or y = 0 then u(x, y) = 0 and this will be a trivial solution
Case 2- When u = A2 i.e. positive. Here 2 = 0, then (4) reduces to
X'—22X=0and Y' =4+22Y =0

Solving these, we get

X(x) = Ae? 4+ Be ™ and Y (y) = CcosAy + Dsin Ay

Then a solution of (1) is

u(x,y) = (Ae’lx + Be_lx)(CCOSAy + Dsin Ay) ... (6)

Where A, B, C,D are constant

Case 3- When u = —A? i.e. negative. Here 1 # 0, then (4) reduces to
X'+ 22X =0and Y" -2%Y =0

Solving these, we get

X(x) = AcosAx + Bsin Ax and Y(y) = Ce® + De ™ *

Then a solution of (1) is

u(x,y) = (AcosAx + Bsin Ax)(Ce’ly + De"’ly) e (7)

Where A, B, C, and D are arbitrary constants

3- Dirichlet problem in a rectangle
Suppose that we have a rectangular metal plate isolated ends not depend on

time, as follows

0%°u = 0%u
@'l‘a—yZ:O,OSXSa, 0S}1<b

With boundary conditions:
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Chapter Six: Laplaces Equation and Laplace Transforms

U(O, Y) = fl(y),u(a, Y) = f2 (y),U(X, O) = gl(x)r U(X, b) = 82 (X)

here we will study the situation where one of the boundary conditions is a
function of x and the other conditions are equal to zero, as shown in the

following example.

Ex.1: Find the solution u(x,y) of Laplace's equation in the rectangle
0<x<a, O0O<y<b also satisfying the boundary conditions:
u(0,y) =0,u(a,y)=0,ux,0) =0,ux,b) =f(x)

Sol: From equation (7)
u(x,y) = (AcosAx + Bsin )lx)((]e’ly + De"ly) ...... (7)
Substituting the condition u(0,y) = 0in (7)

u(0,y) = (Acos0 + Bsin O)(Ce’ly a7 De—/ly)

0=A(Ce” +De™) =[A=0

#0

Substituting in (7)

u(x,y) = BsinAx (Ce’ly + De‘ly)

u(x,y) = sinAx (Ee” + Fe™>) L. (8)
Substituting the condition u(x,0) = 0

u(x, 0) = sindx (Ee® + Fe?)
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O=sinlx (E+F) >E+F=0=|F=—-E

#0

Substituting in (8)

u(x,y) = sinix (Ee’ly — Ee‘“’)

= u(x,y) = E sindx (e — e™V) )
Substituting the condition u(a,y) = 0in (9)

u(a,y) = E sinda (ely — e"ly) = sinda = 0
=0 #0 ;,«:'0

~Ada=nn, n=123,... = 1=—

Substituting in (9), hence non zero solutions u,,(x, y) of (9) are given by

nmy nmy : niTx
u,(x,y) = E, (e a —e a )smT

For more general solution, we take

oo

u(x, t) = Z u, (x,y)

n=1

nmy nrcy) —

= ulx,t) = Y1 En (e a —e a )sin— ....(10)

Substituting the condition u(x, b) = f(x) in (10)

(0]
nmb _nnb niIx
u(x,b)=ZEn(ea —e a)sinT

Which is Fourier sine series of f(x), hence we get
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nmh nnb nmx
En(e a —e a ff(x)sm— dx

= E, =

nmb nmb
a (e a —e a )
Hence (10) is the required solution where E,, is given in (11)

Now, we will study the situation where one of the boundary conditions is a
function of y and the other conditions are equal to zero, as shown in the

following example.

Ex.2: Find the solution u(x,y) of Laplace's equation in the semi- infinite
plate 0 <x<oo, 0<y<b also satisfying the boundary conditions:
u(0,y) = f(y) ,u(eo,y) = 0,u(x,0) =0,u(x,b) =0

Sol: Rearrange conditions
1- u(x,0) = 0, 2-u(oo,y) = 0, 3-u(x,b) =0, 4-u(0,y) = f(y)
From equation (6)
u(x,y) = (Ae’”‘ + Be"“)(CcosAy + Dsin Ay)
Substituting the first condition, we get

u(x,0) = (Ae?® + Be™**)(Ccos0 + Dsin 0)

