قسم الرياضيات/المرحلة الثالثة

محاضرات التحليل العددي
حل نظام المعادلات الخطية

م.م عهود فاضل علوان

30261 ij $(\underline{d}=0), x_{n}+\dot{b}_{m}$
 चill $_{1}$, L_{i} io is Stiési -o Machin of Human Errors (axilt 20)
9
9
π
$\stackrel{c}{c}(\ddot{3})_{1}+\cos _{1}$
(7) :
(1) Numerical Solution of Linear Equations sysiems:
θ

(C) $a_{n} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1}$

$$
\begin{gathered}
A x=b \\
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{m} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)
\end{gathered}
$$

älubl, -ri,ipo bun- $A=\left[a_{1} j\right]$ ans
$\left(c, 1, j_{1}\right)$ ath $b_{1}, \delta_{1}-$ nio ir b
$(d$ plph1) $d b$, año

(1
 $\left(\underline{x} \neq 0 \quad \underline{\theta} \quad \underline{x^{T}} \cdot A \cdot \underline{x}>0\right)$
(7)
T) $A=\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right)$ ai;enp, $2 \dot{i} 1 ; 1$ ins

$$
9,{ }_{\rho}, \text { i, } ا=\mu
$$

(1) $A \delta y m$.

$$
c_{c}^{c} d r_{1}
$$

0

$$
\begin{gathered}
\underline{x}^{\top} \cdot A \cdot \underline{x}>0 ? \\
\underline{x}=\binom{1}{1}
\end{gathered}
$$

$$
\underbrace{\left(\begin{array}{lll}
1 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)}_{1 \times 3} \cdot \underbrace{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)}_{(3 \times 1)}=?
$$

$$
\left(\begin{array}{ll}
2-2 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \quad 1 \times 1=1 \quad \text { pis }
$$

$$
=3
$$

a) Pasitive Semi Definte Matix $\frac{c}{c}$ anp, 11 चent onis ivinus,

$$
\left(x \neq 0 \cong y x^{\top} \cdot A \cdot x=0\right)
$$

$$
\frac{\varepsilon}{c} \operatorname{in} y, 0
$$

 \Rightarrow \#
A ajint, io $\operatorname{aij}_{i j}$ igind, A_{r} an ($\quad\left|A_{r}\right|>0$)

$$
\frac{c}{c} 151
$$

: oijus ogins 1

$$
\begin{array}{ll}
A_{1}=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-2 & 2 & -1 \\
0 & -1 & 2
\end{array}\right) & \left|A_{2}\right|=\left|\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right|=3 \\
A_{2}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right) & \left|A_{3}\right|=\left|\begin{array}{cc}
2 & -1 \\
0 & -1
\end{array}\right|=-2 \\
A_{1}=\left(\begin{array}{cc}
2 & -1 \\
0 & -1
\end{array}\right) & \\
A_{4}=\left(\begin{array}{cc}
-1 & 2 \\
0 & -1
\end{array}\right)=1 & \\
A_{5}=\left(\begin{array}{ll}
1 & -1 \\
0 & 2
\end{array}\right)=|-2|=2 & \\
A_{6}=\left(\begin{array}{ll}
-2 & 0 \\
0 & 2
\end{array}\right)=4 & \\
A_{7}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)=3 & \left|A_{r}\right|>0 \\
A_{9}=\left(\begin{array}{cc}
-1 & 0 \\
-1 & 2
\end{array}\right)=2 & \\
A_{q}=\left(\begin{array}{cc}
2 & 0 \\
-1 & -1
\end{array}\right)=2 & 0 \\
A_{10}=\left(\begin{array}{cc}
-1 & 0 \\
2 & -1
\end{array}\right)=1
\end{array}
$$

Adjoint Matrix

$C_{i_{k}}=A_{k i} \quad$ an,C instiriei

$$
A_{i k}=(-1)^{i+k} / / M_{i k} /
$$

 A
2

$$
c=\left(\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}\right)=\left(\begin{array}{ccc}
-2 & e_{1}^{c} & -2 \\
1 & -2 & 1 \\
3 & -6 & 5
\end{array}\right) d 3
$$

$$
-c_{11}=(-1)^{1+1} \cdot\left|\begin{array}{cc}
2 & 3 \\
0 & -1
\end{array}\right|=-2
$$

() $c_{12}=(-1)^{1+2}\left|\begin{array}{cc}-1 & 3 \\ 1 & -1\end{array}\right|=-(-2)=+2$

$$
\begin{aligned}
& C_{13}=\left.(-1)^{1+3}\right|_{1} ^{1} 0_{0}^{2} \mid=(-2)=-2 \\
& C_{21}=(-1)^{2+1}\left|\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right|=(-1)=+1 \\
& C_{22}=(-1)^{2+2}\left|\begin{array}{cc}
2 & 0 \\
1 & -1
\end{array}\right|=(-2)=-2
\end{aligned}
$$

(9) $C_{23}=\left.(-1)^{2+3}\right|_{1} ^{2} 11=(-1)=1$

$$
c_{31}=\left.(-1)^{3+1}\right|_{2} ^{1} \quad 3 \mid=(3) \div 3
$$

$$
\text { (f) } C_{32}-\left.(-1)^{3+2}\right|_{-1} ^{2} \quad 301=(6)=-6
$$

$$
C_{33}=(-1)^{1+3}\left|\begin{array}{cc}
2 & 1 \\
-1 & 2 \\
4+1
\end{array}\right|=(5)=5
$$

1
$\frac{d}{c} \sin \operatorname{cin}_{0}$

 $=\cong 315$
1
8 23:8, 8
 Examile en

$$
\begin{array}{rl}
x_{1}+3 x_{2}=4 \Rightarrow x=\binom{x_{1}}{x_{2}}=? & m=1 \\
& n=2
\end{array}
$$

$$
\Rightarrow x_{1}=4-3 x_{2} \Rightarrow
$$

Let:-

$$
\left.\begin{array}{l}
i- \\
x_{2}=0 \Rightarrow x_{1}=4 \\
x_{2}=1 \Rightarrow x_{1}=1 \\
x_{2}=-1 \Rightarrow x_{1}=7
\end{array}\right] \Rightarrow x=\binom{4}{0}
$$

$\xrightarrow[O]{O} \quad x_{2}=\left(4-x_{1}\right) / 3=1$
ip'l, of in lans'l $x_{2} ; x_{1} \because$
$4)$
-2
$\because R=1$ ir ains:

- Niv ars
$(m>n) \quad \because \leqslant 1$
\& $\operatorname{cis} \int_{1}=1 L_{1}$
"
Example

$$
\begin{aligned}
& 2 x_{1}-3 x_{2}=1 \ldots(1) \\
& x_{1}+x_{2}=0 \ldots(2) \\
& 5 x_{1}-x_{2}=3 \\
& \text { eq. } 2+\text { eq }(3) \Rightarrow x_{1}=\frac{1}{2}, x_{2}=\frac{-1}{2} \\
& \therefore x=\binom{x_{1}}{x_{1}}=\binom{\frac{1}{2}}{-\frac{1}{2}}
\end{aligned}
$$

 infonsistent eq. $\quad 1,00=11$

Examile $2 ?$

$$
\begin{align*}
& 2 x_{1}-3 x_{2}=1 \tag{1}\\
& x_{1}+x_{2}=0 \\
& 3 x_{1}-2 x_{2}=1 \tag{3}\\
& \text { eq }(1) \text { eq } Q \tag{2}
\end{align*}
$$

$R \leftarrow R^{n}$ indald /and

C
 consistent eq

$$
\sum_{c}^{s} \text { ajes =alla }
$$

 $(|A| \neq 0)$ 并
\therefore 'a 'a

$$
\sum_{c}^{\varepsilon} \text { Direst Method }=2+1,1,0
$$

$$
\because 4
$$

 Substitution. M.
For wand substitiution M. usí) ul. ν_{1} "
Invers Matrix riph,
-9
Gavas - Elimisation μ vist जि izt (o)
(1)

G. 5 with partial pivotiny

Gus - Jordan Elimination μ.