0= (4e™ +Be™™)C =[C=0

#0
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Chapter Six: Laplaces Equation and Laplace Transforms
Butting in equation (6)

u(x,y) = (Ae* + Be™*)Dsinly

u(x,y) = (Ee® + Fe™™)sinzy ... (12)
Substituting the second condition in (12)

u(eo,y) = lim (Ee™ + Fe™)sindy

X—00

0 = | Esindy lime?* + Fsinly lime

X—>00 X—>00
=0

~0=E sinly lime*® =|[E =0
—_—— x>
20

=0

Putting in (12)
u(x,y) = Fe ™ sinlyM\% e S0 ... (13)
Substituting the third condition in (13)

u(x,b) = F e ™ sinAb

0=F e sinlb = sinlb =0
o S——
£0  #0
wAb=nm, n=123,... == ”7”

Substituting in (13), hence non zero solutions u,, (x, y) are given by

_nnX  onm
u,(x,y) =FEe b smTy
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For more general solution, we take the sum of u,, (x,y)

nmix

ulx,y) =Yo-1F,e b sinn% .. (14)

Substituting the fourth condition in (14)

(00)

nm
u(0,y) = ) E,e° sinTy
n=1
. nmy
fo) =) F sin—=
n=1

Which is the Fourier sine series, then E, is the Fourier coefficient in the form

b .
Fo==J) f&)sin=% dy e (15)

Then the equation (14) is the required solution with F, that given in (15)

Ex.3: Find the steady state temperature distribution in a rectangular plate
of sides a and b isolated at the lateral surface and satisfying the boundary

conditions:

u(0,y) = u(a,y) =0for0 <y < b,and u(x,b) =0 and,u(x,0) = x(a — x)

for0<x<a
sol:
The boundary conditions is

u(0,y) =0,u(x,b) =0,u(ay) =0, u(x,0) =x(a — x), then we begin with
equation (7)
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u(x,y) = (AcosAx + Bsin 2x)(Ce™ + De™)

Where A, B, C, and D are arbitrary constants

Substituting the first condition, we get

0=A(Ce"” +De™) =[4=0

Substituting in (7) , we get

u(x,y) = sinix (Ee’ly + Fe"ly)
Where E = BC,F = BD

Substituting the second condition in (16), we get

u(x,b) = sindx (Ee?® + Fe ) = Ee’? + Fe™? = 0

— |F = —Ee24b

Substituting in (16), we get
u(x,y) = E sindx (e?Y — 240 e~4)
Substituting the third condition in (17),

0= E sinda (3’13’ — e24b e"ly) = sindla =0
“
#0 #0

sAda=nnm, n=123, ... == 1=—

e (16)

e (17)

Putting in (17), hence non zero solutions u,, (x, y) are given by

nix nmy 2ntb  nmy
u,(x,y) = E, sin— (e a —e a e a)
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For more general solution, we take the sum of u,, (x,y)

nmy 2nmb nmy
u(x,y) = Ype1En sinn%x (eT —e a e_T> ...(18)
Substituting the fourth condition in (18)

(0.0)

nix 2nmb
u(x,0) = ) E, sin— (eo —e a e°>
a
n=1
(00]
2nmb NnmTx
x(a—x) = ZEn (1—3 a )sm—
a
n=1

Which is the Fourier sine series, then E,, is given by

a

2 - nmx
E, = ( — ) f x(a — x) smT dx
all—e a |p
0 ,If niseven
4612 8a2
- L1~ (D] = S if nisodd
n3n3(1—e a ) n3n3(1—e a )
- 8a? nix nmy 2nmh  nmy
ulx,y) = Z s—— Sin (e a —e a e a )....(19)
n=1 n3x3 (1 —e a ) a
nisodd

The equation (19) is the required solution

4-The problem of the steady potential

By the same way in section 3 where we find the steady temperature

distribution in a rectangular plate when the temperature on its perimeter is
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known, so too we will find the steady potential on the plate if the potential on
the perimeter is known.

Ex.4: A thin uniformly semi- infinite plate is in the form of area enclosed by
the lines x = 0,x = o0,y = 0 and y = b. The potential on the edge x = 0, is
(5sin 31V _ 2sin "—y), and on the other edge is zero. Find the steady

b b
potential at the points of the plate.