Doolittle's μ.
Crout's μ.
Cholesky's M.
$:-3,0-1$
$: 2,2 \pi$

$$
=(a n \text {, }
$$

$$
\begin{align*}
2 x_{1}+3 x_{2}-x_{3} & =5 \tag{1}\\
4 x_{1}+4 x_{2}-3 x_{3} & =3 \tag{7}\\
-2 x_{1}+3 x_{2}-x_{3} & =1 \tag{3}
\end{align*}
$$

$\stackrel{S}{2} a b 1$
.

$$
\begin{aligned}
& C=[A: b] \\
& C=\left(\begin{array}{ccc:c}
2 & 3 & -1 & 5 \\
4 & 4 & -3 & 3 \\
-2 & 3 & -1 & 1
\end{array}\right) \rightarrow R_{1} \rightarrow R_{2}
\end{aligned}
$$

$$
1
$$

$$
\left(\begin{array}{lll}
2 & -3 & -1 \\
0 & -2 & -1
\end{array}\right)
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
R_{2}-\frac{4}{2} \times R_{1}= \\
R_{3}-\frac{2}{2} * R_{2}=
\end{array}\right\} \Rightarrow \\
& 2+\frac{4}{2} *:=0 \\
& H-\frac{4}{2}+3=-2 \\
& \begin{array}{l}
-3=\frac{n}{2}+(-1)=-1 \\
3-\frac{3}{2} \times(5)=-7
\end{array} \\
& R_{3}-\frac{-2}{2}\left(R_{1}\right)
\end{aligned}
$$

$\therefore \because(|A| \neq 0)$ atizo \therefore 远

$$
\begin{aligned}
& A^{-1}=\left[A d j(A]^{\top}\right. \\
&|A| \\
& x=A^{-1} \cdot b \\
& A d j(A)=(-1)^{i+j}\left|\mu_{i+j}\right|
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}+x_{3}=-1 \\
& \left.-x_{1}+x_{2}=4 \quad x_{2}=-1 \quad x_{2}, 4, x_{1}=0 \quad-i j\right) \\
& x_{3}=-1
\end{aligned}
$$ （a，gal，

$$
\begin{align*}
& +\cdots+\text {, } \\
& \text { 㫛 } \\
& \operatorname{Adj}(A)=C^{T}
\end{align*}
$$

$$
\begin{aligned}
& |A|=\left|\begin{array}{ccc:cc}
1 & 0 & 1 & 1 & 0 \\
-1 & 1 & 0 & : & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right| \\
& |A|=1-0=1 \quad \neq 0 \\
& A d j(A)=(-1)^{i+j} \quad\left|\mu_{i j}\right|=C \\
& c_{11}=(-1)^{1+1} \quad\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1 \\
& c_{12}=\left.(-1)^{1+2}\right|_{0} ^{-1} \quad 1 \mid=1 \\
& c_{13}=(-1)^{1+3}| |_{0}^{-1} \quad 11=0 \\
& c_{21}=(-1)^{2+1}\left|\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right|=0 \\
& C_{22}=\left.(-1)^{2+2}\right|_{0-1} ^{1} \mid=1 \\
& c_{23}=(-1)^{2 r^{3}} \mid \\
& c_{31}=\left.(-1)^{3+1}\right|^{2}, \mid-(-1)^{3+1}=-8 \\
& c_{32}=\left.\left.(-1)^{3+2}\right|_{-1} ^{1}\right|^{3+1}=(1)^{-1} \\
& C_{33}=(-1)^{3+3}\left|\begin{array}{cc}
1 & 6 \\
-1 & 1
\end{array}\right|=(1)^{3+2}=1 \\
& \left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 1 & -1 \\
0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{c}
-1 \\
4 \\
-1 \\
-1
\end{array}\right) \\
& v=A^{-1} \cdot b \quad\left(\begin{array}{c}
-1++1 \\
-1+u+1 \\
0+0-1
\end{array}\right)=\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) \\
& x=\left(\begin{array}{c}
0 \\
4 \\
-1
\end{array}\right)
\end{aligned}
$$

ए ज， 5 多

$$
\left\{v_{i} \lambda_{1}, \operatorname{lin}_{0}[A: I] \sim\left[I: A^{-1}\right]\right.
$$

ajiel a s aisl）idoy，－q，1，w What sivet认ット 促

$$
\begin{aligned}
& x_{1}=1 \\
& 2 x_{1}+4 x_{2}-x_{2}=3 \\
& x_{1}+x_{2}-x_{3}=-3 \\
& x_{1}+4 x_{2}=2
\end{aligned}
$$

$$
\left[A_{2}^{\prime} I_{4}\right]
$$

$$
\left[\begin{array}{ccc:ccc}
2 & 4 & -1 & 1 & 0 & 0 \\
-1 & 1 & -1 & 0 & 1 & 0 \\
1 & 4 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\xrightarrow\left[\left(R_{2}-\left(-\frac{1}{2}\right) R_{1}\right]{\left(\begin{array}{cccccc}
2 & 4 & -1 & R_{2}-\left(\frac{1}{2}\right) & 1 & 0 \\
0 & 3 & -\frac{3}{2} & \frac{1}{2} & 1 & 0 \\
0 & 2 & \frac{1}{2} & 1 & -\frac{1}{2} & 0
\end{array}\right)}\right.
$$

$$
\begin{aligned}
& \dot{R}_{3}-\left(\frac{2}{3}\right) \times R_{2} \\
& \left(\begin{array}{ccc:cc}
2 & 4 & -1 & 1 & 0 \\
0 & 3 & \frac{-3}{2}: & 1 / 2 & 1 \\
0 & 0 & \frac{3}{2} & \frac{-9}{6} & \frac{-2}{3}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 58,500^{2} x^{2} \\
& \text { Burden } \\
& \text { velue }
\end{aligned}
$$

$$
\begin{aligned}
& 1 \quad x_{2}-2 x_{3}=0 \\
& 1-2 x_{1}+3 x_{2}-\overline{5} x_{3}=3 \\
& 5 x_{1}-2 x_{2}+x_{3}=2 \\
& 11
\end{aligned}
$$

Numerical Analysis senvere
Burden
jone - Evel, 6 ($a=0$) ; Esi 81 ier is

登iviexte -b1

$$
15
$$

 -ajh 并

 $;-1,2,4$

Celèslo

$n-1=a \dot{j} ;(2,2)$ usiae m of

\sum_{c}^{c} Partial pivoting $=; j \leqslant j \Delta i, \delta_{1}$
 ads， 6 ， ， lin_{1}－ －（

的论 品 चुँच
人ッ, 三人

м多
领 d

$$
\begin{array}{r}
x_{2}-2 x_{3}=0 \\
2 x_{1}+3 x_{1}-5 x=3 \\
5 x_{1}-2 x_{2}+x_{3}=2
\end{array}
$$

 $\left(a_{31}=5\right)$

$$
\begin{aligned}
& \bar{n} x_{1}-2 x_{2}+x_{3}=2 \\
& 2 x_{1}+3 x_{2}-5 x_{3}=3 \\
& x_{2}-2 x_{3}=0 \\
& \left(\begin{array}{ccc:c}
5 & -2 & 1 & 2 \\
2 & 3 & -5 & 3 \\
0 & 1 & -2 & 0
\end{array}\right) \xrightarrow[R_{3}-\frac{6}{5} R_{1}=R_{3}]{R_{2}-\frac{2}{5} R_{1}} \\
& \left(\begin{array}{ccc:c}
5 & -2 & 1 & 2 \\
0 & \frac{19}{5} & -\frac{27}{5} & \frac{11}{5} \\
0 & 1 & -2 & 0
\end{array}\right)_{28}>a_{32} a_{3} \frac{-5}{19}-R_{2} \\
& -\left(\begin{array}{ccc:c}
5 & -2 & 1 & 2 \\
0 & 19 & -\frac{27}{3} & \frac{4}{5} \\
0 & 0 & -\frac{1}{17} & \frac{6}{19}
\end{array}\right) \\
& x_{1}^{\prime}=-1, x_{2}=, \quad r_{3} \text { ? }
\end{aligned}
$$

total
comilete
full
\therefore ored jsigel \because pess

A
 ；刻i， $x^{\prime} x^{\prime \prime} p^{3} \mathrm{i}$, ；；ion vis $\therefore,(\dot{4},-1)$ ，
品es E^{-2}

－نَ

$$
\sum_{c}^{<} 200
$$

 （ ${ }^{\circ}$

Or ${ }^{i}$－
0
2）
有

Decomiosition Matrix $\therefore=$
~?

$$
\begin{aligned}
& A X=b \\
& A=L \cdot U \\
& L \cdot U \cdot x=b
\end{aligned}
$$

(1) Let $u \cdot x=y) \Rightarrow L \cdot y=b$

0

$$
1=u_{i:}=\text { crout }
$$

ค

$$
L_{i i}=1
$$

Daslith (1)
O

 $A=L_{1 / i}^{l} U \quad$ 何 जhs L. $u \cdot x=b$ … (2)

$$
\begin{equation*}
u \cdot x=y \tag{3}
\end{equation*}
$$

ji

$$
\begin{equation*}
L \cdot y=b \tag{4}
\end{equation*}
$$

 will, wep1-5, vesoñ

Doolifies μ

$$
\begin{equation*}
\sum_{z^{2}}^{x} \tag{Q}
\end{equation*}
$$

 (i) Ue veri i U-ipo if deleos, D Vi, Lj जi ujoy,

$$
\begin{aligned}
& A= L, u \\
& l_{i}=1, i=1,2, \ldots, n \\
& 2
\end{aligned}
$$

纪 100

$$
\begin{aligned}
& \begin{array}{r}
x_{2}-2 x_{3}=0 \\
2 x_{1}+3 x_{2}-5 x_{3}=3 \\
\overline{5} x_{1}-2 x_{2}+x_{3}=2
\end{array} \\
& \begin{array}{r}
x_{2}-2 x_{3}=0 \\
2 x_{1}+3 x_{2}-5 x_{3}=3 \\
\overline{5} x_{1}-2 x_{2}+x_{3}=2
\end{array} \\
& \begin{array}{r}
x_{2}-2 x_{3}=0 \\
2 x_{1}+3 x_{2}-5 x_{3}=3 \\
\overline{5} x_{1}-2 x_{2}+x_{3}=2
\end{array} \\
& A=\left(\begin{array}{ccc}
0 & 1 & -2 \\
2 & 3 & -5 \\
5 & -2 & 1
\end{array}\right) \quad \underline{x} \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \quad b=\left(\begin{array}{l}
0 \\
3 \\
2
\end{array}\right) \\
& A=L \cdot U \\
& \left(\begin{array}{ccc}
0 & 1 & -2 \\
2 & 3 & -5 \\
6 & -2 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
L_{21} & 1 & 0 \\
L_{11} & L_{32} & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
u_{4} & u_{n} & u_{13} \\
0 & u_{02} & u_{21} \\
0 & 0 & u_{32}
\end{array}\right) \\
& \left(\begin{array}{ccc}
0 & 1 & -2 \\
2 & 3 & -5 \\
5 & -2 & 1
\end{array}\right)=\left(\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
L_{21} u_{11} & L_{21} \cdot u_{12}+u_{22} & L_{12} \cdot u_{13}+u_{23} \\
L_{11}-u_{6} & L_{11} \cdot u_{12}+l_{12} & u_{22} \\
L_{31} & u_{13}+l_{22} \cdot u_{23} \\
& & \\
& & u_{23}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& { }_{x} l_{32} \cdot u_{22} \quad \ell_{31} \cdot u_{13}+u_{32} \cdot u_{23}+u_{23} \\
& -2 \cdot 1 \cdot{ }_{-1} \cdot u_{-2} \\
& u_{1}=0, u_{12}=1, u_{13}=2 \\
& L_{21} \cdot u_{11}=2 \Rightarrow L_{21} \cdot 0=2 \Rightarrow 0=2
\end{aligned}
$$

 $\left(a_{i j}=0\right)$ vंब

(1)
(1)

$$
\begin{aligned}
A=\left(\begin{array}{ccc}
1 & 1 & -2 \\
2 & 3 & -5 \\
5 & -2 & 1
\end{array}\right) \quad, x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \quad \text { a }
\end{aligned}
$$

0

$$
\begin{aligned}
& u_{11}=1, u_{12}=1, u_{13}=-2 \\
& L_{21}, u_{11}=2 \Rightarrow l_{21} \cdot 1=2 \quad L_{21}=2 \\
& L_{21} \cdot u_{12}+u_{22}=3 \Rightarrow 2 \cdot 1+u_{22}=3 \Rightarrow u_{22}=1 \\
& \text { (1) } L_{21}-u_{13}+u_{23}=-5 \Rightarrow 2 \cdot-2+u_{21}=5 \Rightarrow u_{23}=-1 \\
& \text { (1) } \\
& l_{31} \cdot u_{11}=6 \Rightarrow l_{31}=5 \\
& l_{31} u_{12}+l_{52} \cdot u_{22}=-2 \Rightarrow 5 \cdot 1+l_{32} \cdot 1=-2 \Rightarrow\left(l_{32}=-7\right. \\
& L_{31} u_{13}+L_{12} u_{23}+l_{33}=1 \Rightarrow 210+7+u_{33}=1 \Rightarrow u_{33}=4
\end{aligned}
$$

$$
\begin{aligned}
& L \cdot y=b \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
5 & -7 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{2}
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right), \\
& =y_{1}-7 y_{2}+1 y_{3}=2
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}=1, \quad y_{2}=1, y_{3}=4 \\
& \left.\ell\left(\begin{array}{lll}
1 & 1 & -2 \\
0 & 1 & -1 \\
0 & 0 & 4
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
4
\end{array}\right) \text { 3) }-j_{j}\right)_{1} \text { in }
\end{aligned}
$$

(wh) wal -1 ve, ow, l'in't

$$
x_{3}=1, \quad x_{2}=2, \quad x_{1}=1
$$

(24) Cripiscrest
(25) crouts Method: $a, r=0, b-r$

$$
\begin{equation*}
A \cdot x=b \tag{1}
\end{equation*}
$$

 6

$$
L \cdot u \cdot \underline{x}=b,
$$

 $u_{i i}=1 \quad W_{1}-\frac{1+1)_{1}}{1}$ ($=1,2, \ldots, n$)
() Lienc

$$
\begin{align*}
& u \cdot \underline{x}=\underline{y} \tag{2}\\
\Rightarrow & L \cdot \underline{y}=\underline{b}
\end{align*}
$$