Sol:
u(0,y) = 5sin 3%’ — 2sin %, ,u(eo,y) =0, u(x,0) =0,u(x,b) =0

by the same way in Ex.2, we start with equation (6) and get (14)

nmx nmy

u(x,y) = Xp-1F,e b sin 5

Where E, = %fobf(y) sinn%y dy

b

2 . 3my . My\. . nmy

= Ej (SSln & 2sin ?) smT dy
0

b

_10f. . g 4j.ﬂy.nﬂyd

—b Sin b Sin b y b SlanIIl b y
0
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(3 - n)ﬂy b - B+ n)my b
(3 — n)n b (3 + n)m > b 0
2 b (1 —n)my b (14 n)my b
p[A-mn " b A+mn b |
n+1,3
~FE,=0n%13
Then we must find F; and F;
) b
Tt /[
= Ef 551n —— — 2sin ?y) sm?y dy
0
b
f 3y nyd 4f
=7 sin sin Y~
=0 0
b
4[11 )d_2< b Zny)_z
5 2 cos NN 27Tsmb T
0
b
_2] L 4 Y 4
=7 sin— sm 5 sm sm y
0
=0
b
10 d SJ " p 5( b 61Ty> _c
=" sin? y=3 cos y=7\y 67rsmb T
0 0

Substituting in equation (14), we get
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- _nnx - nmwy _3mx 3wy _nx Ty
u(x,y) = z F,e b sinT =D5e b sinT —2e b sin7 ..(20)
n=1

Then (20) is the required solution

Section6.2:Laplace’s Equation in polar co-ordinates (Dirichlet

problem for a circle)

While solving boundary value problems, appropriate choice of coordinate
system is very useful. In physical problems that involve a circular geometry (for
example, the problem of evaluating the temperature in a circular disc or a sector
of a circular disc), it is clear from the nature of the situation that the problem
will be simplified if we can use polar coordinates (r, 8) instead of rectangular
coordinates (x,y)

Polar coordinates are defined by means of equations

x =rcos@ ,x = rsinf ,wherer > 0,0 <0 <27 ...(21)
The Laplace's equation in polar coordinates is given by
urr+%ur+%u99 =0 v (22)

Here, we will discuss three cases: plv, &)

1- Dirichlet problem inside a circle /
€]

2- Dirichlet problem outside a circle o ~

3- Dirichlet problem on a circle annulus
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Case(1): Dirichlet problem inside a circle

Here we can find the steady temperature and
steady potential inside a circle if the steady

temperature and stead potential on the
circumference is known.

From equations (21), (22) and the separation of variables, we get
r n
u(r,0) = Yo-o (E) (a,, cosné + b,, sinnf) v (23)

Which is the steady temperature inside a circle where the steady temperature on
the circumference is given by the boundary condition

u(R,0) = g(0);0 <0 < 2m 0 <r<R,andR is the radius of the circle

2
ag =, " 9(6)do

2T

1
j g(0) cosnf db

a, = —
/A
0

2T

1
b, = ;j g(0)sinnf db
0

If R=1 then the equation (23) will be:

u(r,0) =Y, -or" (a, cosné + b, sinnf) ...(24)

Where u(1,0) = g(0);0<6 <2m 0<r<1
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Ex.5: A steady potential on the circumference of a circle with a radius equal
1is (2 + 4sin 20 — 3cos 40), find the steady potential inside the circle.

Sol: g(0) =2+ 4sin20 — 3cos406, R=1

1
2T

ap, = foz”(z + 4sin 20 — 3cos 40)db

1 3 2T
= %(26 — 2 cos 20 —Zsin49>0 =2
2T

1
a, = Ej (24 45sin206 — 3cos40) cosnb do
0

1 (27‘[ 2T 2T \‘
= — f 2 cosnfdo +f 4 sin 20 cos n6do —J 3cos 40 cosnfdo

yia
0 0 0
=0 =0
2T 2T

/27‘[
f 2 cos 40d6 +J 4 sin 20 cos 40d6 —3f cos240d0 |
\o 0 0 /
=0 =0

_ 2m

2T
= 3j(1+ 89)d9—_3(9+1'89> = _3
—27_[ COS —27_[ SSln . =

0

1
a4=_
T

21
1
b, = Ej (24 45sin26 — 3cos40) sinnd do
0
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/Zn 2T 2T \
1

—| j 2 sinnfd6 +4j sin 20 sinnfdf —3j cos46 sinnddo |

T
0 0 0
=0 =0

b, =0;n+ 2
2m 2m 2
1 - 401 2 1 "
bzz—j 4 sin“ 26 d9=—f —(1 — cos406) d6=—<6——sm49> =4
Iy ) 2 T 4 0
0 0

0

~u(r,0) = Z r™ (a, cosnf + b, sinnf)
n=0

= 2 — 3r* cos 40 + 4r? sin 26
Which is the required solution.