(1)
 areari

$$
\begin{aligned}
& \sqrt{25} \text { Cholestiy's Methods: wind وs = जो - w }
\end{aligned}
$$

$$
\begin{aligned}
& A \underline{x}=\underline{b}
\end{aligned}
$$

 $\left(x^{\top} \cdot A \cdot x>0\right)$

$$
A=L \cdot U \underset{u=L T}{\stackrel{-j p \pi}{T}} \quad A=L \cdot L^{\top}
$$

$$
X^{\top} \cdot A \cdot X=1 \times 3 \cdot 3 \times 1 \quad 3 \times 1
$$

- jp lio A
or $\xrightarrow[L=4^{T}]{\log \operatorname{lin} A} A=U^{T+4}$

$$
L \cdot L^{+} \cdot \underline{x}=\underline{b}
$$

ats hes $L^{\top} \cdot \underline{X}=y-$ (2) in

$$
\begin{equation*}
\text { L. } y=b \tag{3}
\end{equation*}
$$

y veri ${ }^{2}$ uld
 जeplorl

$$
\left(\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 2 & -3 \\
1 & -3 & 9
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
2 \\
-3 \\
8
\end{array}\right)
$$

$$
W^{\prime} \times \mathbb{R}^{h} \quad x^{\top} \cdot A \cdot x>0
$$

$$
x^{\top}=\left(x_{1}, x_{2}, x_{3}\right) \Rightarrow \underline{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { is, is }
$$

$$
\begin{aligned}
& \therefore x^{\top} \cdot A \cdot x=\left(x_{1} \cdot x_{2}, x_{3}\right)\left(\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 2 & -3 \\
1 & -3 & 9
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}
\end{array}\right) \\
& =\left(x_{1}-x_{2}+x_{3},-x_{1}+2 x_{2}-3-x_{3}, x_{1}-3 x_{3}+9 x_{3}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
\end{aligned}
$$

-

$$
\Leftrightarrow
$$

$$
\begin{aligned}
& x_{1}^{2}-x_{1} x_{2}+x_{1} x_{3}-x_{1} x_{2}+2 x_{2}^{2}-3 x_{2} x_{3}+x_{1} x_{3} \\
- & 3 x_{2} x_{3}+9 x^{2} \\
= & \left(x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}\right)+\left(x_{2}^{2}-6 x_{2} x_{3}+9 x_{3}^{2}\right)+2 x_{1} x_{3} \\
= & \left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-3 x_{3}\right)^{2}+2 x_{1} x_{3}>0
\end{aligned}
$$

 - و أ
-
(1)

$$
A=L \cdot L^{\top} \quad \text { NeN }
$$

$60\left(\begin{array}{ccc}\text { (1) } \\ 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -3 & 9\end{array}\right)=\left(\begin{array}{ccc}L_{11} & i_{2} & 0 \\ L_{21} & L_{22} & 0 \\ L_{31} & L_{12} & L_{13}\end{array}\right)\left(\begin{array}{ccc}L_{11} & L_{21} & L_{31} \\ 0 & L_{22} & L_{12} \\ 0 & 0 & L_{33}\end{array}\right)$
(9) $\quad\left(\begin{array}{ccc}1 & -1 & 1 \\ -1 & 2 & -3 \\ 1 & -3 & 9\end{array}\right)=\left(\begin{array}{lll}\left(L_{11}\right)^{2} & L_{11} L_{21} & L_{11} L_{31} \\ L_{41} & L_{11} & L_{21}^{2}+L_{22} \\ L_{21} & L_{31}+L_{21} L_{32} & L_{32} L_{21}+L_{32} L_{22} \\ L_{31}+L_{32}{ }^{2}+L_{22}\end{array}\right)$

$$
\left., L_{11}\right)=1 \quad L \ldots=1
$$

$$
\text { (1) } L_{11} L_{11} L_{21}=-1 \Rightarrow 1 \cdot L_{21}=-1 \quad \Rightarrow L_{21}=-1
$$

$L_{11} L_{31}=1 \Rightarrow L_{37}=1$

$$
L_{21} L_{11}=-1 \Rightarrow L_{21}=-1
$$

$$
L_{21}^{2}+L_{22}^{2}=2 \Rightarrow 1+L_{12}^{2}-2
$$

$$
\begin{gathered}
L_{21} L_{31}+L_{22} L_{12}=-3 \\
-1+1 \cdot L_{32}=-3 \\
L_{32}=-2
\end{gathered}
$$

$$
L_{22}=1
$$

$$
\begin{aligned}
& L_{31} \cdot 1=1 \quad \Rightarrow \quad L_{31}=1 \\
& L_{31} L_{21}+L_{32} L_{22}=-3 \\
& -1+L_{32}=-3 \Rightarrow L_{32}=-2 \\
& L_{31}^{2}+L_{32}{ }^{2}+L_{33}{ }^{2}=9 \\
& 1+4+1_{33}{ }^{2}=9 \\
& \Rightarrow L_{33}{ }^{2}=4 \quad L_{33}=2 \\
& L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
1 & -2 & 2
\end{array}\right) \cdot\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
2 \\
-3 \\
8
\end{array}\right) . \\
& L \cdot y=b=y \\
& L^{T} \cdot x=y^{\prime} \\
& \Rightarrow \underline{x}=\text { ? }
\end{aligned}
$$

cuipl, crall -jels
$52.18 / 1 / 3$
-, ال8

$0 \quad \lim _{x \rightarrow \infty}\left\{\underline{x}^{(x)}\right] \rightarrow \underline{x}$

D)
-

$$
\begin{equation*}
\|x\|=R^{n} \rightarrow R \quad \text { alloso }, \underline{l} \tag{x}
\end{equation*}
$$

-)
6^{5}
$\|x\|_{1}=\left|N=L_{1} \xi=\varepsilon f_{0}\right|$ volsib), Lat θ
$\|x\|_{2}=\sqrt{-\dot{\sim} 1_{1}}$
9)

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
2 & -1 & 7 \\
4 & 9 & 1 \\
0 & 5^{2}
\end{array}\right) \quad=0151: 1
\end{aligned}
$$

(A) $\|A\|_{1}=15 \quad$ Snesiu
n sope

$$
\begin{aligned}
& A A n_{2}=\sqrt{\max \left\{\lambda_{i} \quad \text { of } \frac{A \cdot A^{\top}}{\beta}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \text {, } 20 \rightarrow\left|A \cdot A^{\top}-\lambda \quad l\right|=0
\end{aligned}
$$

$$
\begin{aligned}
& (n \times n)=j \min _{-1}=\underset{y}{=}
\end{aligned}
$$

Iteratioc M_{e} thad's

$$
\begin{equation*}
A \cdot \underline{X}=b \tag{1}
\end{equation*}
$$

$$
\left\{\underline{x}^{(k)}\right\}_{k=1}^{\infty}=\left\{\underline{x}^{(1)}, \underline{x}^{(2)}, \underline{x}^{(3)}, \cdots \underline{x}^{(k)}\right\}
$$

Atia'

 Veil orefor do de ored

 Eiñ in ís ī

$$
\begin{align*}
& 0<\epsilon<1 \tag{3}\\
& \left(\epsilon=10^{-n}\right)
\end{align*}
$$

$\frac{A}{A}$ ~ino
Norm (vetiel) Lall L inne $11.11 p$ ~~は

7
(2) $二 \lim _{i} \rightarrow$

N-1, sो
 Co, Cl, dt ate efer, ${ }^{2}$

- 0 نَ - X

(1)

(12) Norm SLall

67

$$
\begin{aligned}
& -\ddot{i j} 20=1,0 \text {, } \quad\|\cdot\| p \\
& \underline{x} \text { án }
\end{aligned}
$$

$$
\|\underline{x}\|_{p}: R^{n} \rightarrow R \quad ; \forall \underline{x} \in \mathbb{R}^{n}
$$

2) A \sim ~ipp
$0 \quad\|A\|_{p} i R^{n \times n} \rightarrow R ; \forall A \in R^{n \times n}$

(1) Sovij, Led $\left|\left|x \|=\sum_{i=1}^{n}\right| x_{i}\right|$ absolute norm

eucledean norm
(3) $d \operatorname{le}^{3} y_{1}, 3, \underline{w_{0}}\|\underline{x}\|_{\infty} \leq \max \left\{\left|x_{i}\right|\right.$ maximum norm

AxA \& A in A an, ut
品基
a) $H A \|_{1}=\max \times\left\{\sum_{i=1}^{n}\left|a_{i}, j\right|\right\}$

$$
j=1,2, \ldots, n
$$

(2) $\|A\|_{2}=\sqrt{m_{i} x\left\{\lambda_{i} \text { of } A \cdot A^{\top}\right.}$
(3)

$$
\begin{aligned}
&\|A\|_{\infty}^{\infty}=\max _{i}\left\{\sum_{j=1}^{n}\left|a_{i j}\right|\right\} \\
& i=1,2, \ldots, n
\end{aligned}
$$

$$
\|\underline{x}\| \infty,\|\underline{x}\|_{2}, \quad\|\underline{x}\|
$$

$$
\begin{aligned}
\|\underline{x}\|_{1} & =\sum_{i=1}^{3}\left|x_{i}\right| \\
& =\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right| \\
& =2+3+4=9
\end{aligned}
$$

$$
\begin{aligned}
\|\underline{x}\|_{2} & =\sqrt{\sum_{i=1}^{3}\left|x_{i}\right|^{2}} \\
& =\sqrt{\left|x_{1}\right|^{2}+\left|x_{i}\right|^{2}+\left|x_{3}\right|^{2}} \\
& =\sqrt{4+9+16}=\sqrt{29}
\end{aligned}
$$

$\left\|_{0}^{0}\right\| x \|=\max _{1 \leq i \leq 3}\left\{\left|x_{i}\right|\right\}$

$$
=\max _{i}\left\{\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right|\right\}
$$

$$
=\max \{2,3,4\}
$$

$$
=4
$$

$\rightarrow\|A\|_{\infty},\|A\|_{2},\|A\|_{1}$ is.
A
0

$$
A=\left(\begin{array}{ccc}
2 & 1 & 0 \\
-1 & 1 & 2 \\
1 & 0 & 1
\end{array}\right)
$$

(1) (1) $\|A\|_{1}=\max _{j}\left(\sum_{1}^{3}\left|a_{i j}\right|\right)$

在 ${ }^{5}$
(1) custo

$$
=m_{j}^{a} \times\{4,2,3\}=4
$$

$$
\| A A_{2}
$$

(2)

$$
\begin{aligned}
\|A\|_{\infty} & =\max _{i} \in\left\{\sum_{i=1}^{3}\left|a_{i j}\right|\right\}_{i=1} \\
& =\max \{3,4,2\}=4
\end{aligned}
$$

(3) $\left\|A_{2}\right\|=\sqrt{\max \left(\lambda_{i} \text { of } A \cdot A T\right.}$

光,

$$
\begin{align*}
& \left|A \cdot A^{\top}-\lambda I\right|=0 \tag{0}\\
& \left.\left|\left(\begin{array}{ccc}
2 & 1 & 0 \\
-1 & 1 & 2 \\
1 & 0 & 1
\end{array}\right)\right| \begin{array}{ccc}
2 & -1 & 1 \\
1 & 1 & 0 \\
0 & 2 & 1
\end{array}\right) \left.-\left(\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right) \right\rvert\,=0 \\
& \left|\left(\begin{array}{ccc}
5 & -1 & 2 \\
-1 & 6 & 1 \\
2 & 1 & 2
\end{array}\right)-\left(\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right)\right|=0 \\
& \left|\begin{array}{ccc}
5 & \lambda & -1 \\
-1 & 6-\lambda & 1 \\
2 & 1 & 2-\lambda
\end{array}\right|=0
\end{align*}
$$

$\therefore 2$

L15 Cs 10 ,
 all ionspieq, a
Sparice matrix *-3

O Strictly Diagonal Dominant matriex
以 गु 3 O

$$
\begin{equation*}
\left|a_{i i}\right|>\sum_{j=1}^{n}\left|q_{i j}\right|, i=1,2, \ldots n \tag{1}
\end{equation*}
$$

41_{0}°
or

1) $\sum_{j=1}^{n}\left|\frac{a_{i j}}{a_{i i}}\right|<1 ; i=1,2, \ldots \ldots n$
2) $\quad j=i$

 (解
 . $1 \rightarrow$ P.
(0)

$$
\left\|\underline{x}^{(k)}-\underline{x}^{(K-1)}\right\|_{i} \in \in ; 0<\in \ll 1
$$

$$
\begin{array}{ll}
\|P \rho \operatorname{sio}=\| \rho \pi,\|;\| A \| \geqslant 0 ; & \|x\| \geqslant 0 \\
\|\alpha A\|=\alpha\|A\| & \|\alpha \underline{\|}\|=\alpha \cdot\|\underline{x}\| \\
\|A+B\| \leqslant\|A P+\| B\|;\| \underline{x}+\underline{y}\|\leqslant\| x\|+\| y \| \\
\|A \cdot B\| \leqslant\|A\| \cdot\|B\| ;\|x \cdot y\| \leqslant\|x\| \cdot\|y\|
\end{array}
$$

2)

dul wers

$$
A \cdot \underline{X}=\underline{L}
$$

$$
(L+D+U) X=B
$$

Jacobi: $(\underline{-}+u) \underline{x}+D \underline{X}=\underline{b}$
Gauss Seided:

$$
L \underline{x}+U \underline{x}+D \underline{x}=\underline{b}
$$

Seesesive Relaxation:

$$
\begin{align*}
& L_{L}^{-}-1, L \in \rightarrow(L+u) \underline{x}+D x=\underline{b} \\
& 0<w<1 \tag{H}
\end{align*}
$$

(14) Jacobis Method orsu ions

$$
\begin{equation*}
A \underline{x}=\underline{b} \tag{1}
\end{equation*}
$$

$$
\Rightarrow \sum_{j=1}^{n} a_{i j} x_{j}+a_{i i} x_{i}=b_{i} \quad \text { (2) }
$$

$$
\begin{equation*}
x^{6} \Rightarrow a_{i i} x_{i}=\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}\right) \tag{3}
\end{equation*}
$$

f) dinlt ing \mathcal{G}^{-}- b b ev
$X_{i}^{(k)}=\left(b_{i}-\sum_{\substack{j=1 \\ j \neq 1}}^{n} a_{i j} X_{j}^{(k-1)}\right) / a_{i i}$
0

$$
K=1,2,3 \ldots \ldots
$$

$$
n, i=j \gamma
$$

$$
\begin{array}{lll}
0 & 10 x_{1}+1 x_{2}+x_{3}=12 & -\frac{x}{1}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
0 & x_{1}+10 x_{2}+x_{3}=12 & \\
0 & x_{1}+x_{2}+10 x_{3}=12 & \text { ap }
\end{array}
$$

$$
K=1 \quad, x^{(0)}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

$$
\begin{aligned}
&0) \\
& x_{1}^{(1)}=\left(b_{1}-\sum_{i \neq}^{3} a_{i j} x_{j}^{(0)}\right) / a_{11} \\
&=\left[b_{1}-\left(a_{12} x_{2}^{(0)}+a_{13} x_{3}^{(0)}\right)\right] / a_{11} \\
& 0=[12-(1)(0)-(1)(0)] / 10 \\
&=1.2 \\
& x_{1}^{(1)}=\left[b_{2}-\sum_{i=1}^{3} a_{2 j}^{1} x_{j}^{(0)}\right] / a_{22} \\
& A=\left[b_{2}-\left(a_{21} x_{1}^{(0)}+a_{23} x_{3}^{(0)}\right)\right] / a_{22}
\end{aligned}
$$

$$
\begin{aligned}
& =[12-(1)(0)+(1)(0)] / 10 \\
& =1.2 \\
& x_{3}^{(1)}=\left[b_{3}-\sum_{i=1}^{3} a_{3 j} x_{j}^{(0)}\right] / a_{33} \\
& =\left[b_{3}-a_{31} x_{1}^{(0)}+a_{32} x_{2}^{(0)}\right] / a_{33} \\
& =12-(1)(0)+(1)(0) / 0 \\
& =1.2 \\
& x^{(1)}=\left(\begin{array}{l}
x_{1}^{(1)} \\
x_{(1)}^{(1)} \\
x_{3}^{(1)}
\end{array}\right)=\left(\begin{array}{c}
1.2 \\
1.2 \\
1.2
\end{array}\right) \\
& \left|\underline{x}^{(1)}-\underline{x}^{(0)}\left\|_{\infty}=\left\lvert\,\left(\begin{array}{c}
1.2 \\
1.2 \\
1.2
\end{array}\right)-\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right.\right\|_{\infty}\right. \\
& \|\left(\frac{1.2}{1.2} 1.2 \|_{\phi}^{1.2}=1.2<\epsilon\right. \\
& 10^{-5}
\end{aligned}
$$