Case(2): Dirichlet problem outside a circle

It is similar to the first case but the steady heat and steady potential will be

calculated outside the circle, the solution is

(0] r _n
u(r,0) = z (E) (a,, cosnB + b,, sinnd) .....(25)
n=0

Where R = the radius of thecircle, R<r <o, 0<0 <271

ay, a,, b, are Fourier coefficients that in case (1) and g(@) is the steady

temperature or the steady potential on the circumference

EX.6: Solve the following Dirichlet proble Viu =
u(2,0) =2—-sinB+4c0s30,2<r<ow, 0<0<2n

Sol:
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This problem is outside the circle, then

(0/0] T' _n
u(r,0) = Z (E) (a, cosnéf + b,, sinnd)

n=0

ap, = %foz”g(e)de = %foz”(z — sin 0 + 4cos 360)d0O

2T

1 3 1
—(26+c056+—sin39) =—{4m) =2
4 21

=27T 0

2T 2T
1 1
a, = Ef g(8) cosnf do = ;j (2 —sin© + 4cos 30) cosnb do
0 0

a, =0;n+3
2T 2T 2
1 401 2 1 m
a3=—f 4(c0539)2d9=—f—(1+cos66) d9=—(9+—51n69) =4
T m) 2 T 6 0
0 0
127‘[ 127t
b, = ;f g(8)sinnb do = EJ (2 —sin 0 + 4cos 30) sinnf db
0 0
b,=0n+1
2T 2T 2
by = 'Zede—_lflm 26) d6 = — (e 1'ze)n
1= sin =—3 cos =5 > sin .
0 0
-1
= —(21) = -1
27T( )
Then

u(r,0) =2+ (g)—s .4 cos 30 — (2)_1 sin 6
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Which is the required solution.

Case(3): Dirichlet problem on a circular annulus

Consider a circular annulus of inner radius R; and outer radius R,.

Let the surface of the annulus be insulated and the temperature distribution
along the inner circle r = R, and the outer circle r = R, are maintained as
u(Ry,0) = g4(8) and u(R,,8) = g,(0), so the solution is:

u(r,0) =ag+bylnr + Y o[(a,r™ + b,r™™) cosnb + (c,r™ +

d,r~")sinné| ..(26)

Where qﬁ")

ao +boInRy = — [ g1(6)d6 .. (27) Q
a,R" + bR, " = %fozn g1(0) cosnd db .. (28)

R+ d,RT" = %fozn g1(0) sinnf do ..(29)

Which it is the coefficients of the inner circle, the coefficients of the outer circle

IS:

ag + byInR, = %foz”gz(e)de ..(30)
a,R," + bR, " = %fozn g»(0) cosnd do ..(31)
c,R," +d,R,™" = %fozn g,(0) sinnb do ..(32)

Solving (27), (30) to get a, and by, and (28), (31) to get a,,and b,,, and (29),
(32) to get ¢, and d,, then substituting in (25) to get the solution where
R;{ <r<R,
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Ex.7: Consider a circular annulus of inner radius 1 and outer radius 3. Let
the surface of the annulus be insulated. Find the steady state potential at
any point (r, 0) in the annuls given that the potential distribution along the
inner circle and the outer circle are maintained as u(1,0) =0 and
u(3,0) =sin0

SOI 91(6) == 0,g2(6) == Sine, Rl == 1,R2 =3
2m
1
ap + bO lan = E'/‘ gl(g)dg
0
ag+boInl=—["0d0 = a, = e (1%
1 2T
aO + bO ln R2 == ﬁj gz(e)de
0