$$
\begin{aligned}
& K=2 \\
& x^{(1)}=\left(\begin{array}{c}
1.2 \\
1.2 \\
1.2
\end{array}\right) \\
& -x_{1}^{(2)}=\left(b_{1}-\sum_{1}^{3} a_{i j} x_{j}^{(1)}\right) / a_{i i} \\
& =\left.\left[b_{1}-\left(a_{12} x_{2}^{(1)}+a_{13} x_{3}^{(1)}\right)\right]\right|_{a_{11}} \\
& =[12-(1)(1.2)-(1)(1.2)] / 10 \\
& =(12-2.4) / 10=9.6 / 10=0.96 \\
& x_{2}^{(1)}=\left[b_{2}-\sum_{j=1}^{3} a_{2 j} x_{j}^{(1)}\right] / a_{22} \\
& =\left[b_{2}-\left(a_{21} x_{(1)}^{(4)}+a_{23} x_{(3)}^{(1)}\right] / a_{22}\right. \\
& =[12-(1)(1.2)+(1)(1.2)] / 10 \\
& =696 \\
& x_{3}^{(2)}=\left[x_{3}-\sum_{j=1}^{2} a_{2 j} x_{j}^{(1)}\right] / a_{13} \\
& 2=12-(1)(1.2)+(1) \cdot(1 .[) / 10=0.96 \\
& x^{(2)}=\left(\begin{array}{l}
x_{1}^{(2)} \\
x_{2}^{(2)} \\
x_{3}^{(2)}
\end{array}\right)=\left(\begin{array}{c}
0.96 \\
0.96 \\
0.96
\end{array}\right) \\
& \left\|_{\underline{(2)}} \underline{x}^{(1)}\right\|_{\infty}=\left\|\left(\begin{array}{c}
0.96 \\
0.96 \\
0.9^{6}
\end{array}\right)-\left(\begin{array}{c}
1.2 \\
1.2 \\
1.2
\end{array}\right)\right\|_{\alpha} \\
& \AA \Longrightarrow\left(\begin{array}{c}
0.24 \\
0.24 \\
0.24
\end{array}\right) \|_{\infty}=0.24 .7 €
\end{aligned}
$$

$$
3 x_{1}+x_{2}-x_{3}=1
$$

(i) $4 x_{1}^{\prime}-2 \dot{x}_{2}+3 x_{2}=\overline{5}$

$$
5 x_{1}-x_{2}-2 x_{3}=4
$$

$$
x^{(0)}=\left(\begin{array}{c}
1 \\
1 \\
0 \\
0.3 \\
0
\end{array}\right)
$$

$E=10^{-3} \quad$ äng $\ln _{1} J_{1} \cos$ bis dsiguel

X) (cs,c ssipj)

-

D, L, U i 31 mpai cisendit

$$
\begin{array}{r}
A \underline{x}=\underline{b} \quad \cdots(D \\
(L+U+D) x=\underline{b}
\end{array}
$$

(6)

$$
\begin{aligned}
& \sum_{j=1}^{i-1} a_{i j} x_{j}+\sum_{j=i+1}^{n} a_{i j} x_{j}+a_{i i} x_{i}=\underline{b} \\
& x_{i}=\left[b_{i}-\left(\sum_{j=1}^{i-1} a_{i j} x_{j}+\sum_{j=i+1}^{n} a_{i j} x_{j}\right)\right] / a_{i i}
\end{aligned}
$$

$$
x_{i}^{(k)}=\left[b_{i}-\left(\sum_{j=1}^{i=1} a_{i j} x_{j}^{i(k)}+\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}\right)\right] / a_{i i}
$$

 $d=L$

Cis bio ε ancoivo强

$$
\begin{aligned}
& 10 x_{1}+x_{2}+x_{3}=12 \\
& x_{1}+10 x_{2}+x_{3}=12
\end{aligned}
$$

ins $K=2-1$.

$$
x_{1}+x_{2}+10 x_{3}
$$

$$
\begin{aligned}
& \text { kant } \\
& \begin{array}{l}
x_{i}^{(K)}=\left[b_{i}-\left(\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}+\sum_{i=i+1}^{(k-1} a_{i j} x_{j}^{(k-1)}\right)\right] \\
K=1 \\
x_{1}=\left[b_{1}-\left(\sum_{j=1}^{0} a_{a i-1} \sum_{j}^{1} x_{j}^{(1)}+\sum_{j=2}^{3} a_{i j} x_{j}^{(0)}\right)\right] / a_{11} \\
i+1-1
\end{array} \\
& x_{1}=\left[b_{1}-\left(0+a_{12} x_{2}^{(0)}+a_{13} x_{3}^{(0)}\right)\right] / a_{11} \\
& \left.x_{1}=[12-\cot (1) \operatorname{co})+(1)(0)\right] / 10 \\
& =1.2 \\
& x_{2}=\left[b_{2}=\left(\sum_{j=1}^{1 \rightarrow 1} a_{2 j} x_{j}^{(1)}+\sum_{j=3}^{3} a_{23} x_{3}^{(0)}\right)\right] / a_{22} \\
& =\left[b_{2}-\left(a_{21} X_{1}^{(1)}+a_{23} X_{3}^{(0)}\right)\right] / a_{22} \\
& =\frac{12-1.2}{10}=\frac{10.8}{10}=1.08
\end{aligned}
$$

$$
\begin{aligned}
& x_{3}^{(1)}=\left[b_{3}-\left(\sum_{j=1}^{2} a_{3 j} x_{j}^{(1)}+\sum_{j=4}^{3} a_{3} j x_{j}^{(6)}\right)\right] / a_{33} \\
& =\left[b_{3}-\left(a_{31} x_{1}^{(1)}+a_{32} x_{2}^{(1)}\right)+0\right] / a_{33} \\
& =[12-(1)(1.2)+(1) \cdot(1.08)] / 10 \\
& =\frac{[12-2.23]}{10}=\frac{9.72}{10}=0.972 \\
& x^{(1)}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
1.2 \\
1.08 \\
0.972
\end{array}\right) \\
& \left\|x^{(1)}-x^{(0)}\right\| \dot{<} \varepsilon \text { ~しゃ } \\
& \left\|\left(\begin{array}{c}
1.2 \\
1.08 \\
0.972
\end{array}\right)-\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right\|_{\infty}=\left\|\left(\begin{array}{c}
1.2 \\
1.08 \\
0.722
\end{array}\right)\right\|=1.270^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=\left[b_{1}-\left(\sum_{j=1}^{0} a_{1} x_{j}^{(9)}+\sum_{j=2}^{3} a_{1 i} x_{j}^{(1)}\right)\right] / a_{1 i} \\
& x_{1}=\left[b_{1}-\left(0+a_{12} x_{2}^{(1)}+a_{13} x_{3}^{(1)}\right)\right] / a_{11} \\
& =12-((101.08)+(100.972)) / 10 \\
& =(12-2.052) / 10=0.99 .48 \\
& X_{2}=\left[b_{2}-\left(\sum_{j=1}^{1} a_{2 j} x_{j}^{(2)}+\sum_{j=3}^{3} a_{23} x_{3}^{(1)}\right)\right] / a_{22} \\
& =\left[b_{2}\left(a_{21} x_{1}^{(2)}+a_{23} x_{3}^{(1)}\right)\right] / a_{22}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{12-(\text { (1) (0.9948+(1)(0.972) }}{10} \\
& =1.00332 \\
& x_{3}=\left[b_{3}-\left(\sum_{j=1}^{2} a_{3 j} x_{j}^{(2)}+\sum_{j=4}^{3} a_{2 j} x_{j}^{(1)}\right)\right] / a_{33} \\
& 0=\left[b_{3}-\left(a_{31} x_{1}^{(2)}+a_{32} x_{2}^{(2)}\right)+0\right] / a_{33} \\
& =[12-((1)(0.9948)+(1)(1.00332)] / 10 \\
& =12-1.99812=1.000188 \\
& \underline{X}^{(2)}=\left(\begin{array}{c}
0.4948 \\
1.00332 \\
1.0 .00183
\end{array}\right) \\
& \left\|\underline{x}^{(2)}-\underline{x}^{(1)}\right\|=\left\|\left(\begin{array}{c}
0.9948 \\
1.00332 \\
1.000183
\end{array}\right)-\left(\begin{array}{c}
1.2 \\
1.08 \\
0.972
\end{array}\right)\right\|_{\infty} \\
& =\left\|\left(\begin{array}{cccc}
-0.2062 \\
-0.0 .076 & 68 \\
0.028188
\end{array}\right)\right\|_{\infty}=0.2052>10^{-5}
\end{aligned}
$$

$K=3$ Lix x, Lis K

Successive Relaxation Methoel

$$
\begin{aligned}
x_{i}^{(K)}=(1-w) x_{i}^{(k-1)}+w\left[b_{i}-\sum_{j=1}^{i=1} a_{i j} x_{j}^{(k)}\right. \\
(k-1) \\
\left.\left(\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k)}\right)\right] / a_{i i}
\end{aligned}
$$

- जille $0<\omega<2$ iोl (V20)
ci ilu

$$
\begin{align*}
& \text { (k) , bo } \tag{2}\\
& \frac{X}{}-\underline{X}^{(k)}=B\left(\underline{X}-\underline{X}^{(k-1)}\right)
\end{align*}
$$

$$
\begin{aligned}
& =B \cdot B\left(X-x^{(K-2)}\right)=B^{2}\left(\underline{X}-x^{(K-2)}\right. \text { ?? } \\
& \underline{x}_{i}^{(k)}=\left(b_{i}-\sum a_{B}{\underset{B}{i j}}_{(k-1)}\right) a_{i i} \\
& 83
\end{aligned}
$$

,

$$
\underline{x}-\underline{x}^{(K)}=B^{K}-\left(\underline{x}-\underline{x}^{(0)}\right)
$$ \therefore Unip

is j_ill , Lat, ï 5

$$
\left.\begin{array}{l}
\left\|\underline{x}-\underline{x}^{(k)}\right\|=\| B^{\prime} \cdot\left(\underline{x}-\underline{x}^{(\cdot)} \|\right. \\
\leqslant\left\|B^{k}\right\| \cdot\left\|x-\underline{x}^{(0)}\right\|_{4}
\end{array}\right\}
$$

 $\lim _{x \rightarrow \infty}\left\|B^{x}\right\|\left\|x-x^{(6)}\right\| \rightarrow$ when $\|B\|<\|$
 Nol, io d51 (VED as Level, चigere, is 5 1:1) . 二atin

0

$$
\begin{aligned}
4 x_{1}-x_{2}+x_{3} & =7 \\
4 x_{1}-8 x_{2}+x_{3} & =21 \\
-2 x_{1}+x_{2}+5 x_{3} & =15
\end{aligned}
$$

$$
\text { Eviel } \times \text { e } 4
$$

$$
5 x_{3}=15
$$

8

$$
\begin{aligned}
& \therefore 13 \\
& \text { =st } x \text { ज्या ive } \\
& x_{1}=\frac{1}{4} x_{2}-\frac{1}{4} x_{3}+7 / 4 \\
& x_{1} \text { dionder } ت_{0}^{2} \\
& x_{2}=\frac{1}{2} x_{1}+\frac{1}{8} x_{3}+\frac{21}{8} \quad x_{2} \text { Nioded }=0 \\
& x_{3}=\frac{2}{5} x_{1}-\frac{1}{5} x_{2}+3 \\
& \Rightarrow\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{2}
\end{array}\right)=\frac{\left(\begin{array}{ccc}
x_{1} & \frac{1}{4} & -\frac{1}{4} \\
\frac{1}{2} & 0 & \frac{1}{8} \\
\frac{1}{5} & \frac{1}{8} & 0
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)+\left(\begin{array}{c}
7 / 4 \\
21 / 8 \\
3
\end{array}\right)}{x^{6}} \\
& \underline{X^{b}}=B^{6} \cdot \underline{X}^{5}+C^{4} \\
& \|B\|_{\infty}=\max \left[\frac{1}{2}, \frac{5}{2}, \frac{3}{5}\right\} \\
& =\max \{0.5,0.625,0.6\} \\
& 15153 \\
& =0.625 \mathrm{rl} \\
& \text { Boil d d } \\
& \text { - ~った。 }
\end{aligned}
$$

$$
[20 / 8 / 3 / 7
$$

$$
=1 / b_{b i} \lambda_{i}+\frac{1}{x}
$$

Nan slability
inn, ar) $\mu(A)$
चiér x

$$
k(A)=\|A\| \cdot\left\|A^{-1}\right\|
$$

Vet, (Leं', do is

 .
 "准
沙 (os-80)
214. Condition jumben vest was b/an

$$
K(A)=\|A\| \cdot\left\|A^{-1}\right\|
$$

$$
\cdot d \operatorname{dac}
$$

(1)
b 白, 元

(1) $K(\alpha \cdot A)=\alpha k(A), \alpha \in \mathbb{R}$
(2) $k(A)>1$

$7\|,\| A^{-1}\|\geqslant\| A \cdot A^{-1} \|=1$
-ablels, e, ',

$$
\therefore \quad \underline{b} a-1 \text { plie }(6)(31, j a) \text { (1) })
$$

$$
\begin{aligned}
& \text { A } \underline{x}=b \ldots \text { (1) }
\end{aligned}
$$

$$
\begin{align*}
& \Rightarrow A(\underline{x}+\delta \underline{x})=\underline{b}+\delta \underline{b} \tag{2}\\
& \Rightarrow A \underline{x}+A \cdot \delta x=\underline{b}+\delta \underline{b} \cdots \text { (3) } \tag{3}\\
& \Rightarrow A^{-}[A \delta \underline{x}=\delta \underline{b}] \text { (4) } \tag{4}\\
& \Rightarrow \quad \delta \underline{x}=A^{-1} \cdot d \underline{b} \quad \cdots \cdot(b) \tag{5}\\
& \Rightarrow \quad\|\delta \underline{x}\|=\left\|A^{-1} \cdot \delta \underline{b}\right\| \\
& \Rightarrow\|\delta \underline{\|}\|\left\|A^{-1}\right\| .\|\delta \underline{b}\| \ldots \text { (6) } \\
& \left.\Rightarrow \quad \frac{\|\delta \underline{x}\|}{\|\underline{x}\|}\right)^{5} \quad \frac{\left\|A^{-1}\right\|-\|\delta \underline{b}\| \cdot}{\|\underline{x}\|}
\end{align*}
$$

87) dile dies (1) is

$$
\begin{aligned}
& \Rightarrow\|A \cdot \underline{x}\|=\|\underline{\|}\| \\
& \Rightarrow\|A\| \cdot\|x\| \geqslant\|\underline{b}\| \\
& \Rightarrow \| \underline{\|} \geqslant \frac{\|\underline{b}\|}{\|A\|} \\
& \Rightarrow \frac{1}{\|\underline{x}\|} \leqslant \frac{\|A\|}{\|\underline{b}\|} \cdot \cdots \\
& \Rightarrow \frac{\|\delta \underline{x}\|}{\|\underline{x}\|} \leqslant\left\|A^{-1}\right\| \cdot\|\delta b\| \cdot \frac{\|A\|}{\|\underline{b}\|} \\
& \Rightarrow \frac{\|\delta x\|}{\|x\|} \leqslant K(A) \cdot \frac{\|\delta \underline{b}\|}{\|\underline{b}\|} \ldots(9)
\end{aligned}
$$