127‘[
boIn3 = — in 6 do
ag + Do In 27Tjsm
0

ap+byIn3 =0 v (2 %)
Then from (1 *) and (2 *) we get

a0=b0=0 ...... (3*)

2T

n -n 1
a,R{" + bRy = —| 9 (8) cosnf db
0

21

1
an+bn=gj 0 cosnf d6
0
.'.an-l—bn:() (4*)
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2T
n -n 1
a,R," + b, R, = g,(6) cosnb do
0

2T

1
a,3"+ b,37" = Ej sinf cosnf d6 =0
0

#ap3"+ b3 =0

From (4 =) and (5 *), we get

27

0

127‘[
C"+d”=EJ Osinnf d6 =0
0

~c,+d, =0
27
n -n 1 .
cpRy” +dyR, " = - g,(6) sinnd db
0
) 21
c,3"+d,37" = ;J sinf sinnf d6 =0;n+1
0
Ifn=1

1 27 1 21
3c; +37%d, = gj (sin? 0 )do = %j (1 — cos20) do
0 0

v (5 %)

e (6 %)

e (7 %)
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L (6— Zsin20 - 1
=57 (0-zsm20) " =
3cn+3‘1dn={2'221 el (8%)

Solving (7 *) and (8 *) as follows:

c,+d,=0 } _ A
3¢, + 37, = 0 =>c,=d,=0;n+1
Ifn=1
C1+d1=0 } _3 _—3
3c; +37'd; =0 :Cl_s'dl_ 8
Oifn+1 Oifn+1
cn={§ ifn=1and dn={—?3 i v (9 %)

Substituting (3 *), (6 *) and (9 =) in the solution

u(r,8) =ag+ bylnr

+ Z [(a,r™ + b,,r™™)cosnb + (c,r™ + d,,r ") sinnf|]

n=0
3 1\ .
We get u(r,0) = 5 (r — ;) sin 6

Which is the required solution
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... Exercises ...

1- Find the solution of Laplace's equation in the rectangle 0 < x < 3,
0 <y < 5 also satisfying the boundary conditions:

u(0,y) =0,u(x,0) =0, u(x,5) =0,u(3,y) =y.

2- Find the steady temperature distribution u(x,y) in the uniform unit square
0<x<1,0<y<1whenthe edge y =1 is kept a temperature u, and
the remaining three sides are kept at temperature zero.

3- Find the steady temperature distribution in a thin rectangular plate
bounded by the lines x = 0,x =1,y = 0,y = h, assuming that the heat
cannot escape from either surface; the edge x = 0,x =1,y = 0 are kept at
a temperature zero while the edge y = h is kept at a temperature f(x).

4- Solve the differential equation wu,, +u,, =0 which satisfies the
conditions u(0,y) = u(1,y) = u(x,0) = 0,and u(x, 1) = sinnmx

5- Find the steady temperature in a circular plate of radius a which it's steady
temperature on the circumference is 6

6- Solve the following Dirichlet problem V2u = 0, where

u(2,0) = 6cos6+ 10sin 0, u(4,0) = 15cos0 + 17sin6, 2 <r < 4,
0<06<2m

7- A plate in the form of a ring is bounded by the circle r = 1 and r = 3. Its
surfaces are insulated and the temperature u(r, 8) along the boundary are
u(1,0) = cos 0 and u(3,6) = sin 6. Find the steady temperature u(r, 0) in
the ring.

8- Solve the following Dirichlet problem VZu = 0, where

u(7,0) =0,7<r<o, 0<06<2m
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Section 6.3: The Laplace Transform

1-

Introduction: The knowledge of "integral transform™ is an essential part

of mathematical background required by scientists and engineers. This is
because the transform methods provide an easy and effective means for the
solution of many problems arising in science and engineering. For
example, the Laplace Transformation replaces a given function f(t) by
another function F(s). Then Laplace Transformation convert an ordinary
differential equation with some given initial conditions into an algebraic
equation in terms of F(s) and partial differential equation with two
independent variables into ordinary differential equation. Finally, using
inverse Laplace Transformation we recover the original function f(t). Thus
the method of Laplace Transformation is especially useful for initial value
problems, as it enables us to solve the problem without the trouble of
finding the general solution first and then evaluating the arbitrary
constants. The use of Laplace transforms provide a powerful technique of
solving differential and integral equations.

Laplace Transform definition : Given a function for all t > 0, the

Laplace transform of f(t) is a function of a new variable s given by
LIf(D] = F(s) = [, f(0) edt .. (33)
The Laplace transform of f(t) is said to exist if the improper integral (33)

converges for some value of s, otherwise it does not exist.

The inverse Laplace transform is

LY[F] = f(t) = —= [

2mi Yc—io

F(s) eStds .. (34)
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3- Sufficient conditions for existence of Laplace transform:

Theorem: If f(t) is a function which is piecewise continous on every finite
interval in the range t > 0 and satisfies all |f(t)| < me® forall ¢ > 0 and

for constants a and m, then the Laplace transform of f(t)exists.

4- Laplace transforms of some elementary functions:

Here we will show the figures of some functions that have Laplace

transforms:

1-f(t) =1, 0<t<oo = F(s) = [ e~tdt = -, (take m=1, a=0)

2-f(t) = e, 0 <t< oo =F(s) = — s> 2, (take m=1, a=2)

3-f(t) =sinwt = F(s) =

s> 2,

w
sZ+w? ’

m=1, a=0
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5- Transformation of partial derivatives:

Let u(x,t) be a function of two independent variables x and t. The Laplace
transformation of the partial derivatives u;, Uss, Uy, Uy 1S
Llu,] = fooo us(x,t) e Stdt = sU(x,s) — u(x, 0) ....(35)

[o0]

Llug ] = f e (x, t) e75tdt = s2U(x,s) — su(x,0) — us(x,0) ....(36)
0

Llu,] = fooo u,(x,t) e Stdt = Z—Z(x, S) ...(37)

00 h 02
Lluee] = [, wex(x,t) e75dt = a—xlzj(x, s) ...(38)

Where U(x, s) = LluCx, )] = [ u(x, t) e~stdt

6- Convolution property:

If f and g are two functions of t, the finite convolution is given by
(f *9)® = [; f@.9(t —D)dr

= [ f(t— ). g(Ddr
For example: let f(t) =t, g(t) = t?
(f *g)(t) = f(ff(t — T).g(r)d'r:fot(t —1).7%dt = f;(trz —1t3)dt

..(39)
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o

As in the infinite convolution the following important property is true

L[f = gl = LIf].L[g] ... (40)

Then L YL[f].L[gl}=f=*g ... (41)

(41) allows us to find the inverse The Laplace transform of multiplying
two functions L[f]. L[g] by finding the inverse Laplace transform for each

of L[f] and L[g] to get f and g.

For example: Find L™ [3 ! ]

s s2+41

Sol: L‘l[l 1]=f0t1.sinrdr=c05TS=1—cost

s "s241

1

L_1
= — g(t) =sint

Where F(s) = Si L:f(t) =1, G(s) =

Ex.8: Solve the following initial value problem by Laplace transform
U = Uy, 0 < x < 00,0 <t < oowhereu(0,t) =0,u(x,0) =u,

Sol: Up = Uyy
Llue] = Luyy]

02U
sU(x,s) —u(x,0) = P (x,s)

(D? —s)U(x,s) = —u(x,0)
(D? —s)U(x,s) = —u, (from the initial condition)
The AE.ism?2—s=0—>o>m=++/s

The general solution Uj; is
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Ui(x,s) = Cle\/Ex + cze“/gx, where c; and c, are arbitrary constants
Since x goes to co thenc; = 0
~Uy(x,s) = cze‘ﬁx

The particular solution is

—Uu, U,
Uz = DZ—s s
2 U(x,s) = coe™Vsx 4 u? e (%)

Substituting the boundary condition in U(x, s) to find c,

L[u(0,t)] = U(0,s)
U(0,s) = cye® + L
S

0=c +§uo—>c2=—§uo e (%)

Substituting (+*) in (*), we get

1 U,
U(x,s) = —;uoe‘\/gx +?

Taking inverse Laplace transformation, we get

L~ MU(x, )] = —u, L7t Ee_\/le + L™ E]

From table of Laplace transforms, we get

u(x,s) = —u.erfc (%Z) + u,, and this is the general solution
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Ex.9: Solve the following initial value problem using Laplace transform
Up = Uy, —0 < x<00,0<t<oowhere u(x,0) =sinx