K(A) , ’ẽl is (9) चivlub, incin

 $\underset{\sim 120}{\sim}$

$$
\delta \underline{x} \cong 0 \Rightarrow \underline{x}+\delta \underline{x} \rightarrow \underline{x}
$$

 "Lei,
vil, is $\Rightarrow \delta \underline{x} \Rightarrow \frac{x}{8 Q}+\delta \underline{x} / \underline{x} U$ isin

swien, $2018 / 3113$ cives ue GK

A
0% - ingu.
نi: $\|B\|<1$ ن $|\leqslant|$

$$
\left\|(I+B)^{-1}\right\| \leqslant \frac{1}{1-\|B\|}
$$

$$
\begin{gathered}
A \underline{x}=\underline{b} \ldots(1 \\
(A+\delta A)(\underline{x}+\delta \underline{x})=\underline{b} \cdots(2) \\
A \underline{X}+A \delta \underline{x}+\delta A \cdot \underline{x}+\delta A \cdot \delta \underline{x}=\underline{\varnothing} \cdots(B)
\end{gathered}
$$ (Ves (2), Dio

$$
A S \underline{x}+S A \cdot \underline{X}+\delta A \cdot S \underline{X}=0
$$

$$
(A+\delta A) \delta \underline{x}+\delta A \cdot \underline{x}=0
$$ IX 2) ${ }^{2}$ edet ani $(A+\delta A)^{-1} \quad i \hat{\imath}$

$$
\begin{aligned}
\delta \underline{x} & =-(A+\delta A)^{-1} *(\delta A \underline{x}) \\
\|\delta \underline{x}\| & =\left\|-(A+\delta A)^{-1} *(\delta A \underline{x})\right\| \\
& =\left\|-\left[A\left(I+A^{-1} \delta A\right)\right]^{-1} \times(\delta A \underline{x})\right\|
\end{aligned}
$$

Snow $A=A$

0

$$
\begin{align*}
& =\left\|\left(I+A^{-1} \Sigma A\right)^{-1} \cdot A^{-1} \cdot \delta A \cdot \underline{X}\right\| \\
& \leqslant \|\left(I+A^{-1} S A_{j}^{-1}\|\cdot\| A^{-1}\|\cdot\| \delta A\|\cdot\| x \|\right. \\
& \approx \frac{1}{1-\| A^{-1} \xi A 1}\left|A^{-1}\|\cdot\| \& A\right| \cdot\|X\| \\
& \|\delta \dot{\|}\| \frac{1}{\|-\| A^{-1}\| \| \delta A \|}\left\|A^{-1}\right\|-\|\delta A\| \cdot\|x\| \\
& \text { is } \| x \cap \quad x \text {, he ats an- } l l \\
& \frac{\| \delta \underline{x}_{\|}}{\| x_{\|}} \leqslant \frac{1}{1-\left\|A^{-1}\right\|\|\delta A\|} \cdot\left\|A^{-1}\right\| \cdot\|\delta A\| \\
& \frac{\|\dot{\delta} \underline{x}\|}{\|\underline{x}\|} \leqslant \frac{1}{1-\left\|A^{-1}\right\|\|A\| \frac{\|\delta A\|}{\|A\|}} \cdot \| \frac{\left\|A^{-1}\right\|\|\delta A\|\|A\|}{\|A\|} \\
& \frac{\|\delta \underline{x}\|}{\|\underline{x}\|} \leqslant \frac{K(A)}{1-K(A) \frac{\|\delta A\|}{\|A\|}} \cdot \frac{\|\delta A\|}{\|A\|} \tag{4}
\end{align*}
$$

 @ \underline{x} जा \&us $\delta \underline{x}$, iñ̃ $S x \cong 0$
 1 Hes aswh ved us ary $\delta(x)$ är int
 $(1) \quad 9$

(a) $\underline{x}=(2,1,-3,4)^{t}$
(b) $\underline{X}=\left(\frac{4}{k+1}, \frac{2}{k^{2}}, k^{2}, e^{-k}\right)^{t}, k$ कts © Pur

@
(b) $\left(\begin{array}{ccc}4 & -1 & 7 \\ -1 & 4 & 0 \\ -7 & 0 & 4\end{array}\right)$

$$
B=\left(\begin{array}{cc}
\frac{1}{2} & 0 \tag{2}\\
16 & \frac{1}{2}
\end{array}\right), \quad A=\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{4} & \frac{1}{2}
\end{array}\right)
$$

P. $A=\left(\begin{array}{ccc}\beta & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2\end{array}\right)$
$\dot{\dot{\prime}}=-1 \mathrm{~s} \mid \dot{1}$
$\dot{\sim}$
(a) A is singular
(b) A is sy mmefrix
(c) A is Positive definite Q Q
(d) As strictly diagonally dominout

Lu 3, (Leil, wesel (5)

$$
\begin{aligned}
& 2 x_{1}-\alpha x_{2}=3 \\
& 3 \alpha x_{1}-x_{2}=3 / 2
\end{aligned}
$$

inp, in shin (8)

$$
\frac{\mid \delta x \|}{\|x\|} \leqslant \frac{K(A) \cdot\|A\|}{\|A\|-K(A) \cdot \mid \delta \& \|} \cdot\left(\frac{\|\Sigma A\|}{N A \|}+\frac{\|\delta \underline{b}\|}{\|\underline{\underline{b}}\|}\right)
$$

 0.1 PVEV

$$
\begin{equation*}
\left\|\underline{x}-\underline{x}^{(k}\right\| s \frac{\|B\|^{k}}{1-\|\beta\|^{k}}\left\|x^{(1)}-\underline{x}^{(0)}\right\| \text { il } \quad-\cdots! \tag{8}
\end{equation*}
$$

$$
\underline{x}=B \underline{x}+\underline{c}, \quad \leq \in R^{n}
$$

Nè viell \hat{x} an inge A सि $A \underline{x}=\underline{b}$

$$
\frac{\|\delta \underline{x}\|}{\|x\|} \leqslant k(A) \cdot \frac{\|\delta r\|}{\|b\|}
$$

$$
\Delta \underline{x}=b
$$

$$
\begin{equation*}
A \underline{\hat{x}}=\underline{b}+S \underline{b} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\underline{\underline{v}} \underline{\cos } \underline{\Sigma b}=\underline{b}-A \underline{\hat{x}} \tag{x}
\end{equation*}
$$

$$
\frac{\binom{2}{3}}{\left(\begin{array}{c}
9 \\
1 \\
2
\end{array}\right)} \hat{\hat{x}}
$$

$$
\left(\begin{array}{ll}
2 & 1 \tag{2}\\
3 & 2
\end{array}\right)\binom{1}{2}=\binom{3}{7}
$$

$$
S b=\binom{2}{3}\binom{子_{1}}{1}-\left(\begin{array}{ll}
1 & 1 \tag{1}\\
32
\end{array}\right)\binom{-1}{1.9}=r
$$

$$
\begin{gather*}
(1-2 i)\left(x_{1}+i y_{1}\right)+(3+2 i)\left(x_{2}+i y_{2}\right)=5+2 i \\
(2+i)\left(x_{1}+i y_{1}\right)+(4+3 i)\left(x_{2}+i y_{2}\right)=4=i \\
x+2 i y=5+3 i \quad x=5, y=3 \tag{8}\\
z=a \\
2, a \in 6
\end{gather*}
$$