Sol: Uy = Uy,

Llue] = Lluyy]

02U

sU(x,s) —u(x,0) = P
Ulx,s) — sinx = 02U
sU(x,s) —sinx = -

(D? —s)U(x,s) = —sinx
1- We must find the general solution U,
The AE.ism? —s=0—>m=++/s
Ui(x,s) = cle‘/gx + cze"‘/gx
When x — 0o = ¢; =0
When x — —o0o = ¢, =0
s U (x,s) =0

2- The particular solution U, is

-1 . -1
SIn x =
D2—s —-1-5s

. 1,
U, = sinx = —sinx , D?=—a?=-1
s+1

The general solution for the given equation is

U(x, S) = U1+U2

sin x

=>U(x,s)=s_|_1
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Taking inverse Laplace transformation, we get

1
s+1

L YU(x,s)] = L‘ll sin xl
= u(x,s) = sinx.e” ¢, (from table of Laplace transforms)
Ex.10: Prove that L[u;] = sU(x,s) — u(x,0)

Sol: from the definition of Laplace transform, we get

Lluc(x, )] = [, u(x,t) e™tdt (integration by parts)

(0.0)

ulx,t)|”
= e Stu(x, t)|g + sj u(x, t) e Stdt = (St ) + sU(x,s)
0 ¢ 0
_uxt) u(x,0)
= t11_>rr010 = g0 + sU(x, s)
: ——
—0 =1

= —u(x,0)+sU(x,s) =sU(x,s) —u(x,0)

Ex.11: Solve the following equation using Laplace transform wu; = u,,,
0<x<o0<t<ocwhereu(0,t) =2,u(x,0) =0

Sol: Ur = Uyy
L[ut] = L[uxx]

sU(x,s) —u(x,0) = D?U(x, s)
=0

(D? —s)U(x,s) =0

The AE.ism2—s=0—>m = +s

~U(x,s) = cle*/gx + cze‘\/gx
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Since x 5 0o=¢; =0

2 U(x,s) = ce V5% .. (%)

The boundary condition u(0,t) = 2 will be
2
U(0,s) = L[u(0,t)] = L[2] = S

Substituting in (*), we get

U(0,s) = c,e’ = |- =,

2
S

Butting in (), we get U(x, s) = %e—\/Ex
TakingL™" for both sides, we get

u(x,s) = 2erfc (%) , which is the general solution
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... Exercises ...

Solve the following equations (using Laplace transform)

1- U = 4 Uy, 00 < x <00,0<t<oowhere,u(x,0)=e*andu;(x,0)=0
2- Upp = Uy, 0<x<o0,0<t<oowhere ,u(x,0)=u;,(x,00=0 and
u(0,t) = f(¢)

3-Up = Uy, 0 <x<00,0<t<oowhereu(x,0)=0andu(0,t) =t

Table of Laplace transform

f@) =L F(s)] F(s) = L[f(t)]
1- 1 1
—, >0
S
2- eat 1
, s>a
s—a
3- sin at a
s2 + aZ'S >0
4- cos at S
a0
i : a
5 sinh at > s> |al
6- cosh at o az's > lal
7- esin bt b oo g
(s —a)? + b?’
8- e cos bt s—a
(s —a)? + b?
0- t™. nis natural number n!
n+1’S >0
10_ tneat n|
(S — a)n+1’s > a
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11- H(t — a) ‘S“S’S 0
12- H(t—a)f(t—a) e F(s)
13- et f(t) F(s—a)
14- f@®) = g(®) F(s).G(s)
15- ™) SF(s) = s"THf(0) = e = fTD(0)
16- f(at) 1 /s
EF (E) ,a>0
17- ‘ 1
ff(r)dr EF(S)
0
18- erf (%) ;eazsz erfc(as)
19- g 1 _avs
erfc (2_\/?) Ee Vs
20- ]O(Clt) (SZ + aZ) >
21- 5(t—a) e
22- 1 <__a2> e " a>0
Jmt P\ g Vs T
23- 1 1
N ae erfc(a\/f) Gta

5(x) = delta function= Ll

0, x<a
H(x—a):{l XxX>a
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1, x <

H(a—x) = ® Reflected Heaviside function wSeia/luloils 4
0, x>a

erfc(x) = Z P o8 qE el d
NC
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